Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Next-generation computational tools for interrogating cancer immunity

Abstract

The remarkable success of cancer therapies with immune checkpoint blockers is revolutionizing oncology and has sparked intensive basic and translational research into the mechanisms of cancer–immune cell interactions. In parallel, numerous novel cutting-edge technologies for comprehensive molecular and cellular characterization of cancer immunity have been developed, including single-cell sequencing, mass cytometry and multiplexed spatial cellular phenotyping. In order to process, analyse and visualize multidimensional data sets generated by these technologies, computational methods and software tools are required. Here, we review computational tools for interrogating cancer immunity, discuss advantages and limitations of the various methods and provide guidelines to assist in method selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct hallmarks of cancer immunity.
Fig. 2: Overview of technologies and analyses for interrogating cancer immunity.
Fig. 3: Overview of computational tools for interrogating cancer immunity.
Fig. 4: Single-cell analysis and visualization of tumour-related T cells.

Similar content being viewed by others

References

  1. Tang, J. et al. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug Discov. 17, 854–855 (2018).

    CAS  PubMed  Google Scholar 

  2. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    CAS  PubMed  Google Scholar 

  3. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hackl, H., Charoentong, P., Finotello, F. & Trajanoski, Z. Computational genomics tools for dissecting tumour–immune cell interactions. Nat. Rev. Genet. 17, 441 (2016).

    CAS  PubMed  Google Scholar 

  5. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  6. Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & López-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl Med. 10, eaat7807 (2018).

    PubMed  Google Scholar 

  7. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  8. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    CAS  PubMed  Google Scholar 

  9. Lee, C.-H., Yelensky, R., Jooss, K. & Chan, T. A. Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol. 39, 536–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol. 37, 173–200 (2018).

    PubMed  Google Scholar 

  11. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

  13. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  14. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    CAS  PubMed  Google Scholar 

  15. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).

    CAS  PubMed  Google Scholar 

  18. Giladi, A. & Amit, I. Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172, 14–21 (2018).

    CAS  PubMed  Google Scholar 

  19. Finotello, F. & Eduati, F. Multi-omics profiling of the tumor microenvironment: paving the way to precision immuno-oncology. Front. Oncol. 8, 430 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    CAS  PubMed  Google Scholar 

  21. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    CAS  PubMed  Google Scholar 

  22. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643.e4 (2017).

    CAS  PubMed  Google Scholar 

  23. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bendall, S. C. & Nolan, G. P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012).

    CAS  PubMed  Google Scholar 

  25. Mansfield, J. R., Hoyt, C. & Levenson, R. M. Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb1419s84 (2008).

    Article  PubMed  Google Scholar 

  26. Mansfield, J. R. Multispectral imaging: a review of its technical aspects and applications in anatomic pathology. Vet. Pathol. 51, 185–210 (2014).

    CAS  PubMed  Google Scholar 

  27. Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).

    CAS  PubMed  Google Scholar 

  28. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    CAS  PubMed  Google Scholar 

  30. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

    CAS  PubMed  Google Scholar 

  32. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  33. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Keren, L. et al. A Structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with codex multiplexed imaging. Cell 174, 968–981.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Google Scholar 

  43. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding, L., Wendl, M. C., McMichael, J. F. & Raphael, B. J. Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15, 556–570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput. Struct. Biotechnol. J. 16, 15–24 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Boegel, S. et al. HLA typing from RNA-seq sequence reads. Genome Med. 4, 102 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Lee, H. & Kingsford, C. Kourami: graph-guided assembly for novel human leukocyte antigen allele discovery. Genome Biol. 19, 16 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Dilthey, A. T. et al. HLA*LA—HLA typing from linearly projected graph alignments. Bioinformatics https://doi.org/10.1093/bioinformatics/btz235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Orenbuch, R. et al. arcasHLA: high resolution HLA typing from RNAseq. Bioinformatics https://doi.org/10.1093/bioinformatics/btz474 (2019).

    Article  PubMed Central  Google Scholar 

  52. Xie, C. et al. Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc. Natl Acad. Sci. USA 114, 8059–8064 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).

    CAS  PubMed  Google Scholar 

  54. Buchkovich, M. L. et al. HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data. Genome Med. 9, 86 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017). This study and Nielsen et al. (2003) describe the original and the latest version of the popular tool NetMHCpan that predicts the binding affinity of peptides to class I MHC molecules and provides high-accuracy predictions for both well-annotated and novel alleles.

    CAS  PubMed  Google Scholar 

  57. Han, Y. & Kim, D. Deep convolutional neural networks for pan-specific peptide–MHC class I binding prediction. BMC Bioinformatics 18, 585 (2017).

    Google Scholar 

  58. Liu, Z. et al. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA–peptide binding affinity prediction. Sci. Rep. 9, 794 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Liu, G. et al. PSSMHCpan: a novel PSSM-based software for predicting class I peptide–HLA binding affinity. Gigascience 6, 1–11 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Hundal, J. et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Preprint at bioRxiv https://doi.org/10.1101/501817 (2019).

  61. Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016). This study proposes a method for neoantigen vaccine design based on the prediction of peptide–MHC binding affinity and other features linked to neoantigen immunogenicity. Hundal et al. (2019) presents a suite for neoantigen predictions based on different machine-learning methods.

    PubMed  PubMed Central  Google Scholar 

  62. Gfeller, D. & Bassani-Sternberg, M. Predicting antigen presentation—what could we learn from a million peptides? Front. Immunol. 9, 1716 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. O’Donnell, T. J. et al. MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst. 7, 129–132.e4 (2018).

    PubMed  Google Scholar 

  64. Boehm, K. M., Bhinder, B., Raja, V. J., Dephoure, N. & Elemento, O. Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome. BMC Bioinformatics 20, 7 (2019).

    Google Scholar 

  65. Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLOS Comput. Biol. 13, e1005725 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Gfeller, D. et al. The length distribution and multiple specificity of naturally presented HLA-I ligands. J. Immunol. 201, 3705–3716 (2018).

    CAS  PubMed  Google Scholar 

  67. Bulik-Sullivan, B. et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 37, 55–63 (2019).

    CAS  Google Scholar 

  68. Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32, 511–517 (2016).

    CAS  PubMed  Google Scholar 

  69. Vita, R. et al. The Immune Epitope Database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

    CAS  PubMed  Google Scholar 

  70. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Shao, W. et al. The SysteMHC Atlas project. Nucleic Acids Res. 46, D1237–D1247 (2017).

    PubMed Central  Google Scholar 

  72. Yang, W. et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jensen, K. K. et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154, 394–406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, W. & Sher, X. Systematically benchmarking peptide–MHC binding predictors: from synthetic to naturally processed epitopes. PLOS Comput. Biol. 14, e1006457 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Racle, J., Michaux, J., Rockinger, G. A. & Arnaud, M. Deep motif deconvolution of HLA-II peptidomes for robust class II epitope predictions. Preprint at bioRxiv https://doi.org/10.1101/539338 (2019).

    Article  Google Scholar 

  76. Bonsack, M. et al. Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC–peptide binding data set. Cancer Immunol. Res. 7, 719–736 (2019).

    CAS  PubMed  Google Scholar 

  77. [No authors listed] The problem with neoantigen prediction. Nat. Biotechnol. 35, 97 (2017).

  78. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  79. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Camidge, D. R., Doebele, R. C. & Kerr, K. M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat. Rev. Clin. Oncol. 16, 341–355 (2019).

    CAS  PubMed  Google Scholar 

  81. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Tappeiner, E. et al. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 33, 3140–3141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Becht, E., Giraldo, N. A. & Lacroix, L. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Finotello, F. & Trajanoski, Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol. Immunother. 67, 1031–1040 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). This study presents pioneering work on a computational method (CIBERSORT) for building immune cell-specific signatures, cell-type deconvolution from bulk transcriptomics data and extraction of transcriptional profiles.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17, 174 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6, e26476 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, i436–i445 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Zaitsev, K., Bambouskova, M., Swain, A. & Artyomov, M. N. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Nat. Commun. 10, 2209 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    CAS  PubMed  Google Scholar 

  97. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    CAS  PubMed  Google Scholar 

  100. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Zheng, C. et al. Landscape of infiltrating t cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    CAS  PubMed  Google Scholar 

  102. Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    CAS  PubMed  Google Scholar 

  104. Yuan, G.-C. et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 18, 84 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411 (2018). This article presents the R toolkit Seurat 3.0 for the analysis and integration of multimodal single-cell data.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, M., Wang, H., Potter, S. S., Whitsett, J. A. & Xu, Y. SINCERA: a pipeline for single-cell RNA-seq profiling analysis. PLOS Comput. Biol. 11, e1004575 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res. 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Zhu, X. et al. Granatum: a graphical single-cell RNA-seq analysis pipeline for genomics scientists. Genome Med. 9, 108 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Gardeux, V., David, F. P. A., Shajkofci, A., Schwalie, P. C. & Deplancke, B. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data. Bioinformatics 33, 3123–3125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Singer, M. & Anderson, A. C. Revolutionizing cancer immunology: the power of next-generation sequencing technologies. Cancer Immunol Res 7, 168–173 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    CAS  PubMed  Google Scholar 

  114. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular Systems Biology 15, e8746 (2019). This study presents best-practice recommendations covering the different steps of scRNA-seq analysis, also documented in a bioinformatics workflow.

    PubMed  PubMed Central  Google Scholar 

  115. Sagar, Herman, J. S. & Grün, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).

    PubMed  Google Scholar 

  116. Jiang, L., Chen, H., Pinello, L. & Yuan, G.-C. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol. 17, 144 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    CAS  PubMed  Google Scholar 

  118. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Preprint at bioRxiv https://doi.org/10.1101/538652 (2019).

    Article  Google Scholar 

  120. Aevermann, B. D. et al. Cell type discovery using single-cell transcriptomics: implications for ontological representation. Hum. Mol. Genet. 27, R40–R47 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btz292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tian, L. et al. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments. Nat. Methods 16, 479–487 (2019).

    CAS  PubMed  Google Scholar 

  123. Heather, J. M., Ismail, M., Oakes, T. & Chain, B. High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities. Brief. Bioinform. 19, 554–565 (2018).

    CAS  PubMed  Google Scholar 

  124. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS  PubMed  Google Scholar 

  125. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat. Genet. 48, 725–732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu, X. et al. Landscape of B cell immunity and related immune evasion in human cancers. Nat. Genet. 51, 560–567 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Bolotin, D. A., Poslavsky, S., Davydov, A. N. & Chudakov, D. M. Reply to ‘Evaluation of immune repertoire inference methods from RNA-seq data’. Nat. Biotechnol. 36, 1035–1036 (2018).

    CAS  PubMed  Google Scholar 

  129. Mose, L. E. et al. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer. Bioinformatics 32, 3729–3734 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016). This study presents TraCeR, a computational method for reconstruction of paired TCR chains and inference of clonality and clonotype networks from full-transcript scRNA-seq data.

    PubMed  PubMed Central  Google Scholar 

  131. Afik, S. et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res. 45, e148 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Redmond, D., Poran, A. & Elemento, O. Single-cell TCRseq: paired recovery of entire T-cell α and β chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8, 80 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Canzar, S., Neu, K. E., Tang, Q., Wilson, P. C. & Khan, A. A. BASIC: BCR assembly from single cells. Bioinformatics 33, 425–427 (2017).

    CAS  PubMed  Google Scholar 

  134. Lindeman, I. et al. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15, 563–565 (2018).

    CAS  PubMed  Google Scholar 

  135. Upadhyay, A. A. et al. BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data. Genome Med. 10, 20 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Eltahla, A. A. et al. Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells. Immunol. Cell Biol. 94, 604–611 (2016).

    CAS  PubMed  Google Scholar 

  137. Rizzetto, S. et al. B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics 34, 2846–2847 (2018).

    CAS  PubMed  Google Scholar 

  138. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    CAS  PubMed  Google Scholar 

  139. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006). This original publication describes a free, flexible, user-friendly and continuously maintained software package for developing image analysis and phenotyping pipelines.

    PubMed  PubMed Central  Google Scholar 

  141. Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. in 2011 IEEE Int. Symp. on Biomed. Imaging: From Nano to Macro https://doi.org/10.1109/isbi.2011.5872394 (IEEE, 2011).

  142. Dao, D. et al. CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics 32, 3210–3212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Van Valen, D. A. et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol. 12, e1005177 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Maaten, L. vander & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). This study is a pioneering work for visualizing high-dimensional data using non-linear transformation in two dimensions (t-SNE).

    Google Scholar 

  146. Amir, E.-A. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    CAS  PubMed Central  Google Scholar 

  147. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  148. Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Efficient algorithms for t-distributed stochastic neighborhood embedding. Preprint at arXiv https://arxiv.org/abs/1712.09005 (2017).

  149. van Unen, V. et al. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat. Commun. 8, 1740 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Wattenberg, M., Viégas, F. & Johnson, I. How to use t-SNE effectively. Distill https://doi.org/10.23915/distill.00002 (2016).

  151. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017).

    CAS  PubMed  Google Scholar 

  152. Pierson, E. & Yau, C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

    Article  PubMed  Google Scholar 

  155. Villani, A.-C., Sarkizova, S. & Hacohen, N. Systems immunology: learning the rules of the immune system. Annu. Rev. Immunol. 36, 813–842 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kester, L. & van Oudenaarden, A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23, 166–179 (2018).

    CAS  PubMed  Google Scholar 

  157. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS  PubMed  Google Scholar 

  159. Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496–2506 (2016).

    CAS  PubMed  Google Scholar 

  161. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019). This study presents a comprehensive benchmark of many computational tools for single-cell pseudotime trajectory inference.

    CAS  PubMed  Google Scholar 

  162. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    PubMed  PubMed Central  Google Scholar 

  163. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0068-4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L. & Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat. Methods 13, 493–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shekhar, K., Brodin, P., Davis, M. M. & Chakraborty, A. K. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl Acad. Sci. USA 111, 202–207 (2014).

    CAS  PubMed  Google Scholar 

  171. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

    PubMed  Google Scholar 

  172. Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J. & Nolan, G. P. Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl Acad. Sci. USA 111, E2770–E2777 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Olsen, L. R., Leipold, M. D., Pedersen, C. B. & Maecker, H. T. The anatomy of single cell mass cytometry data. Cytometry A 95, 156–172 (2019).

    PubMed  Google Scholar 

  174. Spitzer, M. H. et al. IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    CAS  PubMed  Google Scholar 

  179. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 531 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS  PubMed  Google Scholar 

  181. Stein-O’Brien, G. L. et al. Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species. Cell Syst. 8, 395–411.e8 (2019).

    PubMed  PubMed Central  Google Scholar 

  182. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

    CAS  PubMed  Google Scholar 

  183. Iwami, S., Haeno, H. & Michor, F. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi)genetic instability. PLOS Comput. Biol. 8, e1002370 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kather, J. N. et al. High-throughput screening of combinatorial immunotherapies with patient-specific in silico models of metastatic colorectal cancer. Cancer Res. 78, 5155–5163 (2018).

    CAS  PubMed  Google Scholar 

  185. Saini, S. K., Rekers, N. & Hadrup, S. R. Novel tools to assist neoepitope targeting in personalized cancer immunotherapy. Ann. Oncol. 28, xii3–xii10 (2017).

    CAS  PubMed  Google Scholar 

  186. Jørgensen, K. W., Rasmussen, M. & Buus, S. NetMHCstab—predicting stability of peptide–MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141, 18–26 (2014).

    PubMed  Google Scholar 

  187. Rasmussen, M. et al. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J. Immunol. 197, 1517–1524 (2016).

    CAS  PubMed  Google Scholar 

  188. Shugay, M. et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 46, D419–D427 (2018).

    CAS  PubMed  Google Scholar 

  189. Blank, C. U., Haanen, J. B., Ribas, A. & Schumacher, T. N. The ‘cancer immunogram’. Science 352, 658–660 (2016).

    PubMed  Google Scholar 

  190. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    CAS  PubMed  Google Scholar 

  192. Rieckmann, J. C. et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 18, 583–593 (2017).

    CAS  PubMed  Google Scholar 

  193. Kveler, K. et al. Immune-centric network of cytokines and cells in disease context identified by computational mining of PubMed. Nat. Biotechnol. 36, 651–659 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    CAS  PubMed  Google Scholar 

  195. Orchard, S. et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat. Methods 9, 345–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Thurley, K., Gerecht, D., Friedmann, E. & Höfer, T. Three-dimensional gradients of cytokine signaling between t cells. PLOS Comput. Biol. 11, e1004206 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0131-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Choi, H. et al. Transcriptome analysis of individual stromal cell populations identifies stroma–tumor crosstalk in mouse lung cancer model. Cell Rep. 10, 1187–1201 (2015).

    CAS  PubMed  Google Scholar 

  199. Yeung, T.-L. et al. Systematic identification of druggable epithelial–stromal crosstalk signaling networks in ovarian cancer. J. Natl Cancer Inst. 111, 272–282 (2019).

    PubMed  Google Scholar 

  200. Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

    CAS  PubMed  Google Scholar 

  201. Yaffe, M. B. Why geneticists stole cancer research even though cancer is primarily a signaling disease. Sci. Signal. 12, eaaw3483 (2019).

    CAS  PubMed  Google Scholar 

  202. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS  PubMed  Google Scholar 

  203. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS  PubMed  Google Scholar 

  204. Kobayashi, H. et al. Cancer-associated fibroblasts in gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 282–295 (2019).

    PubMed  Google Scholar 

  205. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    CAS  PubMed  Google Scholar 

  206. Sato, K., Tsuyuzaki, K., Shimizu, K. & Nikaido, I. CellFishing.jl: an ultrafast and scalable cell search method for single-cell RNA sequencing. Genome Biol. 20, 31 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Srivastava, D., Iyer, A., Kumar, V. & Sengupta, D. CellAtlasSearch: a scalable search engine for single cells. Nucleic Acids Res. 46, W141–W147 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Navarro, J. F., Sjöstrand, J., Salmén, F., Lundeberg, J. & Ståhl, P. L. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics 33, 2591–2593 (2017). This study presents a comprehensive analysis pipeline and software tools for spatial transcriptomics.

    PubMed  Google Scholar 

  209. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Boegel for fruitful discussions on state-of-the-art computational methods. This work was supported by the European Research Council (grant agreement No. 786295 to Z.T.), the Austrian Cancer Aid/Tyrol (project No. 17003 to F.F.), the Austrian Science Fund (FWF) (project No. T 974-B30 to F.F. and projects I3291 and I3978 to Z.T.) and the Vienna Science and Technology Fund (Project LS16–025 to Z.T.). Z.T. is a member of the German Research Foundation (DFG) project TRR 241(INF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Zlatko Trajanoski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks T. Chan, A. Gentles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bridging Bench, Biology, and Bioinformatics in the Field of Mass Cytometry: http://cytof.biosurf.org

Tumor Deconvolution Challenge: https://www.synapse.org/#!Synapse:syn15589870/wiki/582446

Glossary

Immune checkpoint blockers

Monoclonal antibodies that target immune checkpoints to elicit or boost anticancer immune responses. Immune checkpoints are receptors or their ligands expressed on either tumour cells or immune cells that modulate immune cell responses to self-proteins, chronic infections and tumour antigens.

Neoantigens

Short peptides generated from the expression of mutated or rearranged genes in cancer cells, but not in normal cells. Bound to HLA molecules on the surface of cancer cells, neoantigens are recognized by T cells through the interaction of the T cell receptor with the peptide–HLA complex.

Dendritic cells

Professional antigen-presenting cells that act as messengers between the innate and the adaptive immune system. Dendritic cells capture antigens, transport them into lymphoid organs and present them to naive T cells together with co-stimulatory signals to induce T cell priming and activation.

Hot tumours

Immunogenic tumours with high infiltration of T cells and high likelihood of response to immune checkpoint inhibitor therapy (as opposed to cold tumours).

Cold tumours

Poorly immunogenic tumours with low or no infiltration of T cells and low likelihood of response to immune checkpoint inhibitor therapy (as opposed to hot tumours).

Microbiota

The community of microorganisms, including bacteria, viruses and fungi, which are found within a specific environment (for example, the human gut).

Microbiome

The collection of all genomes from all of the microorganisms composing the microbiota.

4-digit HLA typing

The standard nomenclature of HLA alleles is composed of the gene name, an asterisk and eight digits separated by a colon, for example, HLA-A*02:01:01:05. HLA alleles that differ at 4-digit resolution (for example, HLA-A*02:02 and HLA-A*02:01) have similar serological specificity for a peptide, but have different protein sequences that can result in different T cell recognition of the peptide–HLA complex.

Avidity

When pertaining to T cells, a biological measure that describes how well a T cell responds to a given antigen. T cells with high functional avidity respond to low antigen amounts, whereas T cells with low functional avidity require higher antigen amounts to mount an immune response comparable with that of high-avidity T cells.

Data dimensionality

The high dimensionality of single-cell RNA sequencing data is due to the high number of genes measured (20,000–30,000 genes), although for many of those the expression in a certain cell would be zero due to dropouts. Due to the high dimensionality, cells become very similar and difficult to assign to different groups (for example, cell subpopulations). Dimensionality reduction techniques can ameliorate this issue, known as the curse of dimensionality, and decrease the computational time.

Data sparsity

A data set is sparse when it is mainly composed of zeros and the actual information is rare. In single-cell RNA sequencing data sets, data sparsity is mainly due to dropouts.

Dropouts

In single-cell RNA sequencing (scRNA-seq) data, when expressed genes result in null expression values due to the inefficiency of mRNA capture and/or to the stochasticity of mRNA expression. They are the main cause of data sparsity in scRNA-seq data sets.

Doublets

Pairs of cells that are captured and sequenced together in single-cell RNA sequencing experiments. As doublets have hybrid transcriptomes that might be falsely interpreted as intermediate cell phenotypes, they have to be identified and removed before running downstream analysis and data interpretation.

Unsupervised clustering

The objective of clustering is to find different groups within the elements in the data (usually samples or cells in transcriptomic data sets), assigning to the same cluster the elements that are more similar to each other. This process is called unsupervised because the real groups are not known a priori. By contrast, supervised clustering or classification is based on pre-labelled groups of samples, which are used to classify a new sample considering its similarity to the elements of each group.

Cell ontologies

Structured vocabularies of cell types.

Clonotypes

Populations of T cells that carry identical T cell receptors.

CDR3 sequences

Complementarity-determining region 3 (CDR3) is the region of the variable chain in B cell receptors and T cell receptors that binds to the cognate antigen, thus accounting for most of the variation of immune repertoires.

Secretome

All of the factors secreted by a cell into the extracellular space.

Dimensionality reduction

The process of reducing the number of features composing a data set (for example, genes in single-cell RNA sequencing data) to obtain a set of principal features. The original features can be filtered (a process called feature selection) or projected from the high-dimensional space of the original data set into a space composed of fewer dimensions, like in the case of t-distributed stochastic neighbour embedding.

Pseudotime

Single-cell RNA sequencing (scRNA-seq) can capture different cell types and, when the throughput is sufficient, cell transitions from one functional state to another. Algorithms for pseudotime ordering can extract from scRNA-seq data the transcriptional profiles underling dynamic changes of cells moving throughout subsequent states, thereby reconstructing their overall trajectories in time. This estimated time reference is referred to as pseudotime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finotello, F., Rieder, D., Hackl, H. et al. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet 20, 724–746 (2019). https://doi.org/10.1038/s41576-019-0166-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-019-0166-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer