Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered living biomaterials

Abstract

Biomaterials have evolved from inert materials that lack interaction with the body to biologically active, instructive materials that host and provide signals to surrounding cells and tissues. Engineered living materials contain living cells (responsive function) and polymeric matrices (scaffolding function) and, thus, can be designed as active and response biomaterials. In this Review, we discuss engineered living materials that incorporate microorganisms as the living, bioactive component. Microorganisms can provide complex responses to environmental stimuli, and they can be genetically engineered to allow user control over responses and integration of numerous inputs. The engineered microorganisms can either generate their own matrix, such as in biofilms, or they can be incorporated in matrices using various technologies, such as coating, 3D printing, spinning and microencapsulation. We highlight biomedical applications of such engineered living materials, including biosensing, wound healing, stem-cell-based tissue engineering and drug delivery, and provide an outlook to the challenges and future applications of engineered living materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication and biomedical applications of living materials.
Fig. 2: Living materials as biosensors.
Fig. 3: Living materials as tissue adhesives.
Fig. 4: Light-responsive living therapeutic materials.
Fig. 5: Spinning techniques for the fabrication of living materials.
Fig. 6: 3D printing of living materials.

Similar content being viewed by others

References

  1. Marth, J. D. A unified vision of the building blocks of life. Nat. Cell Biol. 10, 1015–1015 (2008).

    CAS  Google Scholar 

  2. Rossi, E., Paroni, M. & Landini, P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J. Appl. Microbiol. 125, 1587–1602 (2018).

    CAS  Google Scholar 

  3. Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

    CAS  Google Scholar 

  4. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    CAS  Google Scholar 

  5. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

    Google Scholar 

  6. Gona, R. S. & Meyer, A. S. Engineered proteins and three-dimensional printing of living materials. MRS Bull. 45, 1034–1038 (2020).

    Google Scholar 

  7. Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019). Excellent review on applications of living biomaterials beyond medical applications.

    CAS  Google Scholar 

  8. Appiah, C. et al. Living materials herald a new era in soft robotics. Adv. Mater. 31, 1807747 (2019).

    Google Scholar 

  9. Rivera-Tarazona, L. K., Campbell, Z. T. & Ware, T. H. Stimuli-responsive engineered living materials. Soft Matter 17, 785–809 (2021).

    CAS  Google Scholar 

  10. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    CAS  Google Scholar 

  11. Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    CAS  Google Scholar 

  12. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  Google Scholar 

  13. Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0001-2014 (2015).

  14. Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018). 3D printing of living materials to implement logic gates using programmed bacteria in hydrogels.

    Google Scholar 

  15. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    CAS  Google Scholar 

  16. Gilman, J. & Love, J. Synthetic promoter design for new microbial chassis. Biochem. Soc. Trans. 44, 731–737 (2016).

    CAS  Google Scholar 

  17. Fierke, C. A. & Thompson, R. B. Fluorescence-based biosensing of zinc using carbonic anhydrase. Biometals 14, 205–222 (2001).

    CAS  Google Scholar 

  18. Zeng, H. H. et al. Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75, 6807–6812 (2003).

    CAS  Google Scholar 

  19. Begam, H., Nandi, S. K., Kundu, B. & Chanda, A. Strategies for delivering bone morphogenetic protein for bone healing. Mater. Sci. Eng. C. 70, 856–869 (2017).

    CAS  Google Scholar 

  20. Bally, L., Thabit, H. & Hovorka, R. Finding the right route for insulin delivery – an overview of implantable pump therapy. Expert Opin. Drug Deliv. 14, 1103–1111 (2017).

    CAS  Google Scholar 

  21. van Wamelen, D. J., Grigoriou, S., Chaudhuri, K. R. & Odin, P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J. Parkinsons. Dis. 8, S65–S72 (2018).

    Google Scholar 

  22. Batista, E. et al. Assessment of drug delivery devices. Biomed. Tech. 60, 347–357 (2015).

    Google Scholar 

  23. Hay, J. J. et al. Bacteria-based materials for stem cell engineering. Adv. Mater. 30, 1804310 (2018). Engineered bacteria that expresses fibronectin fragments and growth factors to support mesenchymal stem cell adhesion and differentiation.

    Google Scholar 

  24. González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020). Highly resilient bacterial hydrogels containing Bacillus subtilis spores capable of biosensing and therapeutic functions are described in this report.

    Google Scholar 

  25. Lufton, M. et al. Living bacteria in thermoresponsive gel for treating fungal infections. Adv. Funct. Mater. 28, 1801581 (2018).

    Google Scholar 

  26. Praveschotinunt, P. et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 10, 5580 (2019). Engineered protein-based bacterial biofilms as therapeutic living materials capable of colonizing and promoting regeneration of intestinal tissues in colitis-induced mice.

    CAS  Google Scholar 

  27. An, B. et al. Programming living glue systems to perform autonomous mechanical repairs. Matter 3, 2080–2092 (2020).

    Google Scholar 

  28. Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew. Chem. Int. Ed. 51, 11293–11296 (2012).

    CAS  Google Scholar 

  29. Sankaran, S. & del Campo, A. Optoregulated protein release from an engineered living material. Adv. Biosyst. 3, 1800312 (2019).

    Google Scholar 

  30. Sankaran, S., Becker, J., Wittmann, C. & del Campo, A. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small 15, 1804717 (2019). Bacterial hydrogels have been developed for the localized, tunable and long-term release of an antimicrobial/antitumour drug, deoxyviolacein, in a manner that can be regulated by light.

    Google Scholar 

  31. Johnston, T. G. et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat. Commun. 11, 563 (2020).

    CAS  Google Scholar 

  32. Schotte, L., Steidler, L., Vandekerckhove, J. & Remaut, E. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzym. Microb. Technol. 27, 761–765 (2000).

    CAS  Google Scholar 

  33. van der Hoek, S. A. et al. Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-ergothioneine. Front. Bioeng. Biotechnol. 7, 262 (2019).

    Google Scholar 

  34. Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. Spirulina in clinical practice: evidence-based human applications. Evid. Based Complement. Altern. Med. 2011, 531053 (2011).

    CAS  Google Scholar 

  35. Sharifi-Rad, J. et al. Probiotics: versatile bioactive components in promoting human health. Medicina 56, 433 (2020).

    Google Scholar 

  36. Markowiak, P. & Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9, 1021 (2017).

    Google Scholar 

  37. Parvez, S., Malik, K. A., Ah Kang, S. & Kim, H.-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185 (2006).

    CAS  Google Scholar 

  38. Acosta, S. et al. Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll. 61, 233–240 (2016).

    CAS  Google Scholar 

  39. Li, S. et al. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr. Polym. 248, 116805 (2020).

    CAS  Google Scholar 

  40. De Prisco, A. & Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 48, 27–39 (2016).

    Google Scholar 

  41. Bourtoom, T. Edible films and coatings: characteristics and properties. Int. Food Res. J. 15, 237–248 (2008).

    Google Scholar 

  42. Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci. Technol. 20, 438–447 (2009).

    Google Scholar 

  43. Valencia-Chamorro, S. A., Palou, L., del Río, M. A. & Pérez-Gago, M. B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 51, 872–900 (2011).

    CAS  Google Scholar 

  44. Corrales, M., Han, J. H. & Tauscher, B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int. J. Food Sci. Technol. 44, 425–433 (2009).

    CAS  Google Scholar 

  45. Tapia, M. S. et al. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 22, 1493–1503 (2008).

    CAS  Google Scholar 

  46. Suput, D., Lazic, V., Popovic, S. & Hromis, N. Edible films and coatings: Sources, properties and application. Food Feed. Res. 42, 11–22 (2015).

    CAS  Google Scholar 

  47. Ozyurt, V. H. & Ötles, S. Properties of probiotics and encapsulated probiotics in food. Acta Sci. Pol. Technol. Aliment. 13, 413–424 (2014).

    Google Scholar 

  48. Maxmen, A. Living therapeutics: Scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017).

    CAS  Google Scholar 

  49. Vandenbroucke, K. et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010).

    CAS  Google Scholar 

  50. Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    CAS  Google Scholar 

  51. Lagenaur, L. A. et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 4, 648–657 (2011).

    CAS  Google Scholar 

  52. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03751007 (2021).

  53. US National Library of Medicine. Clinicaltrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02766023 (2020).

  54. Flores Bueso, Y., Lehouritis, P. & Tangney, M. In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J. Control. Rel. 275, 217–228 (2018).

    CAS  Google Scholar 

  55. Krámli, A. & Horváth, J. Microbiological oxidation of sterols. Nature 162, 619 (1948).

    Google Scholar 

  56. Lintner, C. J. & Liebig, H. J. v. Über die Reduktion des Furfurols durch Hefe bei der alkoholischen Gärung. Hoppe Seylers Z. Physiol. Chem. 72, 449–454 (1911).

    CAS  Google Scholar 

  57. Burkovski, A. (ed.) Corynebacterium Glutamicum: From Systems Biology to Biotechnological Applications (Caister Academic Press, 2015)

  58. Lee, B. H. Fundamentals of Food Biotechnology (Wiley, 1996).

  59. Young, A. L. The World Congress on Industrial Biotechnology and Bioprocessing. Environ. Sci. Pollut. Res. 11, 202 (2004).

    Google Scholar 

  60. Bučko, M. et al. Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzym. Microb. Technol. 49, 284–288 (2011).

    Google Scholar 

  61. Edel, M., Horn, H. & Gescher, J. Biofilm systems as tools in biotechnological production. Appl. Microbiol. Biotechnol. 103, 5095–5103 (2019).

    CAS  Google Scholar 

  62. Cheng, K.-C., Demirci, A. & Catchmark, J. M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 87, 445–456 (2010).

    CAS  Google Scholar 

  63. Rudroff, F. Whole-cell based synthetic enzyme cascades — light and shadow of a promising technology. Curr. Opin. Chem. Biol. 49, 84–90 (2019).

    CAS  Google Scholar 

  64. Han, L., Zhao, Y., Cui, S. & Liang, B. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Appl. Biochem. Biotechnol. 185, 396–418 (2018).

    CAS  Google Scholar 

  65. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).

    Google Scholar 

  66. Park, M., Tsai, S.-L. & Chen, W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013).

    CAS  Google Scholar 

  67. Metkar, S. K. & Girigoswami, K. Diagnostic biosensors in medicine – A review. Biocatal. Agric. Biotechnol. 17, 271–283 (2019).

    Google Scholar 

  68. Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017).

    Google Scholar 

  69. Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    CAS  Google Scholar 

  70. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    CAS  Google Scholar 

  71. Mora, C. A., Herzog, A. F., Raso, R. A. & Stark, W. J. Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61, 1–9 (2015).

    CAS  Google Scholar 

  72. Schulz-Schönhagen, K., Lobsiger, N. & Stark, W. J. Continuous production of a shelf-stable living material as a biosensor platform. Adv. Mater. Technol. 4, 1900266 (2019).

    Google Scholar 

  73. Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021). Bacteria and yeast used for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.

    CAS  Google Scholar 

  74. Lim, J. W., Ha, D., Lee, J., Lee, S. K. & Kim, T. Review of micro/nanotechnologies for microbial biosensors. Front. Bioeng. Biotechnol. 3, 61 (2015).

    Google Scholar 

  75. Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21, 132–144 (2020).

    CAS  Google Scholar 

  76. Saltepe, B., Kehribar, E. Ş., Su Yirmibeşogˇlu, S. S. & Şafak Şeker, U. Ö. Cellular biosensors with engineered genetic circuits. ACS Sens. 3, 13–26 (2018).

    CAS  Google Scholar 

  77. Prescott, S. L. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).

    Google Scholar 

  78. Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

    Google Scholar 

  79. Glinel, K., Behrens, A., Langer, R. S., Jaklenec, A. & Jonas, A. M. Nanofibrillar patches of commensal skin bacteria. Biomacromolecules 20, 102–108 (2019).

    CAS  Google Scholar 

  80. Nussbaumer, M. G. et al. Bootstrapped biocatalysis: biofilm-derived materials as reversibly functionalizable multienzyme surfaces. ChemCatChem 9, 4328–4333 (2017).

    CAS  Google Scholar 

  81. Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841–1850 (2017).

    Google Scholar 

  82. Zhong, C. et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 9, 858–866 (2014).

    CAS  Google Scholar 

  83. Wang, Y. et al. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat. Chem. Biol. 17, 351–359 (2021).

    CAS  Google Scholar 

  84. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    CAS  Google Scholar 

  85. Pu, J. et al. Virus disinfection from environmental water sources using living engineered biofilm materials. Adv. Sci. 7, 1903558 (2020).

    CAS  Google Scholar 

  86. Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

    CAS  Google Scholar 

  87. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Google Scholar 

  88. Oxford, J. T., Reeck, J. C. & Hardy, M. J. Extracellular matrix in development and disease. Int. J. Mol. Sci. 20, 205 (2019).

    Google Scholar 

  89. Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).

    Google Scholar 

  90. Saadeddin, A. et al. Functional living biointerphases. Adv. Healthc. Mater. 2, 1213–1218 (2013).

    CAS  Google Scholar 

  91. Hay, J. J. et al. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Sci. Rep. 6, 21809 (2016).

    CAS  Google Scholar 

  92. Rodrigo-Navarro, A., Rico, P., Saadeddin, A., Garcia, A. J. & Salmeron-Sanchez, M. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Sci. Rep. 4, 5849 (2014).

    CAS  Google Scholar 

  93. Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005).

    CAS  Google Scholar 

  94. Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017).

    Google Scholar 

  95. Sankaran, S., Zhao, S., Muth, C., Paez, J. & Del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018). Light-responsive living biointerfaces capable of adhesively interacting with mammalian cells and delivering proteins within their cytosol.

    Google Scholar 

  96. Bernhagen, D., De Laporte, L. & Timmerman, P. High-affinity RGD-knottin peptide as a new tool for rapid evaluation of the binding strength of unlabeled RGD-peptides to αvβ3, αvβ5, and α5β1 integrin receptors. Anal. Chem. 89, 5991–5997 (2017).

    CAS  Google Scholar 

  97. Kesik-Brodacka, M. Progress in biopharmaceutical development. Biotechnol. Appl. Biochem. 65, 306–322 (2018).

    CAS  Google Scholar 

  98. Cordaillat-Simmons, M., Rouanet, A. & Pot, B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp. Mol. Med. 52, 1397–1406 (2020).

    CAS  Google Scholar 

  99. Al-Mujaini, A., Al-Kharusi, N., Thakral, A. & Wali, U. K. Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. Sultan Qaboos Univ. Med. J. 9, 184–195 (2009).

    Google Scholar 

  100. Cole, P. The damaging role of bacteria in chronic lung infection. J. Antimicrob. Chemother. 40, 5–10 (1997).

    CAS  Google Scholar 

  101. Ferreiro, A., Dantas, G. & Ciorba, M. A. Insights into how probiotics colonize the healthy human gut. Gastroenterology 156, 820–822 (2019).

    Google Scholar 

  102. Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020). Interesting approach to harness the ability of bacterial adhesins to immobilize cells in synthetic matrices.

    CAS  Google Scholar 

  103. Park, J. K. & Chang, H. N. Microencapsulation of microbial cells. Biotechnol. Adv. 18, 303–319 (2000).

    CAS  Google Scholar 

  104. de Vos, P. et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30, 2559–2570 (2009).

    Google Scholar 

  105. Ramakrishna, S. V. & Prakasham, R. S. Microbial fermentations with immobilized cells. Curr. Sci. 77, 87–100 (1999).

    CAS  Google Scholar 

  106. Jung, I. et al. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst 139, 4696–4701 (2014).

    CAS  Google Scholar 

  107. Avnir, D., Coradin, T., Lev, O. & Livage, J. Recent bio-applications of sol–gel materials. J. Mater. Chem. 16, 1013–1030 (2006).

    CAS  Google Scholar 

  108. Xu, L. et al. Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate–carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions. J. Ind. Microbiol. Biotechnol. 38, 1709–1718 (2011).

    CAS  Google Scholar 

  109. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322 (1999).

    CAS  Google Scholar 

  110. Xu, H. et al. Characterizing pilus-mediated adhesion of biofilm-forming E. coli to chemically diverse surfaces using atomic force microscopy. Langmuir 29, 3000–3011 (2013).

    CAS  Google Scholar 

  111. Wong, J. X., Gonzalez-Miro, M., Sutherland-Smith, A. J. & Rehm, B. H. A. Covalent functionalization of bioengineered polyhydroxyalkanoate spheres directed by specific protein-protein interactions. Front. Bioeng. Biotechnol. 8, 44 (2020).

    Google Scholar 

  112. Asenjo, J. A. Bioreactor System Design (CRC Press, 1994).

  113. Simões, M., Simões, L. C. & Vieira, M. J. A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 43, 573–583 (2010).

    Google Scholar 

  114. Teughels, W., Van Assche, N., Sliepen, I. & Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral. Implant. Res. 17, 68–81 (2006).

    Google Scholar 

  115. Scheuerman, T. R., Camper, A. K. & Hamilton, M. A. Effects of substratum topography on bacterial adhesion. J. Colloid Interface Sci. 208, 23–33 (1998).

    CAS  Google Scholar 

  116. Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).

    CAS  Google Scholar 

  117. Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010).

    CAS  Google Scholar 

  118. Rashid, H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur. J. Dent. 08, 571–579 (2014).

    Google Scholar 

  119. Fernandez-Moure, J. S., Mydlowska, A., Shin, C., Vella, M. & Kaplan, L. J. Nanometric considerations in biofilm formation. Surg. Infect. 20, 167–173 (2019).

    Google Scholar 

  120. Sarao, L. K. & Arora, M. Probiotics, prebiotics, and microencapsulation: a review. Crit. Rev. Food Sci. Nutr. 57, 344–371 (2017).

    CAS  Google Scholar 

  121. Martín, M. J., Lara-Villoslada, F., Ruiz, M. A. & Morales, M. E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27, 15–25 (2015).

    Google Scholar 

  122. Mohamed, M. G. A. et al. Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics 14, 021501 (2020).

    CAS  Google Scholar 

  123. Kupikowska-Stobba, B. & Lewińska, D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater. Sci. 8, 1536–1574 (2020).

    CAS  Google Scholar 

  124. Li, P., Müller, M., Chang, M. W., Frettlöh, M. & Schönherr, H. Encapsulation of autoinducer sensing reporter bacteria in reinforced alginate-based microbeads. ACS Appl. Mater. Interfaces 9, 22321–22331 (2017).

    CAS  Google Scholar 

  125. Witte, K., Rodrigo-Navarro, A. & Salmeron-Sanchez, M. Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Mater. Today Bio. 2, 100011 (2019).

    CAS  Google Scholar 

  126. Balusamy, B., Sarioglu, O. F., Senthamizhan, A. & Uyar, T. Rational design and development of electrospun nanofibrous biohybrid composites. ACS Appl. Bio Mater. 2, 3128–3143 (2019).

    CAS  Google Scholar 

  127. Christian, K. et al. Living composites of bacteria and polymers as biomimetic films for metal sequestration and bioremediation. Macromol. Biosci. 15, 1052–1059 (2015).

    Google Scholar 

  128. Abdali, Z., Logsetty, S. & Liu, S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly(ethylene succinate) for on-demand release of biocides. ACS Omega 4, 4063–4070 (2019).

    CAS  Google Scholar 

  129. Kaiser, P. et al. Electrogenic single-species biocomposites as anodes for microbial fuel cells. Macromol. Biosci. 17, 1600442 (2017).

    Google Scholar 

  130. Kaiser, P., Reich, S., Greiner, A. & Freitag, R. Preparation of biocomposite microfibers ready for processing into biologically active textile fabrics for bioremediation. Macromol. Biosci. 18, 1800046 (2018).

    Google Scholar 

  131. Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D. & Chidambaram, D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc. Natl Acad. Sci. USA 106, 14201–14206 (2009).

    CAS  Google Scholar 

  132. Letnik, I. et al. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules 16, 3322–3328 (2015).

    CAS  Google Scholar 

  133. Reich, S. et al. High-temperature spray-dried polymer/bacteria microparticles for electrospinning of composite nonwovens. Macromol. Biosci. 19, 1800356 (2019).

    Google Scholar 

  134. Xie, S. et al. Genetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. J. Mater. Chem. B 4, 6820–6829 (2016).

    CAS  Google Scholar 

  135. de Morais, M. G. et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour. Technol. 101, 2872–2876 (2010).

    Google Scholar 

  136. Kim, S. H., Shin, C., Min, S. K., Jung, S.-M. & Shin, H. S. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf. B Biointerfaces 90, 113–118 (2012).

    CAS  Google Scholar 

  137. Cha, B. G. et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract. Biopolymers 101, 307–318 (2014).

    CAS  Google Scholar 

  138. Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017). 3D bacteria-printing platform for the creation of functional materials by embedding bacteria into a functionalized bioink.

    Google Scholar 

  139. Schmieden, D. T. et al. Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 7, 1328–1337 (2018).

    CAS  Google Scholar 

  140. Qian, F. et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 19, 5829–5835 (2019).

    CAS  Google Scholar 

  141. Joshi, S., Cook, E. & Mannoor, M. S. Bacterial nanobionics via 3D printing. Nano Lett. 18, 7448–7456 (2018).

    CAS  Google Scholar 

  142. Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 6, 1124–1130 (2017).

    CAS  Google Scholar 

  143. Spiesz, E. M. et al. Three-dimensional patterning of engineered biofilms with a do-it-yourself bioprinter. J. Vis. Exp. https://doi.org/10.3791/59477 (2019).

    Article  Google Scholar 

  144. Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013).

    CAS  Google Scholar 

  145. Kandemir, N., Vollmer, W., Jakubovics, N. S. & Chen, J. Mechanical interactions between bacteria and hydrogels. Sci. Rep. 8, 10893 (2018).

    Google Scholar 

  146. Stewart, E. J., Ganesan, M., Younger, J. G. & Solomon, M. J. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly. Sci. Rep. 5, 13081 (2015).

    CAS  Google Scholar 

  147. Chen, X. & Stewart, P. S. Chlorine penetration into artificial biofilm is limited by a reaction–diffusion interaction. Environ. Sci. Technol. 30, 2078–2083 (1996).

    CAS  Google Scholar 

  148. Eun, Y.-J., Utada, A. S., Copeland, M. F., Takeuchi, S. & Weibel, D. B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 6, 260–266 (2011).

    CAS  Google Scholar 

  149. Pabst, B., Pitts, B., Lauchnor, E. & Stewart, P. S. Gel-entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression. Antimicrob. Agents Chemother. 60, 6294–6301 (2016).

    CAS  Google Scholar 

  150. Priks, H. et al. Physical confinement impacts cellular phenotypes within living materials. ACS Appl. Bio Mater. 3, 4273–4281 (2020).

    CAS  Google Scholar 

  151. Johnston, T. G. et al. Cell-laden hydrogels for multikingdom 3D printing. Macromol. Biosci. 20, 2000121 (2020).

    CAS  Google Scholar 

  152. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

    CAS  Google Scholar 

  153. Williams, D. in Bio-Implant Interface (eds Ellingsen, J. E. & Lyngstadaas, S. P.) (CRC Press, 2003)

  154. U.S. Food and Drug Administration. Use of International Standard ISO-10993, ‘Biological Evaluation of Medical Devices Part 1: Evaluation and Testing’ (blue book memo) (International Standards Organization, 2018).

  155. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS  Google Scholar 

  156. Levine, M. M., Barry, E. M. & Chen, W. H. A roadmap for enterotoxigenic Escherichia coli vaccine development based on volunteer challenge studies. Hum. Vaccin. Immunother. 15, 1357–1378 (2019).

    Google Scholar 

  157. Wang, J. et al. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies. Microb. Cell Fact. 18, 103 (2019).

    Google Scholar 

  158. Guo, M. et al. Construction of a recombinant Lactococcus lactis strain expressing a variant porcine epidemic diarrhea virus S1 gene and its immunogenicity analysis in mice. Viral Immunol. 32, 144–150 (2019).

    CAS  Google Scholar 

  159. Narvhus, J. A. & Axelsson, L. in Encyclopedia of Food Sciences and Nutrition 3465–3472 (Elsevier, 2003).

  160. Wyszyńska, A., Kobierecka, P., Bardowski, J. & Jagusztyn-Krynicka, E. K. Lactic acid bacteria — 20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 99, 2967–2977 (2015).

    Google Scholar 

  161. Cook, D. P., Gysemans, C. & Mathieu, C. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8, 1961 (2018).

    Google Scholar 

  162. Bermúdez-Humarán, L. G., Kharrat, P., Chatel, J.-M. M. & Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10, S4 (2011).

    Google Scholar 

  163. Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    CAS  Google Scholar 

  164. Daegelen, P., Studier, F. W., Lenski, R. E., Cure, S. & Kim, J. F. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B Strains REL606 and BL21(DE3). J. Mol. Biol. 394, 634–643 (2009).

    CAS  Google Scholar 

  165. Archer, C. T. et al. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12, 9 (2011).

    CAS  Google Scholar 

  166. Brzuszkiewicz, E. et al. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch. Microbiol. 193, 883–891 (2011).

    CAS  Google Scholar 

  167. Morschhäuser, J. et al. Evolution of microbial pathogens. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 695–704 (2000).

    Google Scholar 

  168. Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: Engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).

    CAS  Google Scholar 

  169. Bull, J. J. & Barrick, J. E. Arresting evolution. Trends Genet. 33, 910–920 (2017).

    CAS  Google Scholar 

  170. Geng, P., Leonard, S. P., Mishler, D. M. & Barrick, J. E. Synthetic genome defenses against selfish DNA elements stabilize engineered bacteria against evolutionary failure. ACS Synth. Biol. 8, 521–531 (2019).

    CAS  Google Scholar 

  171. Plavec, T. V. & Berlec, A. Safety aspects of genetically modified lactic acid bacteria. Microorganisms 8, 297 (2020).

    CAS  Google Scholar 

  172. Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

    CAS  Google Scholar 

  173. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    CAS  Google Scholar 

  174. Molina, L., Ramos, C., Ronchel, M.-C., Molin, S. & Ramos, J. L. Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl. Environ. Microbiol. 64, 2072–2078 (1998).

    CAS  Google Scholar 

  175. Li, Q. & Wu, Y.-J. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl. Microbiol. Biotechnol. 82, 749–756 (2009).

    CAS  Google Scholar 

  176. García, J. L. & Díaz, E. Plasmids as tools for containment. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0011-2013 (2014).

  177. Piñero-Lambea, C., Ruano-Gallego, D. & Fernández, L. Á. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015).

    Google Scholar 

  178. Marteau, P. R. Probiotics in clinical conditions. Clin. Rev. Allergy Immunol. 22, 255–273 (2002).

    Google Scholar 

  179. D’Souza, A. L., Rajkumar, C., Cooke, J. & Bulpitt, C. J. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324, 1361 (2002).

    Google Scholar 

  180. Allen, S. J., Martinez, E. G., Gregorio, G. V. & Dans, L. F. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003048.pub3 (2010).

    Article  Google Scholar 

  181. Gionchetti, P. et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 119, 305–309 (2000).

    CAS  Google Scholar 

  182. Weizman, Z., Asli, G. & Alsheikh, A. Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics 115, 5–9 (2005).

    Google Scholar 

  183. Kalliomäki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001).

    Google Scholar 

  184. Rosenfeldt, V. et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J. Allergy Clin. Immunol. 111, 389–395 (2003).

    Google Scholar 

  185. Chahwan, B. et al. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 253, 317–326 (2019).

    Google Scholar 

  186. Samonin, V. V. & Elikova, E. E. A study of the adsorption of bacterial cells on porous materials. Microbiology 73, 696–701 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

Support from EPSRC through a programme grant (EP/P001114/1) is acknowledged. M.S.-S. and M.J.D acknowledge support from a grant from the UK Regenerative Medicine Platform “Acellular/Smart Materials – 3D Architecture” (MR/R015651/1). S.S. and A.d.C. acknowledge support from the Deutsche Forschungsgemeinschaft’s Collaborative Research Centre, SFB 1027 and the Leibniz Science Campus on Living Therapeutic Materials, LifeMat.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. A.R.-N. and S.S. contributed equally to this work and sketched the figures.

Corresponding authors

Correspondence to Aránzazu del Campo or Manuel Salmeron-Sanchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Tu Delft iGEM: http://2015.igem.org/Team:TU_Delft/Design

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigo-Navarro, A., Sankaran, S., Dalby, M.J. et al. Engineered living biomaterials. Nat Rev Mater 6, 1175–1190 (2021). https://doi.org/10.1038/s41578-021-00350-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00350-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing