Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transport and interactions of nanoparticles in the kidneys

Abstract

Kidneys are a major organ for blood filtration and waste elimination and thus play a key role in the transport and clearance of nanoparticles in vivo. The interactions of nanoparticles with different kidney compartments can be precisely regulated by modulating their size, shape and surface chemistry. The quantitative understanding of nanoparticle–kidney interactions at the molecular level is important for improving disease targeting, precisely controlling nanoparticle transport and clearance, and minimizing the potential health hazards of nanomedicines. In this Review, we summarize the glomerular filtration of macromolecules and nanoparticles in the kidney and survey kidney imaging techniques for the study of nanoparticle–kidney interactions ex vivo and in vivo. We investigate the different transport mechanisms of nanoparticles in the kidneys and discuss size, charge and shape dependencies in renal clearance. Nanoparticles are then investigated for the preclinical and clinical detection and treatment of diseases such as kidney dysfunction and cancer. Finally, challenges and opportunities for renal-clearable nanoparticles are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kidney anatomy.
Fig. 2: Size and charge scaling in the glomerular filtration of nanoparticles.
Fig. 3: Impact of kidney injury on the transport of nanoparticles through the kidneys.
Fig. 4: Design of nanomedicine for cancer imaging and treatment.

Similar content being viewed by others

References

  1. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress Lipid Res. 42, 463–478 (2003).

    CAS  Google Scholar 

  2. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    CAS  Google Scholar 

  3. Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    Google Scholar 

  4. Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    CAS  Google Scholar 

  5. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  Google Scholar 

  6. Sykes, E. A., Chen, J., Zheng, G. & Chan, W. C. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014).

    CAS  Google Scholar 

  7. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42 (2010).

    CAS  Google Scholar 

  8. Yu, M. et al. Interactions of renal-clearable gold nanoparticles with tumor microenvironments: vasculature and acidity effects. Angew. Chem. Int. Ed. Engl. 129, 4378–4383 (2017).

    Google Scholar 

  9. Ohta, S., Glancy, D. & Chan, W. C. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    CAS  Google Scholar 

  10. Rosenholm, J. M. et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3, 197–206 (2008).

    Google Scholar 

  11. Jiang, W. et al. Lessons from immuno-oncology: a new era for cancer nanomedicine? Nat. Rev. Drug Discov. 16, 369 (2017).

    CAS  Google Scholar 

  12. Liu, Y. et al. Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew. Chem. Int. Ed. Engl. 42, 2853–2857 (2003).

    CAS  Google Scholar 

  13. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    CAS  Google Scholar 

  14. Huang, K. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6, 4483–4493 (2012).

    CAS  Google Scholar 

  15. Larsen, E. K. et al. Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3, 1947–1951 (2009).

    CAS  Google Scholar 

  16. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017). This paper reports that in the sub-nanometre size regime, the glomerular filtration barrier can behave as an atomically precise bandpass filter to greatly slow the renal clearance of smaller nanoparticles.

    CAS  Google Scholar 

  17. He, Q., Zhang, Z., Gao, F., Li, Y. & Shi, J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7, 271–280 (2011).

    CAS  Google Scholar 

  18. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–222 (2003).

    CAS  Google Scholar 

  19. Choi, H. S. et al. Tissue-and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9, 2354–2359 (2009).

    CAS  Google Scholar 

  20. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212 (2016).

    CAS  Google Scholar 

  21. Sykes, E. A. et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016).

    CAS  Google Scholar 

  22. Alexandrakis, G. et al. Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat. Med. 10, 203–207 (2004).

    CAS  Google Scholar 

  23. Danhier, F., Feron, O. & Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148, 135–146 (2010).

    CAS  Google Scholar 

  24. Thorne, R. G., Lakkaraju, A., Rodriguez-Boulan, E. & Nicholson, C. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105, 8416–8421 (2008).

    CAS  Google Scholar 

  25. Yu, M. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015). This review comprehensively summarizes the pharmacokinetics, excretion pathway and tumour targeting of imaging nanoparticles.

    CAS  Google Scholar 

  26. Zhou, C., Long, M., Qin, Y., Sun, X. & Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. Engl. 123, 3226–3230 (2011).

    Google Scholar 

  27. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007). Using quantum dots as a model system, this paper demonstrates that the kidney filtration threshold for spherical inorganic nanoparticles is 5.5 nm.

    CAS  Google Scholar 

  28. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2008). This paper reports renal-clearable silica nanoparticles (C-dots), providing insight into renal-clearable nanomedicine.

    Google Scholar 

  29. Kang, H. et al. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater. 28, 8162–8168 (2016).

    CAS  Google Scholar 

  30. Xu, J. et al. Dose dependencies and biocompatibility of renal clearable gold nanoparticles: from mice to non-human primates. Angew. Chem. Int. Ed. Engl. 57, 266–271 (2018).

    CAS  Google Scholar 

  31. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 6, 260ra149 (2014). This paper reports human trials of renal-clearable inorganic nanoparticles, testing 124 I-labelled silica nanoparticles (C-dots).

    Google Scholar 

  32. Smith, H. W. The kidney: structure and function in health and disease . Vol. 1 (Oxford Univ. Press, USA, 1951).

    Google Scholar 

  33. Bankir, L. & De Rouffignac, C. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249, R643–R666 (1985).

    CAS  Google Scholar 

  34. Jarad, G. & Miner, J. H. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertension 18, 226–232 (2009).

    Google Scholar 

  35. Menon, M. C., Chuang, P. Y. & He, C. J. The glomerular filtration barrier: components and crosstalk. Int. J. Nephrol. 2012, 749010 (2012).

    Google Scholar 

  36. Farquhar, M. G. The primary glomerular filtration barrier — basement membrane or epithelial slits? Kidney Int. 8, 197 (1975).

    CAS  Google Scholar 

  37. Haraldsson, B., Nyström, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    CAS  Google Scholar 

  38. Singh, A. et al. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J. Am. Soc. Nephrol. 18, 2885–2893 (2007).

    CAS  Google Scholar 

  39. Reitsma, S., Slaaf, D. W., Vink, H., Van Zandvoort, M. A. & oude Egbrink, M. G. The endothelial glycocalyx: composition, functions, and visualization. Pflügers Archiv. 454, 345–359 (2007).

    CAS  Google Scholar 

  40. Tencer, J., Frick, I.-M., Öquist, B. W., Alm, P. & Rippe, B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int. 53, 709–715 (1998).

    CAS  Google Scholar 

  41. Comper, W. D. & Glasgow, E. F. Charge selectivity in kidney ultrafiltration. Kidney Int. 47, 1242–1251 (1995).

    CAS  Google Scholar 

  42. Liang, X. et al. Short-and long-term tracking of anionic ultrasmall nanoparticles in kidney. ACS Nano 10, 387–395 (2016).

    CAS  Google Scholar 

  43. Wang, J. & Liu, G. Imaging nano–bio interactions in the kidney: toward a better understanding of nanoparticle clearance. Angew. Chem. Int. Ed. Engl. 57, 3008–3010 (2018).

    CAS  Google Scholar 

  44. Xu, J. et al. In vivo x-ray imaging of transport of renal clearable gold nanoparticles in the kidneys. Angew. Chem. Int. Ed. Engl. 56, 13356–13360 (2017). This paper reports gold nanoparticles for X-ray imaging of kidney function.

    CAS  Google Scholar 

  45. Ai, K. et al. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 23, 4886–4891 (2011).

    CAS  Google Scholar 

  46. Liu, Y., Ai, K. & Lu, L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Accounts Chem. Res. 45, 1817–1827 (2012).

    CAS  Google Scholar 

  47. Yu, M., Liu, J., Ning, X. & Zheng, J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew. Chem. Int. Ed. Engl. 54, 15434–15438 (2015). This paper reports that non-invasive fluorescence imaging of kidneys can be achieved at high contrast by using renal-clearable NIR-emitting gold nanoparticles as contrast agents.

    CAS  Google Scholar 

  48. Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).

    CAS  Google Scholar 

  49. Hultman, K. L. et al. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano 2, 477–484 (2008).

    CAS  Google Scholar 

  50. Kobayashi, H. et al. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J. Magn. Reson Imag. 20, 512–518 (2004).

    Google Scholar 

  51. Bennett, K. M. et al. MRI of the basement membrane using charged nanoparticles as contrast agents. Magn. Reson. Med. 60, 564–574 (2008).

    Google Scholar 

  52. Sindhwani, S. et al. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano 10, 5468–5478 (2016).

    CAS  Google Scholar 

  53. Sindhwani, S., Syed, A. M., Wilhelm, S. & Chan, W. C. Exploring passive clearing for 3D optical imaging of nanoparticles in intact tissues. Bioconjugate Chem. 28, 253–259 (2016).

    Google Scholar 

  54. Chen, Y. Y. et al. Clarifying intact 3D tissues on a microfluidic chip for high-throughput structural analysis. Proc. Natl Acad. Sci. USA 113, 14915–14920 (2016).

    CAS  Google Scholar 

  55. Syed, A. M. et al. Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J. Am. Chem. Soc. 139, 9961–9971 (2017).

    CAS  Google Scholar 

  56. Zuckerman, J. E., Choi, C. H. J., Han, H. & Davis, M. E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA 109, 3137–3142 (2012).

    CAS  Google Scholar 

  57. Choi, C. H. J., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA 108, 6656–6661 (2011). This paper reports the systematic investigation of the interactions of non-renal-clearable nanoparticles with the kidneys and shows the uptake of these nanoparticles by the mesangium.

    CAS  Google Scholar 

  58. Kreyling, W. G. et al. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619 (2015).

    CAS  Google Scholar 

  59. Hemmelder, M. H., De Jong, P. E. & de Zeeuw, D. A comparison of analytic procedures for measurement of fractional dextran clearances. J. Lab. Clin. Med. 132, 390–403 (1998).

    CAS  Google Scholar 

  60. Venturoli, D. & Rippe, B. Ficoll and dextran versus globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol. 288, F605–F613 (2005).

    CAS  Google Scholar 

  61. Maack, T. Renal handling of low molecular weight proteins. Am. J. Med. 58, 57–64 (1975).

    CAS  Google Scholar 

  62. Rennke, H. G., Patel, Y. & Venkatachalam, M. A. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 13, 278–288 (1978).

    CAS  Google Scholar 

  63. De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008).

    Google Scholar 

  64. Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).

    CAS  Google Scholar 

  65. Kolosnjaj-Tabi, J. et al. The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9, 7925–7939 (2015).

    CAS  Google Scholar 

  66. Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148–155 (2014).

    CAS  Google Scholar 

  67. Choi, H. S. Nanoparticle assembly: building blocks for tumour delivery. Nat. Nanotechnol. 9, 93 (2014).

    CAS  Google Scholar 

  68. Zhou, C. et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl. 124, 10265–10269 (2012).

    Google Scholar 

  69. Lawrence, M. G. et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc. Natl Acad. Sci. USA 114, 2958–2963 (2017).

    CAS  Google Scholar 

  70. Lu, Y. & Gu, Z. Kidney physiology: a size bandpass filter. Nat. Nanotechnol. 12, 1023 (2017).

    CAS  Google Scholar 

  71. Bohrer, M. P. et al. Permselectivity of the glomerular capillary wall: facilitated filtration of circulating polycations. J. Clin. Invest. 61, 72 (1978).

    CAS  Google Scholar 

  72. Chang, R. L., Deen, W. M., Robertson, C. R. & Brenner, B. M. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int. 8, 212–218 (1975).

    CAS  Google Scholar 

  73. Bertolatus, J. A. & Hunsicker, L. G. Glomerular sieving of anionic and neutral bovine albumins in proteinuric rats. Kidney Int. 28, 467–476 (1985).

    CAS  Google Scholar 

  74. Rennke, H. G. & Venkatachalam, M. A. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 11, 44–53 (1977).

    CAS  Google Scholar 

  75. Kanwar, Y. S., Linker, A. & Farquhar, M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86, 688–693 (1980).

    CAS  Google Scholar 

  76. Balogh, L. et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3, 281–296 (2007).

    CAS  Google Scholar 

  77. Ning, X. et al. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters. APL Mater. 5, 053406 (2017).

    Google Scholar 

  78. Bohrer, M. P., Deen, W. M., Robertson, C. R., Troy, J. L. & Brenner, B. M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. General Physiol. 74, 583–593 (1979).

    CAS  Google Scholar 

  79. Rennke, H. & Venkatachalam, M. Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J. Clin. Invest. 63, 713 (1979).

    CAS  Google Scholar 

  80. Ohlson, M. et al. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am. J. Physiol. Renal Physiol. 281, F103–F113 (2001).

    CAS  Google Scholar 

  81. Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    CAS  Google Scholar 

  82. Jasim, D. A. et al. The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano 10, 10753–10767 (2016).

    CAS  Google Scholar 

  83. Tang, S., Chen, M. & Zheng, N. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10, 3139–3144 (2014).

    CAS  Google Scholar 

  84. Tang, S. et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem. Int. Ed. Engl. 128, 16273–16277 (2016).

    Google Scholar 

  85. Yang, S. et al. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjugate Chem. 26, 511–519 (2015).

    CAS  Google Scholar 

  86. Zhou, M. et al. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 9, 7085–7096 (2015).

    CAS  Google Scholar 

  87. Liu, J. et al. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. Engl. 125, 12804–12808 (2013).

    Google Scholar 

  88. Nair, A. V., Keliher, E. J., Core, A. B., Brown, D. & Weissleder, R. Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo. ACS Nano 9, 3641–3653 (2015).

    CAS  Google Scholar 

  89. Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    CAS  Google Scholar 

  90. Vanholder, R. et al. Reducing the costs of chronic kidney disease while delivering quality health care: a call to action. Nat. Rev. Nephrol. 13, 393 (2017).

    Google Scholar 

  91. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    CAS  Google Scholar 

  92. Star, R. A. Treatment of acute renal failure. Kidney Int. 54, 1817–1831 (1998).

    CAS  Google Scholar 

  93. Sasaki, D. et al. Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers 16, 553–566 (2011).

    CAS  Google Scholar 

  94. Dieterle, F. et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 28, 463 (2010).

    CAS  Google Scholar 

  95. Ozer, J. S. et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat. Biotechnol. 28, 486 (2010).

    CAS  Google Scholar 

  96. Taylor, A. T. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J. Nuclear Med. 55, 608–615 (2014).

    CAS  Google Scholar 

  97. Grenier, N. et al. Functional MRI of the kidney. Abdominal Imag. 28, 0164–0175 (2003).

    CAS  Google Scholar 

  98. Krier, J. D. et al. Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. Am. J. Physiol. Renal Physiol. 281, F630–F638 (2001).

    CAS  Google Scholar 

  99. Lee, S. H. et al. Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases. Adv. Healthc. Mater. 4, 2037–2045 (2015).

    CAS  Google Scholar 

  100. Zuckerman, J. E. & Davis, M. E. Targeting therapeutics to the glomerulus with nanoparticles. Adv. Chron. Kidney Dis. 20, 500–507 (2013).

    Google Scholar 

  101. Sturmlechner, I., Durik, M., Sieben, C. J., Baker, D. J. & van Deursen, J. M. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 13, 77 (2017).

    CAS  Google Scholar 

  102. Leeuwis, J. W., Nguyen, T. Q., Dendooven, A., Kok, R. J. & Goldschmeding, R. Targeting podocyte-associated diseases. Adv. Drug Delivery Rev. 62, 1325–1336 (2010).

    CAS  Google Scholar 

  103. Brede, C. & Labhasetwar, V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chron. Kidney Dis. 20, 454–465 (2013).

    Google Scholar 

  104. Beckmann, N., Joergensen, J., Bruttel, K., Rudin, M. & Schuurman, H. J. Magnetic resonance imaging for the evaluation of rejection of a kidney allograft in the rat. Transplant Int. 9, 175–183 (1996).

    CAS  Google Scholar 

  105. Laissy, J. P. et al. Reversibility of experimental acute renal failure in rats: assessment with USPIO-enhanced MR imaging. J. Magn. Reson. Imag. 12, 278–288 (2000).

    CAS  Google Scholar 

  106. Thurman, J. M. & Serkova, N. J. Nanosized contrast agents to noninvasively detect kidney inflammation by magnetic resonance imaging. Adv. Chron. Kidney Dis. 20, 488–499 (2013).

    Google Scholar 

  107. Ye, Q. et al. In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int. 61, 1124–1135 (2002).

    Google Scholar 

  108. Manne, N. D. et al. Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague–Dawley rats. J. Nanobiotechnol. 13, 75 (2015).

    Google Scholar 

  109. Kreidberg, J. A. siRNA therapy for glomerulonephritis. J. Am. Soc. Nephrol. 21, 549–551 (2010).

    CAS  Google Scholar 

  110. Liao, J. et al. Effect of steroid-liposome on immunohistopathology of IgA nephropathy in ddY mice. Nephron 89, 194–200 (2001).

    CAS  Google Scholar 

  111. Asgeirsdottir, S. A. et al. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Mol. Pharmacol. 72, 121–131 (2007).

    CAS  Google Scholar 

  112. Yu, M. et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem. Int. Ed. Engl. 128, 2837–2841 (2016). This paper reports the use of luminescent renal-clearable gold nanoparticles for the detection and staging of kidney dysfunction by non-invasive in vivo fluorescence imaging.

    Google Scholar 

  113. Dolman, M., Harmsen, S., Storm, G., Hennink, W. & Kok, R. Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv. Drug Deliv. Rev. 62, 1344–1357 (2010).

    CAS  Google Scholar 

  114. Haas, M. et al. Drug-targeting to the kidney: renal delivery and degradation of a naproxen-lysozyme conjugate in vivo. Kidney Int. 52, 1693–1699 (1997).

    CAS  Google Scholar 

  115. Prakash, J. et al. Cell-specific delivery of a transforming growth factor-β type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis. Pharm. Res. 25, 2427–2439 (2008).

    CAS  Google Scholar 

  116. Kamada, H. et al. Synthesis of a poly (vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat. Biotechnol. 21, 399 (2003).

    CAS  Google Scholar 

  117. Alidori, S. et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl Med. 8, 331ra339 (2016).

    Google Scholar 

  118. Chen, H., Zhang, W., Zhu, G., Xie, J. & Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).

    CAS  Google Scholar 

  119. Wang, Y. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2, 17020 (2017).

    CAS  Google Scholar 

  120. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    CAS  Google Scholar 

  121. Praetorius, N. P. & Mandal, T. K. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul. 1, 37–51 (2007).

    CAS  Google Scholar 

  122. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Na. Rev. Drug Discov. 9, 615–627 (2010).

    CAS  Google Scholar 

  123. Sun, T. et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 12320–12364 (2014).

    CAS  Google Scholar 

  124. Liu, J. et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135, 4978–4981 (2013). This paper reports that the EPR effect for passive tumour targeting can be maintained in renal-clearable nanoparticles.

    CAS  Google Scholar 

  125. Iavicoli, I., Fontana, L. & Nordberg, G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol. 46, 490–560 (2016).

    CAS  Google Scholar 

  126. Chen, F. et al. Cancer-targeting ultrasmall silica nanoparticles for clinical translation: physicochemical structure and biological property correlations. Chem. Mater. 29, 8766–8779 (2017).

    CAS  Google Scholar 

  127. Lu, Y. et al. Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nat. Biomed. Engineer. 1, 637 (2017).

    Google Scholar 

  128. Elci, S. G. et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10, 5536–5542 (2016).

    CAS  Google Scholar 

  129. Benezra, M. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 121, 2768 (2011).

    CAS  Google Scholar 

  130. Du, Y. et al. Serial non-invasive monitoring of renal disease following immune-mediated injury using near-infrared optical imaging. PLoS ONE 7, e43941 (2012).

    CAS  Google Scholar 

  131. Chen, F. et al. Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small 12, 2775–2782 (2016).

    CAS  Google Scholar 

  132. Hirn, S. et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharmaceut. Biopharmaceut. 77, 407–416 (2011).

    CAS  Google Scholar 

  133. Huang, X. et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5, 5390–5399 (2011).

    CAS  Google Scholar 

  134. Lacerda, L. et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20, 225–230 (2008).

    CAS  Google Scholar 

  135. Huang, H. et al. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 76, 25–32 (2016).

    CAS  Google Scholar 

  136. Huang, X. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7, 5684–5693 (2013).

    CAS  Google Scholar 

  137. Barenholz, Y. C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    CAS  Google Scholar 

  138. Min, Y., Caster, J. M., Eblan, M. J. & Wang, A. Z. Clinical translation of nanomedicine. Chem. Rev. 115, 11147–11190 (2015).

    CAS  Google Scholar 

  139. O’loughlin, J. et al. Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel): a dose ranging, phase I study. Sex. Transm. Dis. 37, 100–104 (2010).

    Google Scholar 

  140. Leenders, W. Ferumoxtran-10 advanced magnetics. IDrugs 6, 987–993 (2003).

    CAS  Google Scholar 

  141. Reddy, L. H., Arias, J. L., Nicolas, J. & Couvreur, P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012).

    CAS  Google Scholar 

  142. Anselmo, A. C. & Mitragotri, S. A review of clinical translation of inorganic nanoparticles. AAPS J. 17, 1041–1054 (2015).

    CAS  Google Scholar 

  143. Libutti, S. K. et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16, 6139–6149 (2010).

    CAS  Google Scholar 

  144. Zhang, X. D. et al. Ultrasmall Au10−12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 26, 4565–4568 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Institutes of Health (NIH R01DK103363 and R43DK116368), the Cancer Prevention and Research Institute of Texas (CPRIT RP140544 and RP160866), Welch Research Foundation (AT-1974-20180324) and the start-up grant of The University of Texas at Dallas. The authors also acknowledge help from J. C. Lin and X. Jiang during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Jie Zheng.

Ethics declarations

Competing interests

J.Z. and M.Y. have financial interest in ClearNano Inc., a company dedicated to developing and commercializing technologies for the early diagnosis of kidney diseases.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 3, 358–374 (2018). https://doi.org/10.1038/s41578-018-0038-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0038-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing