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Abstract

The prevalence of obesity in combination with sarcopenia (the age-related loss of muscle mass and 

strength or physical function) is increasing in adults aged 65 years and older. A major subset of 

adults over the age of 65 is now classified as having sarcopenic obesity, a high-risk geriatric 

syndrome predominantly observed in an ageing population that is at risk of synergistic 

complications from both sarcopenia and obesity. This Review discusses pathways and mechanisms 

leading to muscle impairment in older adults with obesity. We explore sex-specific hormonal 

changes, inflammatory pathways and myocellular mechanisms leading to the development of 

sarcopenic obesity. We discuss the evolution, controversies and challenges in defining sarcopenic 

obesity and present current body composition modalities used to assess this condition. 

Epidemiological surveys form the basis of defining its prevalence and consequences beyond 

comorbidity and mortality. Current treatment strategies, and the evidence supporting them, are 

outlined, with a focus on calorie restriction, protein supplementation and aerobic and resistance 

exercises. We also describe weight loss-induced complications in patients with sarcopenic obesity 

that are relevant to clinical management. Finally, we review novel and potential future therapies 
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including testosterone, selective androgen receptor modulators, myostatin inhibitors, ghrelin 

analogues, vitamin K and mesenchymal stem cell therapy.

Adults over the age of 65 constitute 13% of the global population and are the fastest growing 

demographic subgroup; this group is expected to reach 2.1 billion people in 2050 (REF1). 

Within this population, obesity has steadily increased2,3, and in the United States, 38.5% of 

men and 43.1% of women are currently classified as having obesity4. Worldwide, these 

rising rates presumably offset gains in life expectancy5, with age-adjusted life expectancy 

dropping by roughly 0.17 years from 2014 to 2015 (REFS6–10).

Sarcopenia, which is the loss of muscle mass and strength or physical function, naturally 

occurs in ageing. Sarcopenia synergistically worsens the adverse effects of obesity in older 

adults, resulting in sarcopenic obesity. Sarcopenic obesity is appropriately characterized as a 

confluence of two epidemics — an ageing population and rising obesity rates11. As elevated 

BMI, functional impairment, increased mortality and reduction in quality of life10 are 

observationally associated, addressing sarcopenic obesity is important for preventing 

longterm disability in the older adults at high risk12. In this Review, we describe the 

aetiology and pathogenesis of sarcopenic obesity, as well as the associated adverse outcomes 

for aged individuals beyond reduced function and mortality, and highlight evidence-based 

and novel therapies targeting this high-risk population.

Biological pathways to sarcopenic obesity

Age-related changes in body composition.

Multiple factors are responsible for changes to body composition with ageing. Body fat 

increases until the seventh decade of life and thereafter decreases13,14. Vertebral 

compression results in a reduction in height15, which affects anthropometric measures such 

as BMI. Muscle mass declines after peaking in the fourth decade16, such that weight is 

mostly gained as fat rather than lean mass. This age-related reduction in lean mass17,18 

accounts, in part, for reduced resting metabolic rates19. Other aetiological factors that cause 

a decline in resting metabolic rates include reduced physical activity20, reduced 

mitochondrial volume and reduced oxidative capacity21,22. Age-related decreases in the 

components of total energy expenditure (such as, resting metabolic rates, thermic effect of 

food and physical activity) contribute largely to the gradual increase in body fat.

The age-related decline in resting metabolic rates can also result from factors independent of 

changes to body composition, such as adaptive thermogenesis23,24, which is considered a 

defence mechanism against weight loss25. The reduction in energy expenditure as we age is 

not proportionally associated with a reduced drive to eat, which furthers fat build-up and 

leads to small yearly positive changes in energy balance that might lead to weight gain25–27. 

Considerable inter-individual variability to weight loss suggests that adaptive thermogenesis 

plays a part in energy balance28 in sarcopenic obesity. Muscle mass loss with ageing29 

correlates with decreased resting metabolic rates and metabolic adaptation, which 

perpetuates the development of obesity30–32. As most individuals with sarcopenic obesity 

are sedentary, small changes in their muscle mass can markedly alter daily energy 
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expenditure, which in turn affects adaptive thermogenesis and exacerbates a vicious cycle in 

their metabolic development33–36.

Sex-specific hormonal changes: oestrogen and testosterone.

Sex-specific changes in muscle and fat composition are partly due to age-related changes in 

oestrogen and testosterone. In women, menopause increases body weight and fat mass, 

specifically in visceral areas37, but decreases fat-free mass38. This shift in fat deposition to 

the centre of the body (which accounts for 15–20% of total fat stores) expands waist 

circumference and reduces muscle mass38–40. Oestrogen can attenuate these changes41 by 

modulating inflammation in skeletal muscle through satellite cell activation42,43.

In males, testosterone promotes muscle regeneration through satellite cell activation44,45. 

Testosterone levels decline by approximately 1% per year, which can negatively affect 

muscle mass and fat distribution in ageing46. Testosterone levels in the highest quartile 

(496–1,340 nmol/l) are associated with reduced lean muscle loss47 and reduced visceral fat 

redistribution48 in older men aged ≥65 years and in individuals with obesity49. Testosterone 

increases muscle protein synthesis by increasing amino acids utilization in skeletal muscle 

and increases androgen receptor expression44,45,50. Current data on supplementation for 

muscle strengthening are conflicting51,52. A 2016 study reported that treatment with 

testosterone for 1 year did not improve physical function in men >65 years of age with age- 

reduced levels of testosterone (serum testosterone concentration <275 ng/dl)53. Levels of 

dehydroepiandrosterone sulfate, the biological precursor of testosterone, also decrease with 

age in both men and women54,55 (for a comprehensive review on the effects of testosterone 

on body composition see REF56).

Inflammatory pathways.

A number of inflammatory pathways are common to muscle and visceral fat. Obesity 

activates macrophages, mast cells and T lymphocytes, promoting a low-level inflammation 

that results in the secretion of tumour necrosis factor (TNF), leptin and growth hormone 

(GH)57–59. All such secretory changes lead to insulin resistance, which is increased by 

muscle catabolism60, promoting gain in fat mass and a loss of muscle mass57. Leptin 

upregulates the pro-inflammatory cytokines IL-6 and TNF, which results in a reduction in 

the anabolic actions of insulinlike growth factor 1 (IGF1)61. This reduction in IGF1, along 

with the age-related reductions in testosterone, increases the likelihood of incident frailty62. 

Elevated cytokine levels observed in hypogonadal states are associated with truncal obesity, 

which exacerbates the development of sarcopenia44,45. Adiponectin is negatively correlated 

with age and obesity and counters the effects of leptin. Elevated TNF directly inhibits 

adiponectin63, arresting muscle protein synthesis and mitochondrial processes64. Obesity 

also induces leptin resistance, promoting reduced muscle fatty oxidation and ectopic fat 

deposition65,66.

Myocellular mechanisms.

A number of mechanisms might explain the reduction of muscle mass and strength in 

sarcopenic obesity, including type II muscle fibre atrophy, reduction in motor neurons, 

collagen deposition and fibre necrosis67–70. Older adults (those ≥65 years) are at risk of 
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developing anabolic resistance owing to reduced post-prandial amino acid availability, 

reduced muscle perfusion and a reduced digestive capacity resulting from splanchnic 

sequestration of amino acids71.

Ageing stimulates the infiltration of fat into muscle72,73, which might negatively affect 

sarcopenia74, as described below, and obesity promotes the deposition of fat in the liver, 

heart, pancreas and skeletal muscle (FIG. 1). The deposition of intramyocellular lipids 

promotes lipotoxicity and inflammation and induces dedifferentiation of mesenchymal 

adipocyte-like progenitor cells that express fatty tissue genes75. The regeneration potential 

of muscle is impaired, which might promote fibrosis, thereby promoting insulin 

resistance76–79, partially owing to impaired mitochondrial fatty acid oxidation and increased 

lipolysis76,80. A reduction in the number of mitochondria and elevated production of reactive 

oxygen species occur in muscle following the deposition of intramyocellular lipids. This 

process can impair muscle function and might reduce the oxidative capacity of muscle81. 

Potential mechanisms explaining these changes include age-related reductions in protea 

some activity, deficiencies in ubiquitylation and autophagy and impairments in removing 

degraded proteins and end products82–84.

Pro-inflammatory lipids also secrete paracrine hormones and cytokines that promote a 

feedforward cycle by producing intramyocellular lipids. This lipotoxicity impairs muscle 

fibre contractility and interferes with muscle protein synthesis, exacerbating sarcopenia82–84. 

Lipid deposition can also occur in spaces previously occupied by muscle, impairing new 

muscle tissue growth. One study reported an increase in intramyo cellular lipid deposition 

after young, healthy men and women aged 19–28 years were exposed to 30 days of leg 

disuse, which resulted in lower extremity muscle mass loss85. This finding could be due to 

skeletal muscle preferentially depositing fat for a source of energy as opposed to 

glucose86,87. While muscle cells can regenerate through satellite mesenchymal progenitor 

cells, their numbers decline with age, which contributes to reduced muscle function88,89. 

Myostatin can be upregulated in skeletal muscle, inhibiting muscle genesis90. In sum, 

individuals with obesity are at risk of inflammation, which can lead to the preferential 

mobilization of muscle instead of fat91.

The role of exercise.

Exercise can affect hormonal balance, reduce oxidative stress, induce mitochondrial 

synthesis, alter immunological and motor function and improve muscle oxidative 

capacity92–95. Increased muscle protein synthesis with exercise sensitizes muscle insulin 

action and promotes anabolism96–100. Sarcopenia is associated with reduced muscle protein 

synthesis, partly owing to decreased anabolic stimulation (which can result from a lack of 

regular exercise). Aerobic exercise101, resistance training102–104 and their combination105 

increase muscle protein synthesis in older adults despite age-related decreases in anabolic 

signalling106–109. Muscle satellite cells located between myofibres and their surrounding 

basal lamina are recruited into existing muscle fibres by physical activity110,111. Muscle 

injury activates satellite cells to regenerate muscle by releasing IGF1, fibroblast growth 

factor and mechano growth factor, all of which stimulate the differentiation and proliferation 

of muscle satellite cells112,113. Circulating inflammatory biomarkers, including IL-6, C-
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reactive protein and TNF, are downregulated by aerobic exercise and strength training, 

although the relationship is less clear with combined aerobic and resistance activities114–118. 

Elevated levels of IL-6 and TNF and low levels of IGF1 are associated with reduced muscle 

mass, reduced muscle strength, reduced muscle mobility and reduced muscle function, 

suggesting a marked role of exercise in attenuating these muscular changes with 

ageing117,119,120.

Aerobic activity can improve the oxidative capacity of muscle by counteracting the negative 

effect of intra- myocellular lipids and accelerating lipolysis, which results in an increase in 

capillary density121. The synthesis of mitochondria in myocytes is upregulated to meet the 

demands associated with an increase in capillary density, which in turn leads to increased 

oxygen extraction and metabolism122 through the induction of calcium and metabolic 

signalling pathways such as those involving 5’-AMP-activated serine/threonine-protein 

kinase (AMPK) and sirtuins123. These mediators stimulate mitochondrial production, which 

promotes improved fatty acid metabolism124.

Myocyte apoptosis can be abrogated by physical activity125,126, while mechanisms of 

cellular quality control, including autophagy, mitophagy and mitochondriogenesis127, 

contribute to the development of sarcopenic obesity and could be potential targets for 

therapy. Reduced cytokine production can lead to improved glucose metabolism, insulin 

sensitivity and muscle protein synthesis, which might dampen the progression of sarcopenic 

obesity.

Ageing leads to reduced cardiopulmonary status owing to inefficient oxygen extraction and a 

concomitant reduction in metabolically active muscle mass128. Peak oxygen consumption is 

potentially inversely related to frailty129,130, suggesting that improvements in VO2 max 

following aerobic training counteract frailty131,132. Following a 12-week diet–exercise 

intervention in male and female frail adults with obesity aged 69 ± 1 years, investigators 

reported reduced skeletal muscle levels of mRNA for TLR4, IL6 and TNF, increased 

mechano growth factor mRNA and increased fat-free mass in the exercise group, and these 

results were independent of weight loss133. Separately, resistance exercises resulted in 

increased TNF mRNA and protein from skeletal muscle biopsy samples in frail adults134. 

Expression of skeletal muscle TNF, IL-1β and nitric oxide synthase, inducible in patients 

with heart failure was reduced following aerobic training, suggesting that aerobic exercise 

has anti-inflammatory effects135. Furthermore, a 12-week aerobic and resistance programme 

increased serum levels of ghrelin and adiponectin by 47% and 55%, respectively, and 

reduced circulating levels of CD14+ and CD16+ inflammatory monocytes, adding additional 

evidence to the anti-inflammatory effects of exercise136.

Resistance exercise increases the number and size of fast twitching muscle fibres (IIA and 

IIX), which improve glucose metabolism in muscle and muscle protein 

synthesis102,103,137–139. Muscle protein synthesis is also improved by nutrient-stimulated 

vasodilation and nutrient transport to local muscle myofibrils112,124. Muscle fascicle length 

and muscle tendon stiffness reportedly increased after strength training (leg press and 

extension) over 14 weeks in a cohort of men and women aged over 65 years140. In a study of 

eight young adults (aged 18–29 years) and seven older adults (aged 67–81 years), isometric 
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knee extension at varying degrees of maximal voluntary contraction followed by a 6-week 

resistance programme demonstrated early increases of isometric knee extensor maximal 

force (which is a marker of voluntary muscle contraction) and increases in motor unit 

discharge rates (which is a magnitude ofthe speed of neural activation)141. Resistance 

training has also been shown to reduce levels of cytokines, such as resistin, leptin and IL-6 

(REF142).

Leptin and adiponectin stimulate and inhibit, respectively, the deposition of intramuscular 

lipids (Fig. 1); however, defining their precise roles in physical activity continues to be 

challenging. For instance, the concentration of leptin in the systemic circulation is 

suppressed following resistance exercise143 but also in individuals with overweight or 

obesity following a physical training intervention143–145. Resistance training seems to be 

more efficient in reducing leptin levels than aerobic training alone146, though conflicting 

evidence exists147. A study into the effects of aerobic activity in patients who had recovered 

from breast cancer reported that individuals who were randomized to the aerobic exercise 

group demonstrated reductions in insulin and leptin and increases in the adiponectin:leptin 

ratio but no significant changes in adiponectin compared with participants in the usual 

activity group148. These results parallel those from studies in inactive men aged 65–82 years 

who were overweight. Investigators assigned participants to partake in varying intensities of 

resistance exercises. The investigators reported no alterations in concentrations of leptin, but 

participants had intensity-dependent changes in adiponectin139,145 — high-intensity 

resistance training led to an increase in the concentrations of adiponectin for 24 hours after 

exercise in inactive adults who were overweight139.

Summary of mechanisms.

The core biological factors that underlie sarcopenic obesity are age-related changes in 

metabolism and body composition and the presence of concurrent environmental obesogenic 

factors and physical illnesses that develop with the ageing process. Incremental metabolic 

changes over time promote fat deposition with a pro-inflammatory cascade of events. In 

tandem, crosstalk with biologically active muscle tissue leads to a negative feedback cycle 

that promotes progressive gain in fat mass and loss of lean mass and muscle strength. In a 

pre-frail and frail population, a strategy combining physical training and nutritional 

intervention was more likely to result in stable or reduced IL-6 levels in individuals who 

demonstrated improved physical performance than in those with lower physical 

performance149. Calorie restriction and physical activity might impede and halt these 

processes. While we have a better understanding of the role of physical activity in reversing 

sarcopenic obesity, the effect of a lifetime of inactivity on the development of sarcopenic 

obesity is still unclear.

Assessing body composition

Gold standard methods to assess body composition, including CT and MRI, allow clinicians 

to accurately analyse adipose tissue and muscle mass150 (FIG. 2). Steven Heymsfield and 

colleagues have argued the importance of using measures beyond muscle mass when 

diagnosing sarcopenic obesity151. The strengths and limitations of each method to assess 
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body composition to diagnose sarcopenia and sarcopenic obesity have been reviewed 

elsewhere152–155.

Dual-energy X-ray absorptiometry (DXA) is recommended for the assessment of 

appendicular lean mass in the diagnosis of sarcopenia156 owing to its affordability, 

availability and diagnostic accuracy157. DXA correlates well with gold standard measures of 

body composition, such as MRI, and with bioelectrical impedance, which can also measure 

fat and segmental muscle mass158–160. Assessments of lean mass are highly reproducible 

and can be used for clinical monitoring, while a detailed assessment of visceral fat is not as 

accurate150,161–163. In a 2013 report by the International Society for Clinical Densitometry, 

the recommendation to perform DXA for assessing total body composition and for a 

regional analysis of fat and muscle in patients with muscle weakness or poor physical 

function was categorized as fair157.

Bioelectrical impedance is a simple, non-invasive, inexpensive, rapid and portable diagnostic 

tool. Reductions in muscle mass result in an increase in connective tissue164–166 that can 

interfere with the assessment of muscle mass. Variable hydration status also impacts its 

accuracy167. To use bioelectrical impedance, tissue hydration must be constant and the body 

must be cylindrical168,169; both assumptions are challenged in sarcopenia and obesity. Thus, 

an overestimation of the total volume of water and extracellular fluid in the body leads to 

aberrant values. Further, whether the bioelectrical impedance prediction equations are valid 

when applied to different ethnic groups is unclear170, despite specific adaptations and 

adjustments171–173. Biological differences between different ethnic populations might 

influence the relationship between skeletal mass and resistance174. Other notable limitations 

include large standard errors and population specificity175. Cut-off points might not capture 

such determinants, particularly when levels of fat mass are high, which questions the utility 

of bioelectrical impedance for the assessment of body composition by professional 

societies169 who recommend adjustment to population-specific, age-appropriate 

equations169,176. Further validation of bioelectrical impedance results is needed in 

individuals aged ≥80 years, as they are at increased risk of sarcopenic obesity177,178. Of 

note, current bioelectrical impedance systems permit an improved protocol that involves 

segmental analyses in clinical settings, as reviewed elsewhere179.

An evolving definition

The current definitions of sarcopenic obesity are based on the individual definitions of 

sarcopenia and obesity (TABLE 1), but presently there is no consensus that defines the cut-

off points for either of these diseases, which makes arriving at an accurate diagnosis of 

sarcopenic obesity challenging. The term sarcopenia is defined differently throughout the 

literature (TABLE 1), leading to confusion in the medical community and preventing any 

inter-study comparisons. Without a consistent definition of sarcopenia, investigators are 

limited in their ability to identify participants for interventional research.

Current definitions of sarcopenia incorporate variations of muscle mass, strength and 

anthropometric measures including mid-arm and calf circumference. The International 

Working Group for the Study of Sarcopenia (IWGS) provided a consensus definition for 
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sarcopenia180 as the combination of low whole-body or appendicular lean mass and poor 

physical functioning (gait speed ≤1 m/s). The European Working Group for the Study of 

Sarcopenia (EWGSOP)156 identified sarcopenia cut-off points and tools for its 

measurement. They recognized the lack of diagnostic criteria for sarcopenia but integrated 

low muscle mass and function (strength or performance) in their terminology, believing that 

the relationship between these two measures is not linear nor bidirectional73,156,181. This 

algorithm was meant for clinical application using gait speed (<0.8 m/s) before muscle mass 

or strength measurement. EWGSOP recommended that muscle mass is assessed by DXA or 

bioelectrical impedance, using mathematical thresholds and formulas presented in their 

consensus document. Hand grip strength cut-off points are dependent on an individual’s 

BMI.

The Foundation for the National Institutes of Health (FNIH) Sarcopenia Project182 

suggested a causal, indirect relationship between muscle mass and function in their 

definition of sarcopenia. The FNIH suggested testing for low lean mass using DXA (defined 

using appendicular lean mass) and reduced muscle function using handgrip strength. FNIH 

stated that sex-specific cut-off points could be adjusted for BMI. The separate criteria for 

muscle mass and strength implied the need to target interventions for individuals with low 

mass or low strength. FNIH deliberately avoided the term sarcopenia to differentiate 

between qualitative (strength) and quantitative (mass) components.

These definitions provide excellent negative percent agreements on the absence of 

sarcopenia; however, there is poor overlap in identifying individuals with sarcopenia183. 

Ethnic-specific differences result in inaccurate prevalence estimates184. The Asian Working 

Group for Sarcopenia185 provided guidance for individuals of Asian descent. They 

suggested using handgrip strength and gait speed for initial testing and/or screening followed 

by the EWGSOP approach for muscle mass measurement, strength and physical 

performance, with different, lower, cut-off points (TABLE 1).

Obesity is defined as an unhealthy excess body fat that increases the risk of medical illness 

and mortality186. As with sarcopenia, no consensus defines obesity cutoff points. Instead, 

cutoff points are premised on sex-specific, whole-body DXA. The American Association of 

Clinical Endocrinology187 recommends the use of the WHO body fat thresholds for the 

diagnosis of obesity — (men >25% body fat and women >35% body fat). The WHO 

thresholds also used BMI for obesity (≥30 kg/m2) or waist circumference (men ≥102 cm and 

women ≥88 cm) as a visceral fat surrogate. The International Society of Clinical 

Densitometry, the American Heart Association and The Obesity Society all recognize the 

lack of specific thresholds, while the American College of Sports Medicine suggests cut-off 

points of 28% and 35% for men and women, respectively188,189. Others applied 

mathematical body fat thresholds of reference populations to provide sufficient power that 

might not be based on distal outcomes190,191. Body fat has better predictive validity on the 

development of the metabolic syndrome192 and cardiovascular disease risk193 than BMI.

Body composition modalities have advantages and disadvantages in assessing changes in fat 

or muscle distribution. We suggest DXA for research purposes, as it is more readily 

available to provide the necessary information. If DXA is unavailable, a stand-alone or 
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portable bioelectrical impedance system can be used. We advocate caution when using 

bioelectrical impedance equations; they must account for age, sex, levels of physical activity, 

body fat and ethnicity. Feasible anthropometric indices as surrogates for adiposity, including 

BMI and waist circumference, have poor sensitivity. In one study, BMI correctly classified 

41.0% of men and 45.1% of women as being obese and waist circumference correctly 

classified 64.2% of men and 81.0% ofwomen as being obese194. We believe that 

anthropometric measures should be used with great caution when assessing body 

composition and only if other imaging is unavailable.

With ageing, fat preferentially accumulates both viscerally and ectopically rather than as 

abdominal subcutaneous fat. Rapid accumulation of intra-abdominal fat is exacerbated by 

physical inactivity, hormonal changes, reduced responsiveness to thyroid hormone and leptin 

resistance186. As central fat accumulation predominates, and loss of muscle occurs 

peripherally, the prototype of sarcopenic obesity is easily recognized (‘fat frail’). This 

prototype is not inconsistent with intramuscular fat accumulation, which contributes to 

inflammation, mitochondrial dysfunction and insulin resistance within muscle and reduces 

muscle protein synthesis74,195.

Prevalence of sarcopenic obesity

A shortcoming in ascertaining accurate prevalence rates for sarcopenic obesity is the lack of 

a consistent definition for either sarcopenia or obesity. A review of eight definitions for 

sarcopenic obesity noted a 19-fold to 26-fold variation in sex-specific rates178. The analysis 

showed that definitions for sarcopenia were highly dependent on mathematical thresholds, 

reference populations and muscle mass definitions. A comparison of the rates of sarcopenic 

obesity using bioelectrical impedance to define sarcopenia and percentage of body fat to 

define obesity showed increasing rates with age196. In another study, the authors identified 

individuals with a BMI ≥35 kg/m2 and evaluated the prevalence of sarcopenic obesity using 

DXA-defined body fat in 120 predominantly female adults (46.9 ± 11.0 years). The 

investigators reported rates that ranged from 0–84.5% in women to 0–100% in males 

depending upon the definition applied197. In a population-based cohort using National 

Health and Nutrition Examination Survey (NHANES) data that applied the aforementioned 

FNIH criteria for appendicular lean mass, rates of sarcopenic obesity were 12.6% in men 

and 33.5% in women. The rates of sarcopenic obesity increased with age, reaching 48.0% 

and 27.5% in females and males, respectively, in those aged over 80 years198. In a cohort of 

individuals from South Korea’s Korean Sarcopenic Obesity Study, an ongoing 

epidemiological, prospective cohort of healthy volunteers aged 20–80 years, prevalence of 

sarcopenic obesity ranged from 1.3–15.4% in men to 0.8–22.3% in women199.

The prevalence of low muscle strength with obesity is less clear. Data from the InCHIANTI 

study noted rates of 3.2–8.7% using the low knee extensor strength with either high BMI or 

waist circumferrence200. Investigators from the Cardiovascular Health Study used low grip 

strength and high waist circumference to define low muscle strength and obesity. Rates 

approached 11.1%201, while data from FNIH classified 4.1% of men and 14.0% of women 

as having sarcopenic obesity using high BMI and low grip strength as measures of obesity 

and low muscle strength, respectively202. Overlap using different diagnostic criteria of 
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sarcopenic obesity is limited183 but ranges from 2.1% to 4.1%. These findings are also 

observed when evaluating the overlap of sarcopenia-only definitions, which is less than 

50%183.

Consequences of sarcopenic obesity

Cross-sectional and longitudinal studies are subject to the same definitional challenges as 

prevalence studies. Despite the crucial need for a consensus definition, here we describe the 

clinical importance of sarcopenic obesity.

Disability or impairments.

Richard Baumgartner and colleagues were the first to characterize the association between 

sarcopenia (as defined by appendicular lean mass) and percent body fat on incident 

disability191. In their analysis, when compared with a healthy body composition, sarcopenic 

obesity was associated with a relative risk of incident disability over 8 years that was 2.63 

(95% CI 1.19–5.85). In addition, when compared with a healthy body composition, a 

combination of obesity, as defined by percentage of body fat, with low muscle mass 

represented odds ratios of difficulty ascending and descending stairs that were 2.60 and 2.35 

higher, respectively203. The Concord Health and Aging project204 used the FNIH criteria for 

sarcopenia with elevated body fat to evaluate frailty and reported that sarcopenic obesity 

resulted in an increased risk of frailty (OR 2.00, 95% CI 1.42–2.82), activity of daily living 

disability (OR 1.58, 95% CI 1.12–2.24) and instrumental activity of daily living disability 

(OR 1.36, 95% CI 1.05–1.76). The above results contrast with an earlier cross-sectional 

study that defined sarcopenic obesity by low muscle mass and elevated body fat and did not 

demonstrate differences in disability compared with controls205. Another group used DXA 

to assess body mass and its relationship with physical capacity and found mixed results188. 

Data from the Quebec Longitudinal Study applied definitions of sarcopenic obesity 

comprising Baumgarter’s definitions of sarcopenia and obesity as defined by body fat191 and 

found global physical capacity scores were no different between obese groups (sarcopenia 

versus non-sarcopenia (P = 0.14 in men and P = 0.19 in women)), but lower scores were 

observed than with the non-sarcopenic non-obese group (P < 0.05)188. Women with 

sarcopenia alone had higher scores than people with obesity without sarcopenia and than 

individuals with obesity and sarcopenia (P < 0.01).

Muscle strength is a stronger predictor of long-term functional decline than muscle mass206. 

Data from the Osteoarthritis Initiative showed that a combination of low knee extensor 

strength with high BMI was associated with reduced gait speed and reduced Late-Life 

Function and Disability Index and Short Form-12 scores207, which indicate a lower degree 

of physical function208 and decreased self-reported health status209.

Low handgrip strength and elevated BMI were strongly associated with an increased risk of 

functional decline210. In addition, data from the UK Biobank study found an association 

between high BMI, low grip strength and reduced long-term physical activity211. Data from 

the InCHIANTI study showed that mobility disability trajectories and gait speed over 6 

years were steepest in individuals with obesity as defined by BMI and low muscle 

strength200. An increase in mobility disability and risk of hospitalization (OR 2.10, 95% CI 
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1.14–3.88) was associated with low muscle strength and abdominal obesity in an 11-year 

follow-up study (OR 1.36, 95% CI 1.04–1.78). High BMI and low muscle strength were 

related to limitation in mobility at 2-year follow-up (OR 3.88, 95% CI 1.08–13.91)212. In 

another study, abdominal visceral fat and quadriceps muscle area served as markers for 

central obesity and sarcopenia, respectively, and were associated with postural instability213.

Metabolic impairments.

A study from the South Korean NHANES conducted an evaluation of sarcopenia (as defined 

by muscle mass) with obesity (as defined by a BMI ≥25 kg/m2). The authors reported that 

individuals with sarcopenic obesity were at an increased risk of dyslipidaemia (OR 2.82, 

95% CI 1.76–4.51)214 and had significant positive associations with insulin resistance as 

defined by HOMA scores and triglycerides215. In another study, low handgrip strength and 

high waist circumference and/or BMI were significantly associated with elevated levels of 

IL-6, C-reactive protein and IL-1 (REF57) but conflicted with results using the FNIH criteria 

to define low lean mass216. By contrast, low muscle strength (as defined by the FNIH 

criteria) with an elevated BMI was not associated with differences in metabolic components 

among groups of postmenopausal women aged 55–75 years217.

Comorbidities.

Individuals with sarcopenic obesity have a higher risk (OR 3.51, 95% CI 2.15–5.75) of 

radiographic knee osteoarthritis218 than individuals in the non-sarcopenic obesity group. 

One study reported that risk of falling was highest in individuals with low muscle mass 

and/or strength with obesity as defined by percentage of body fat219, but spine and total 

BMD were lower in individuals who were sarcopenic obese and dynapenic obese than in 

individuals with obesity alone220. A study that evaluated participants over 6 years reported 

that the combination of obesity as defined by BMI and low handgrip strength suggested an 

increased risk of type 2 diabetes mellitus (OR 3.57, 95% CI 2.04–6.24), an association that 

was not observed with cardiovascular disease221. The rate of depression has been reported as 

being highest in patients with sarcopenic obesity (defined as low handgrip strength and 

obesity defined by BMI) (OR 1.79, 95% CI 1.10–2.89) over 4 years222 compared with non-

obese individuals in the highest tertile of grip strength. These data were confirmed in another 

study that defined sarcopenic obesity as low muscle mass or muscle strength, with obesity 

defined by percentage of body fat223. Individuals with low muscle mass and high waist 

circumference had worse psychological health and higher stress than individuals with 

normal muscle mass and normal waist circumference. Finally, an area of interest for 

researchers now is the role of sarcopenic obesity in cancer224, which further demonstrates its 

relationship with adverse health events.

Mortality.

Epidemiological studies investigating the relationship between sarcopenic obesity and 

mortality have reported conflicting results198,204,221,225–228. A longitudinal study from 2017 

demonstrated small differences in all-cause mortality between obesity as defined by both 

BMI and low muscle strength and low muscle strength alone229. Others showed that 

mortality was significantly elevated in people with sarcopenic obesity, which was defined 

using mid-arm circumference (HR 1.46, 95% CI 1.23–1.73) and muscle strength with waist 
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circumference (HR 1.23, 95% CI 1.09–1.38)230. Sarcopenic obesity (defined by muscle 

mass assessed by bioelectrical impedance and percentage of body fat) was associated with 

an increased mortality (HR 1.29, 95% CI 1.03–1.60)230. Muscle strength also affects 

mortality independent of muscle mass. Investigators from the Health, Aging and Body 

Composition study reported that low quadriceps strength was associated with increased 

mortality231. Similar results were reported in another study that showed that reduced leg 

isometric strength and increased waist circumference were associated with increased 

mortality232 (HR 2.46, 95% CI 1.34–4.52). These results were further corroborated in the 

MiniFinland Health Examination Study, which also showed that reduced muscle strength is 

associated with increased mortality (HR 1.30, 95% CI 1.09–1.54)228. Cutoffs specific to 

individuals from South Korea predicted higher mortality risk than the FNIH cut-off233. 

Finally, a recent meta-analysis found that mortality was highest in patients with sarcopenic 

obesity (HR 1.24, 95% CI 1.12–1.37) compared with healthy individuals, but the authors 

acknowledged that they had used multiple definitions of sarcopenic obesity in their study230.

Quality of life.

Few studies have evaluated the effect of sarcopenic obesity on quality of life. Sarcopenic 

obesity (as defined by low appendicular lean mass normalized for height2 and increased 

BMI) was associated with unfavourable scores on the Medical Outcomes Survey234. 

Another study reported no differences in Short Form-36 scores, which provide a measure of 

quality of life235, between individuals with obesity and low handgrip strength and 

individuals with normal indices236. The EuroQOL score was dependent on cardiovascular 

fitness rather than sarcopenic obesity237. Future studies need to focus on health-related 

quality of life and patient-reported outcomes in sarcopenic obesity before we are able to 

draw firm conclusions.

Institutionalization and health-care utilization.

Few studies, and no known longitudinal studies, have evaluated the relationship between 

sarcopenic obesity and institutionalization. Peggy Cawthon and colleagues238 reported that 

neither sarcopenia nor the components that define weakness increased the risk of 

hospitalization or short-term nursing facility stay. A population-based cohort study that 

defined sarcopenia using the EWGSOP criteria found an increased incidence of long-term 

care certification in patients with sarcopenia239. Low muscle mass or strength is causally 

associated with long-term care placement. The relationship with obesity is clearer, whereby 

an elevated BMI is associated with admission to a nursing home240. Midlife obesity also 

increases the risk of long-term care placement241, an association that persists in older adults 

with obesity242.

Treatments for sarcopenic obesity

Lifestyle interventions, including calorie restriction and physical activity, are hallmarks of 

treating sarcopenic obesity (TABLE 2). Few clinical trials specifically focus on sarcopenic 

obesity243; however, intentional weight loss in older adults improves morbidity and physical 

function186. Following a meta-analysis of randomized trials of adults with obesity aged ≥55 

years, which had follow-up times of ≥4 years, investigators reported a 16% reduction in 
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mortality (95% CI 0.71–0.99)243. In the United States, while Medicare covers weight loss 

therapy244, no major societies outline targeted therapies for sarcopenic obesity187,245.

Dennis Villareal’s work best corresponds to participants with sarcopenic obesity as defined 

by obesity with evidence of physical frailty246,247. In this cohort of patients, weight loss 

alone or exercise alone improved physical function; however, a combination of weight loss 

and regular exercise improved physical function and ameliorated frailty more than either 

intervention alone246. Moreover, another study reported that weight loss plus combined 

aerobic and resistance exercise was the most effective method for improving functional 

status of adults aged 65 years and older with obesity247 (FIG. 3). Hung-Ting Chen and 

colleagues248 evaluated four groups of individuals with sarcopenic obesity according to 

different exercise interventions (aerobic, resistance, combined aerobic and resistance), and 

controls who were prohibited from engaging in exercise, and demonstrated that individuals 

in the resistance training group had the greatest improvements in strength.

Dietary strategies: calorie restriction and protein supplementation.

Dieticians are multidisciplinary team members integral to developing lifestyle interventions 

whose delivery is often grounded in behavioural theories and motivational interviewing249. 

Weight loss trials tend to restrict calories by 500–1,000 kcal per day250. Initial weight loss 

goals of ~0.5 kg per week can lead to an 8–10% loss in 6 months, with most patients 

sustaining an 8–10 kg loss in weight during this period of time. We are unaware of 

specifically tested diets in sarcopenic obesity. As in other populations, diets in patients with 

sarcopenic obesity lead to weight loss251, with adherence to a diet predicting weight loss 

success252.

Strategies that optimize protein anabolism during weight loss, such as consumption before 

exercise or spreading out of protein during the day, can prevent weight loss-induced 

sarcopenia247,250. Energy deficits created by acute calorie restriction could downregulate 

muscle protein synthesis and increase proteolysis, which contributes to reduced muscle 

mass247,253,254; however, chronic calorie restriction does not seem to reduce muscle protein 

synthesis, but it might increase it105,255. Increased dietary protein stimulates muscle protein 

synthesis71,256. The source of protein, timing of intake257 and specific amino acid 

constituents can also be factors in increasing muscle mass and strength. High protein intake 

(1.2 g of protein per kg per day) during weight loss might eliminate the beneficial effect of 

weight loss on insulin sensitivity in skeletal muscle258. Distributing protein intake 

throughout the day259 or pulse feeding at main meals260 could be beneficial for the 

stimulation of muscle protein synthesis in patients with sarcopenic obesity.

The PROT-Age group recommends 1.0–1.1 g/kg protein per day in divided doses, 

acknowledging that a ‘one size fits all protein recommendation’ fails to account for the 

complex physiological changes of ageing71. Generally, 25.0–30.0 g of protein containing 

2.5–2.8 g of leucine can slow frailty261,262. Early pilot studies demonstrate that meals 

enhanced with protein and coupled with a weight loss intervention improve physical 

function263. For example, a high- protein diet in conjunction with resistance training 

preserved appendicular lean mass during weight loss264. In a pilot study, participants with 

sarcopenic obesity undergoing a weight loss programme augmented by a high-protein diet 
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showed improvements in muscle strength and Short Form-36 scores (REF265). We need 

further evidence to support the effect of supplemental protein on functional outcomes in 

patients with sarcopenic obesity266–268. High-protein diets consisting of 1.0–1.2 g per kg per 

day should be prescribed with caution to prevent renal dysfunction269 as evidenced by 

observational data270–272, as higher doses have recently demonstrated no changes in lean 

mass273. We recommend the importance of ensuring adequate protein intake in countering 

weight loss-induced sarcopenia in individuals with sarcopenic obesity participating in 

programmes. Careful medical monitoring and dietary planning are required when optimizing 

protein intake while limiting calorie restriction, and this often needs to be administered 

under the auspices of a registered dietician with expertise in this population. The challenges 

in limiting calories are recognized, and hence we believe that alternative approaches are 

crucially needed to augment muscle mass and strength.

Resistance training and aerobic exercise.

Several professional societies3,187,245,274 recommend that all older adults engage in at least 

150 min per week of moderate to vigorous aerobic exercise, with two sessions of resistance 

exercises consisting of strength training, flexibility and balance. Aerobic exercise and 

resistance training are safe, even in patients who are at a high risk of falling275. Aerobic 

exercise improves cardiorespiratory fitness and has beneficial effects on mortality276–278. 

Even minimal resistance exercise improves muscle strength and mass279,280, and progressive 

resistance exercises counter sarcopenia by increasing strength. As with any exercise 

programme, clinical consultation and medical clearance is advised.

A Cochrane review reporting physical outcomes of progressive resistance exercises for older 

people identified 33 trials that significantly improved physical abilities (standardized mean 

difference 0.14, 95% CI 0.05–0.22) in 2,172 participants, with improvements in muscle 

strength (standardized mean difference 0.84, 95% CI 0.67–1.00) in 73 trials281 (3,059 

participants). The LIFE study282, a structured, moderate-intensity physical activity 

programme, demonstrated reduced persistent mobility disability (HR 0.72, 95% CI 0.57–

0.91) compared with a health education programme. Evaluation of four groups of men and 

women aged 60–75 years with sarcopenia demonstrated that 2 days of high-resistance 

concentric exercise with one bout of low-resistance exercise increased muscle expression of 

pro-inflammatory cytokine receptors, maximized muscle mass and total lean mass and 

improved knee extension283. A secondary subset analysis ofthe LIFE pilot study found that 

the short physical performance battery — an objective assessment tool for the evaluation of 

lower extremity function (higher score equals better function)284 — of patients with 

sarcopenia improved from 7.4 to 8.7 when compared with the successful ageing group285. 

Although the LIFE study is considered a standard for physical activity in older adults282, we 

acknowledge its lack of evidence in sarcopenic obesity and the lack of power in this pilot 

trial.

High-intensity resistance training combined with short resting intervals improves body 

composition, muscle and functional performance in men aged 68 ± 4.1 years286. High-speed 

resistance training over 12 weeks induced greater improvements in muscle power and 

functional capacity than low-speed training287. In this study of 60 women of Hispanic 
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descent aged over 60 years, high-speed training consisted of individuals performing 

exercises as fast as possible (1 second or less) and was compared with low-speed resistance 

training (3 seconds). The authors of this study also demonstrated that two versus three 

training sessions per week for 12 weeks of high-speed resistance training were equally 

effective for improving physical performance and quality of life288. High-velocity knee 

extension training at 240° of movement per second increases the expression of MYH6 and 

MYH9 mRNA and improves muscle enhancement138.

The effect of power training (moving resistance at higher speed) on function requires further 

investigation289,290. A pilot study of patients with sarcopenic obesity (defined using 

EWGSOP criteria for sarcopenia and BMI for obesity) were randomized to a strength and 

hypertrophy group or a high-speed circuit group for 15 weeks289. High-speed circuit training 

was associated with nonsignificant improvements between groups in short performance 

physical battery (mean difference 1.1, 95% CI–0.1 to 2.4; P = 0.08) and power (mean 

difference 158 W, 95% CI 2–315; P = 0.01). We note that while these trials enrolled patients 

with sarcopenic obesity in each arm, they are small, short-term studies.

Other exercise therapies, including tai chi or yoga, could potentially be beneficial; however, 

to our knowledge, no studies have evaluated these modalities in sarcopenic obesity. Tai chi 

and The Otago Exercise Programme (a home-based balance and strength fall prevention 

programme) have been shown to be effective at preventing falls and improving physical 

function, mobility and functional measures of lower extremity strength in older adults291. A 

meta-analysis of 18 trials (n = 3,824), including study participants greater than 65 years who 

participated in tai chi for a minimum of 4 weeks (range 1–12 months) 1–3 times per week, 

demonstrated a reduction in falls of 20% (relative risk (RR) 0.8, 95% CI 0.72–0.88)292. In 

addition, yoga has been shown to improve mobility in participants 60 years of age and older, 

with no restriction on their characteristics, whose follow-up ranged from 8 to 24 weeks (total 

duration 8–36 hours of yoga)293. A meta-analysis of 28 studies demonstrated a positive 

effect of aquatic exercises on physical functioning (RR 0.70, 95% CI 0.48–0.92) compared 

with no training (control group)294. Furthermore, the data suggested that aquatic exercises 

are as effective as land-based exercises (standardized mean difference 0.39, 95% CI 0.12–

0.66). Finally, while training until failure might be an approach for muscle strengthening and 

endurance295, we generally recommend exercising until fatigue rather than failure, as 

exercising until failure can increase the risk of musculoskeletal injury.

We advocate individualized exercise treatment for patients with sarcopenic obesity because 

of the associated medical comorbidity and disability. As previously described, the exercise 

programme296 should begin at a fairly low-to-moderate intensity, duration and frequency to 

minimize injury and maximize adherence; this approach progressively induces exercise 

adaptations246,247. Aerobic activity should target ~65% of the peak heart rate, aiming to 

reach 70-–85% of peak heart rate over the duration of the exercise regimen. Resistance 

activities, on the other hand, should focus on 1–2 sets of 8–12 repetitions at ~65% of one 

repetition maximum, which is defined as the maximal amount of force a person generates in 

a single repetition, with the aim of advancing to a goal of 2–3 sets of 75% of one repetition 

maximum over time. These activities are recommended even for frail, older adults246,247.
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Calorie restriction and physical activity.

A trial of older adults with obesity247 consisted of a hypocaloric diet with an energy deficit 

of 500–750 kcal per day on average, 1 g high-quality protein, plus either 60 min of 

progressive aerobic exercise and resistance training or 75–90 min of both aerobic exercise 

and resistance training, three times a week. The findings demonstrated increases in physical 

performance test scores (higher score equals higher level of function), more so in the 

combined aerobic and resistance exercise group (27.9 to 33.4 points (21% increase)) than in 

the aerobic (29.3 to 33.2 points (14% increase)) or resistance group (28.8 to 32.7 points 

(14% increase)) alone. Other activities for weight loss therapy in older adults reflect similar 

components and outcomes and have produced similar findings250,297. There are few 

multicomponent studies in patients with sarcopenic obesity. A meta-analysis showed that 

aerobic exercise and resistance were useful tools to preserve fat-free mass in adults aged ≥50 

years who were engaged in a moderate energy restriction-induced weight loss 

programme298. Increased muscle mass and reduced total and visceral fat over an 8-week 

intervention were observed in predominantly female individuals, whose mean age was 69 

years, with sarcopenic obesity engaged in resistance training248. A resistance programme of 

participants fulfilling the EWGSOP criteria for sarcopenia and obesity as defined by 

percentage body fat demonstrated reduced rates of sarcopenia and improved physical 

function following three training sessions weekly over a 12-week period compared with a 

control group receiving no intervention297. A combined treatment of diet and exercise 

improved physical function in frail older men with obesity aged ≥65 years for 1 year, despite 

resulting in a reduction in oestradiol levels and only a modest increase in testosterone 

levels299.

Combining both diet and exercise can positively improve adipose markers of adiponectin 

and significantly reduce leptin levels. In response to a 6-month randomized diet and exercise 

intervention, levels of C-reactive protein and IL-6 decreased in older adults (age ≥65 years) 

with obesity (BMI ≥30 kg/m2) compared with controls (−2.5 versus 0.8 mg/l (P < 0.05) and 

−2.4 versus 1.6 pg/ml (P < 0.05), respectively)300. Yet, the positive effects on circulating 

cytokines, adiponectin and TNF were due to diet and not exercise301, which is consistent 

with the direct effect of exercise on or within muscle not being reflected in the 

circulation133,134. A study that investigated the effect of diet or diet and exercise 

interventions in individuals aged 50–79 years with overweight or obesity reported that levels 

of adiponectin increased in individuals with overweight or obesity compared with controls 

(diet resulted in 9.5% increase in adiponectin (P < 0.001), and diet and exercise resulted in a 

6.6% increase in adiponectin (P < 0.001)). Furthermore, levels of leptin in individuals with 

obesity or overweight decreased by 27.1% in the diet group and 40.1% in the diet and 

exercise group302.

Investigators in the LIFE pilot study reported that individuals in the physical activity group 

had reductions in IL-8 but no differences in other inflammatory markers303. A 12-week 

aerobic exercise regime in combination with a low glycaemic index diet or high glycaemic 

index diet resulted in reductions in leptin levels in two groups of participants who had 

elevated levels of adiponectin, suggesting that the reductions in leptin were a result of 

exercise training and independent of dietary glycaemic index304. Another study reported that 
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in postmenopausal women with overweight or obesity, adding aerobic activity to calorie 

restriction increased serum concentrations of adiponectin (6.9 μg/ml for individuals in the 

group without aerobic activity versus 8.5 μg/ml for individuals in the group with aerobic 

activity (P < 0.001))305. Levels of adiponectin were also elevated following a 

multicomponent, randomized lifestyle intervention study that investigated the mRNA 

expression of adiponectin and its receptor in skeletal muscle in adults with impaired glucose 

tolerance who were aged ≥60 years and had a BMI of 30–40 kg/m2 (REF306). These data 

suggest that improved insulin sensitivity is due, in part, to the distribution of adiponectin 

across various tissues and an upregulation in the expression of its receptor. Other conflicting 

data suggest that in patients with knee osteoarthritis, weight training combined with walking 

three times a week for 1 hour does not have any significant effect on levels of TNF, IL-6 or 

C-reactive protein307. The addition of weight loss of 0.3 kg per week for 6 months to 

physical activity in older community-dwelling adults with obesity or overweight results in a 

greater reduction in serum levels of leptin and IL-6 than either physical activity alone or a 

successful ageing health education intervention308.

Risks of weight loss in older adults

Energy restriction with a hypocaloric diet with or without exercise results in the loss of 

approximately one-quarter of lean mass per unit weight, which could worsen sarcopenia and 

osteopenia154. A total of 33 intervention studies lasting 8–24 weeks reported that unopposed 

calorie restriction without resistance training leads to the loss of muscle mass and loss of 

handgrip strength of up to 4.6% and 1.7 kg, respectively309. Unopposed diet therapy without 

exercise in older frail adults ≥65 years with obesity (BMI ≥30 kg/m2) led to a marked loss of 

lean mass at 6 months and 1 year (−3.5 kg and −3.2 kg, respectively) compared with the diet 

and exercise group, where the loss of lean mass was partially mitigated (−1.7 kg and −1.8 

kg, respectively)246. In the Look AHEAD trial, total skeletal mass decreased in both of the 

intensive lifestyle groups and in the diabetes support and education group (−1.4 kg; P < 

0.001). The researchers reported that patients in the intervention group regained 

appendicular lean mass during the second year and that weight loss was 5.2 kg less in the 

intervention group than in participants in the control group, whose weight did not markedly 

change after the second year310. A review of 52 studies reported that loss of fat-free mass as 

a proportion of overall weight was attenuated after combining exercise with calorie 

restriction298.

Weight loss in younger adults (age 45–65 years) led to loss of lean mass after calorie 

restriction (4% reduction in lean mass; P < 0.0001), which was partially lessened by 

augmentation with aerobic activity (2% reduction in lean mass in participants who had 

augmented weight loss with aerobic activity; P = 0.05)311. One study evaluated the 

effectiveness of low-fat diets versus carbohydrate restricted diets with or without progressive 

resistance exercise on fat-free mass in 42 men with the metabolic syndrome whose age was 

59 ± 7 years. Percent weight loss from appendicular lean mass dropped markedly more in 

the low-fat and no exercise group than in the other groups, suggesting that this intervention 

has a detrimental effect on appendicular lean mass312.
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Obesity is inversely related to BMD and fractures313 but might increase the fracture risk 

through bone quality314,315 or frailty132,316 independent of BMD. Adipose tissue has been 

shown to be inversely associated with bone material strength and positively associated with 

cortical porosity, indicating an adverse effect of adipose tissue on bone microstructure317. 

Calorie restriction alters bone metabolism, resulting in the loss of BMD in the hip without 

effects on lumbar spine318, even after a 4-month restriction319. Increases in bone markers 

such as osteocalcin and of carboxy-terminal telopeptide (C-telopeptide) and N-terminal 

telopeptide (N-telopeptide) oftype I collagen were observed. Levels of osteocalcin were 

increased in the diet-only group (36 ± 11.6%), yet its levels were no different than baseline 

in individuals on diet coupled with exercise; increased differences were reported in the 

disposition index (an index of insulin secretion after correction for insulin resistance) in the 

diet–exercise group (92.4 ± 11.4%) compared with the diet-only group (61.9 ± 15.3%) at 12 

months320. Loss of BMD in older adults with obesity seems to continue during long-term 

lifestyle change in the opposite direction to the weight changes321. These findings suggest 

that BMD and markers of bone turnover following long-term calorie restriction show larger 

changes in patients than in healthy control participants advised to continue their current 

diet322.

In one study, the authors reported that trabecular bone microarchitecture was no different in 

calorie- restricted participants (~35% less calories than controls) than in middle-aged 

individuals eating a Western diet323. Furthermore, trabecular geometry, cortical geometry 

and strength were no different in individuals undergoing intentional weight loss through 

calorie restriction or weight maintenance for 6 months324, which suggests that calorie 

restriction has protective effects on bone quality. However, 2017 data from the Look 

AHEAD trial showed that long-term intentional weight loss was associated with a 39% 

increased risk of fragility fractures325. Very-low energy or protein-sparing diets to induce 

rapid weight loss are not recommended owing to potential loss of muscle mass, strength and 

bone and risks of dramatic fluid, electrolyte and water shifts owing to protein shifts; 

however, a preliminary, short-term study in a population of individuals ≥65 years of age 

suggests potential benefits326. Studies emphasize exercise training during calorie restriction 

to prevent an increase in bone turn-over327 and an increase in serum levels of sclerostin328, 

thus minimizing bone loss. Whether weight loss and exercise lower overall risk of falls and 

fractures despite the decline in BMD is unknown, suggesting the need for formal evaluation 

in future studies.

Supplementation with calcium and vitamin D.

Conventional strategies to minimize the effect of weight loss on bone metabolism, including 

up to 1,200 mg supplemental calcium per day and 800–1,000 international units (IU) per day 

of vitamin D3, are needed to minimize the risk of weight loss-induced BMD reduction329. 

Oral calcium should be coupled with vitamin D to mitigate the potential risks of unopposed 

supplementation330. Supplementing vitamin D in patients with sarcopenic obesity can 

potentially influence and improve muscle function331 and proximal muscle weakness332 

through the actions ofvitamin D metabolites333. Vitamin D deficiency is associated with an 

increased risk of falls and fractures, and reduced muscle mass and strength334–338, 

independent of obesity. We agree with the American Geriatrics Society recommendation of 
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1,000 IU of vitamin D3 per day with calcium among non-institutionalized adults aged ≥65 

years334, to maintain serum levels of vitamin D at ≥30 ng/ml.

Future directions and emerging therapies

We anticipate that a deeper understanding of sarcopenic obesity will emerge over the next 

decade, which will ultimately bridge the divide between clinical practice and research. Here, 

we outline the major gaps of knowledge and advancements needed to further the field (BOX 

1).

Harmonizing a definition.

The most notable barrier to advancing the science in targeting this condition is the lack of a 

consistent definition for sarcopenic obesity. While the criteria for identifying and classifying 

subcutaneous or visceral adiposity are somewhat consistent, major progress is needed 

regarding the definition of sarcopenia. Advancing our understanding of the relative 

contributions of strength and muscle mass — as well as their differences — might help. The 

introduction in 2016 of an International Classification of Diseases 10 code for sarcopenia 

(M62.84) will permit clinical recognition and promote its diagnosis, classification and drug 

development339,340. Different populations, ethnicities and sexes require specific diagnostic 

thresholds; therefore, integrating highly accurate body composition measures into clinical 

settings will encourage clinical identification of sarcopenic obesity. The disparate 

classification has impeded progress in this field.

Integrating methods for analysing body composition into clinical practice.

To promote the translation of methods for assessing body composition, including CT, MRI 

and DXA, into routine care, we acknowledge the need to remove regulatory and operational 

obstacles, particularly in the United States. For instance, DXA is routinely performed for 

screening and assessment of osteoporosis and is generally covered by insurance for this 

indication341. Older adults often receive gold standard imaging, which can accurately 

ascertain muscle and fat content, for indications other than sarcopenic obesity, such as 

abdominal pain or back pain342,343. Assessing muscle strength (using handgrip 

dynamometry) and muscle mass (using DXA, bioelectrical impedance or other modalities) 

can fill a clinical gap in identifying sarcopenic obesity. Widespread availability of DXA even 

in low-resource areas344 permits this evaluation. Future studies should focus on 

dissemination and implementation strategies of using such diagnostics.

Epidemiology and clinical outcomes.

Further work is required to elucidate the descriptive epidemiology of sarcopenic obesity 

regarding important outcomes beyond weight loss, comorbidity and mortality. Though 

experts currently debate a unifying definition, one will ultimately become accepted, 

standardized and implemented. Until then, useful and cost-effective measures, including grip 

strength, gait speed, the short performance physical battery and/or bioelectrical impedance 

or DXA, should continue to be used in clinical and research arenas345–347. Focusing on 

patient-centred outcomes, including physical function and quality of life, is important. 

Additional trials in sarcopenic obesity can clarify the mechanisms underlying interactions 
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between fat, muscle and bone that explain alterations in short-term and long-term outcomes. 

Improved characterization of biological signalling will permit full comprehension of the 

differences between sarcopenia and sarcopenic obesity. The association of resource and cost 

data in health systems and third-party payers (insurers) will escalate the importance of 

sarcopenic obesity.

Dietary composition and restriction.

No specific interventions have tested diets for the treatment of sarcopenic obesity. While 

diets should be individualized, the composition of carbohydrates, fats and protein have 

differed in clinical trials. Adjusting these components might differentially affect muscle 

mass, strength and weight. Research should distinguish appropriate diets, the type of protein 

to administer (such as whey or casein) and potentially the timing of intake in relation to 

exercise, as well as whether recommendations should be based on ideal or total body weight. 

The specific composition of essential amino acids (for example, leucine or creatine) and 

vitamin D supplementation requires structured interventions to ascertain dosing and 

monitoring. For instance, leucine-rich protein can activate metabolic pathways involved in 

testosterone and IGF1 homeostasis348–351. Such elements will allow tailored dietary 

interventions.

Exercise and combined interventions.

While aerobic and resistance exercises are core components in the treatment of sarcopenic 

obesity, the specific frequency, intensity, time and types (aerobic, resistance or both) should 

be considered. The relationship of resistance exercises with respect to dietary composition 

requires evaluation. Longitudinal studies should verify whether weight loss plus combined 

aerobic and resistance training prolongs physical independence in sarcopenic obesity. Such 

studies might translate to older adults who have access to health membership benefits in 

community-based exercise centres352. Assessing aquatic therapies353–355 or tai chi356, in 

isolation or in tandem with other types of physical activities, might prove useful for treating 

patients with sarcopenic obesity. The addition of pharmacotherapy, such as testosterone 

supplementation, to progressive resistance training augmented the improvements in body 

composition, including reduced fat mass and improved lean mass357. However, whether or 

not physical activity should be combined with novel and promising treatments requires 

systematic and further investigation.

Periodization strategies.

Periodization, which is a systematic variation in physical training specificity, intensity and 

volume within periods, has emerged as a potential strategy to improve muscle 

performance358. Periodization is typically used in sports programmes aiming to achieve 

peak physical performance while minimizing overtraining risk. Linear periodization reduces 

training volume while increasing training intensity or load between cycles359. Periodized 

resistance training in older adults demonstrated equal efficacy in physical function and 

physiological outcomes when compared with non-periodized resistance training360. In 

patients with sarcopenic obesity (defined using handgrip strength and BMI), no differences 

were observed in strength, power or short performance physical battery following a 10-week 

periodization strategy of strength and endurance training with concentric and eccentric 
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movements290. Preliminary studies indicate that periodization results in increases in serum 

levels of irisin and decreases in IL-1β361. Leptin might also be reduced further with 

periodized resistance training362. While periodization could feasibly be prescribed in 

sedentary or frail older adults to improve physical function, it is premature to endorse this 

training as superior to non-periodized training358. Longer-term investigations in older 

populations with sarcopenic obesity are needed.

Whole-body vibration therapy.

Whole-body vibration therapy is a novel therapy that could increase muscle contraction 

efficiency and function with similar efficacy to resistance training, though data on its 

efficacy are mixed. This safe and convenient technique is associated with a low risk of 

injury363,364. Whole-body vibration therapy uses the transmission of mechanical stimuli 

through the person’s body365,366 to activate the primary ends of muscle spindles, which 

leads to neuromuscular activation367–369. The participant stands on a vibrating platform 

where electrical signals are delivered through the body, and thus primary endings of muscle 

spindles are activated.

Hengting Chen and colleagues370 identified 10 randomized trials of whole-body vibration 

therapy showing its usefulness in younger adults (difference (d) = 0.35 (95% CI 0.05–0.64; 

P = 0.02)), but this usefulness was not seen in older adults (d = −0.04 (95% CI −0.28 to 

0.21; P = 0.78)). The review included heterogeneous studies using different methodologies, 

training and vibration characteristics. Separately, Ricky Lau and colleagues371 reviewed 13 

trials of older adults and found significant treatment effects on knee extension dynamic 

strength (d = 0.63; P = 0.006), isometric strength (d = 0.57; P = 0.003) and functional 

measures such as sit-to-stand (d = 0.72; P < 0.001). Whole-body vibration therapy was as 

efficient as a fitness programme at increasing knee extension and lower leg muscle mass in 

non-institutionalized men aged 60–80 years old372 and improved quality of life and 

functional measures373.

Summative effects of the combination of whole body vibration therapy and resistance 

exercises374–377 or of whole-body vibration therapy and vitamin D367 are mixed. Others 

hypothesize that pathways contributing to weight loss as a result of whole-body vibration 

therapy could inhibit adipogenesis, increase energy expenditure and reduce muscle mass378. 

Augmenting existing squatting exercises with whole-body vibration therapy failed to 

improve muscle mass in younger men aged 18–30 years379. Future research should focus on 

type, frequency and duration of treatment380.

Weight loss medications.

None of the six FDA-approved medications for weight loss are approved for use in older 

adults aged over 65 years, and few have been evaluated in terms of changes in body 

composition. In nine older adults prescribed liraglutide, a weight decrease of 2.0 kg (−1.5 kg 

fat mass and −0.9% android fat) was observed, with a marginal improvement of 0.03 kg/m2 

in skeletal muscle index (absolute muscle mass normalized by height squared)381. 

Lorcaserin leads to more fat loss than placebo in patients with diabetes mellitus (−12.1% 

versus −5.9%; P = 0.008) and more trunk obesity (3.65% versus −0.36%). When compared 
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with controls, patients treated with lorcaserin had greater fat mass loss than lean mass 

loss382. Topiramate negatively affects BMD383 but might not affect lean mass384,385. 

Phentermine minimally alters lean mass386. Bupropion can blunt olanzapine-associated 

weight gain without affecting bone metabolism387 and in combination with naltrexone can 

lead to a reduction in fat mass without altering lean mass388. Orlistat promotes the weight 

loss via fat and visceral adipose tissue loss but minimally changes lean mass389–391. In 

carefully selected individuals, industry-sponsored trials should evaluate these agents in both 

older adults with obesity and patients with sarcopenic obesity.

Bariatric surgery.

Bariatric surgery improves weight and metabolic outcomes and reduces mortality. In 

carefully selected patients, this could be considered a treatment for sarcopenic obesity in 

older adults ≥65 years392. Its safety and efficacy in sarcopenic obesity is unknown other than 

one study that evaluated the influence of sarcopenic obesity on gastric bypass and sleeve 

gastrectomy results393. The population of participants had a mean age of 44 years, and no 

documented differences were observed in weight loss results or comorbidity resolution. 

Bariatric surgery leads to loss of fat mass394, alters gut hormones395 and can exacerbate 

weight loss-induced sarcopenia396–398 and osteoporosis399–402. Carefully designed studies 

are needed before promoting this intervention.

Testosterone.

Obesity negatively affects serum levels of testosterone and disrupts the actions of 

testosterone by increasing its aromatization to oestrogen403 and down regulating follicle-

stimulating hormone and luteinizing hormone404, thus exacerbating hypogonadotropic 

hypogonadism. Testosterone is an important regulator of body composition with ageing, as it 

increases muscle and bone mass, increases IGF1 levels, decreases inflammatory markers405 

and alters biomarkers of bone turnover in adults with hypogonadism. Testosterone 

deficiency can impair muscle adaptation to exercise owing to reduced expression of IGF1 

and increased inflammatory cytokines. However, reductions in TNF and IL-6 observed in 

older men with hypogonadism can be reversed following testosterone treatment406.

Supplementation with testosterone promotes IGF1 mRNA and protein expression, leading to 

increased lean mass through increased muscle protein synthesis52. Increases in IGF1 

following testosterone administration might improve muscle mass and strength enhanced by 

exercise52,56,406, and in men over 60 years with low testosterone, gains in lean mass 

following testosterone supplementation ranged from 1.6 kg to 6.20 kg (REF407). Androgen 

therapy also reduces fat mass (−1.78%). Therapy with testosterone and GH in older men 

aged 65–80 years with normal testosterone levels resulted in greater improvements in lean 

mass with both treatments than with either alone56,408. In select older men over the age of 60 

years with testosterone deficiency and frailty, body composition and quality of life improved 

following supplementation with testosterone409–411. Three years of testosterone 

administration in patients with low levels of testosterone resulted in an increase in lean mass 

(0.9 kg, 95% CI 0.5–1.4; P < 0.001)412. Testosterone deficiency and treatment in older men 

have been reviewed elsewere413.
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There are conflicting data on the effect of testosterone supplementation on muscle strength 

and function50,51,357,414. In the ‘Testosterone Trials’, treatment with testosterone improved 

participants’ results in the 6 min walk test compared with placebo (20.5% versus 12.6%; P = 

0.003)53. Elsewhere, testosterone-associated increases in lean mass were accompanied by 

improvements in handgrip strength, knee extension and leg press and chest press 

exercises415,416. A meta-analysis of testosterone supplementation found effect sizes of 0.47 

(95% CI 0.12–0.84) for upper and 0.63 (95% CI 0.03–1.28) for lower extremity strength417, 

without sustained improvements in body composition418. Healthy men with reduced levels 

of testosterone had no improvements in muscle strength or mobility after 6 months of 

supplementation350. Another trial of testosterone treatment found improved stair-climbing 

power and strength351.

Improvements in lean mass do not directly result in improved function after testosterone 

therapy409. With ageing, muscle strength often drops before muscle mass73. The nonlinear 

relationship between mass and function suggests that hypertrophy rather than muscle fibre 

hyperplasia materializes without neuronal plasticity. A reason for the observed significance 

in some studies might be a patient’s intrinsic threshold for functional impairment. Frail older 

adults with testosterone deficiency could require minimal incremental gains in mass to 

realize benefit. Therefore, we suggest an individualized approach. Comorbidity and health 

status, small sample sizes, minimal changes in testosterone levels following treatment and 

the lack of practice sessions before initiating strength testing could have contributed to the 

negative findings. Areas of future research should identify responders to androgen 

supplementation in those with low lean mass or strength.

Testosterone potentially augments diet-induced loss of fat mass in individuals with BMI ≥30 

kg/m2 and low testosterone levels. Over 56 weeks, testosterone-treated participants (mean 

age 53 years) had greater reductions in fat mass (mean between-group difference 2.9 kg; P = 

0.04) and visceral fat (−2,678 mm2; P = 0.04) than controls. Testosterone-treated 

participants also had greater lean mass regain during weight maintenance (mean between-

group difference 3.4 kg; P = 0.002) following the very-low-energy diet, suggesting that 

weight loss was exclusively fat mass419. As multicomponent interventions can attenuate lean 

mass losses, studies should evaluate whether testosterone replacement helps preserve muscle 

and bone mass during weight loss in patients with sarcopenic obesity.

Adverse events associated with testosterone supplementation include polycythemia420, 

possible cardiovascular events421, venous thromboembolism422 and prostatism423. Those 

who favour supplementation cite a lack of credible evidence related to cardiovascular 

risk424. Future cost–benefit analyses should compare the relative benefits regarding body 

and bone composition with disability risk. To date, the American Association of Clinical 

Endocrinologists187, the Endocrine Society425 and the Obesity Society186 have not 

recommended testosterone supplementation as a treatment for sarcopenia or obesity.

Selective androgen receptor modulators.

Selective androgen receptor modulators (SARMs) target androgen receptors on muscle and 

bone but do not activate androgenic effects elsewhere. SARMs indirectly affect nonmuscle 

androgen receptor pathways mediated by muscle fibroblasts426. Enobosarm, a non-steroidal 
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SARM, successfully increased muscle mass and physical function in patients without cancer 

and in those with advanced lung, colorectal or breast cancer or lymphoma427–429. Other 

studies showed increases in lean mass without improvements in strength or physical 

performance in patients with sarcopenia428,430. Early trials demonstrated a greater total lean 

mass of 1.3 kg (P < 0.001), better physical function as measured by reduced stair climb time 

(P = 0.013), a trend towards lower blood levels of glucose of 6.9 ± 2.5 mg/dl (P = 0.052) and 

lower insulin sensitivity (−27.5% versus 2.6%; P = 0.013) with 3 mg per day of GTx-024 (an 

orally bioavailable nonsteroidal SARM) than with placebo429. Enobosarm significantly 

increased lean mass compared with baseline (1.0 kg, 95% CI −4.8 to 11.5; P = 0.046) versus 

controls (0.02 kg, 95% CI −5.8 to 6.7; P = 0.88). SARM treatment in older women with low 

lean mass, a self-reported mobility disability and a short physical performance battery score 

between 4 and 9 provided improvements in muscle mass without benefits of improved 

strength430. SARMs that have been developed in the past 5 years have not demonstrated 

adverse effects431 and have restored cortical and trabecular bone in orchidectomized 

mice432. Transdermal SARMs could emerge in the future433. A review of SARMs has been 

conducted elsewhere434, but they could be of benefit to patients with sarcopenic obesity who 

require muscle mass improvements rather than strength. However, conclusive evidence is 

still needed.

Anamorelin.

Anamorelin, an oral ghrelin analogue, is effective for improving appetite in patients with 

cancer cachexia and might hold promise in patients with sarcopenic obesity. Its anti-

inflammatory and anabolic properties might counter the negative nitrogen balance observed 

in sarcopenia. Anamorelin is safe, well tolerated and stimulates appetite by promoting 

expression of GH, IGF1 and IGF-binding protein 3 (REFS435,436), which reverses muscle 

atrophy in mice437. A meta-analysis of 1,641 patients with cancer demonstrated improved 

total body weight, lean mass and quality of life (1.78, 95% CI 1.28–2.28, P < 0.001; 1.10, 

95% CI 0.35–1.85, P = 0.004; 0.19, 95% CI 0.08–0.30, P = 0.0006, respectively)438. A 

review of four studies demonstrated high heterogeneity with improved symptom scores, and 

in three studies, improved lean mass was shown439. Anamorelin improved lean mass in 

patients with cancer cachexia compared with placebo (2.09 kg, 95% CI 0.94–3.25; P = 

0.0006)440 but failed to improve muscle power or handgrip strength in patients with 

inoperable nonsmall-cell lung cancer441. Lack of functional improvements were also 

observed in patients with unresectable non-small-cell lung cancer442. Adverse effects are no 

different than with placebo. It is unclear whether the improved lean mass observed in 

patients treated with anamorelin has differential effects on intramuscular fat in patients with 

sarcopenic obesity. As no studies have established improved function or strength, further 

evaluation is needed, particularly in the subset of patients with sarcopenic obesity who have 

low lean mass with intact muscle strength.

Myostatin inhibitors.

Individuals with sarcopenia have elevated levels of myostatin443, a negative regulator of 

skeletal muscle growth development444. Myostatin is also expressed in adipose tissue and is 

inversely related to insulin resistance445. In vitro trials demonstrate that myostatin inhibitors 

increase muscle mass and strength446, suppress irisin, downregulate inflammatory cytokines 
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and improve insulin resistance447. Its expression drops following weight loss because it 

directly influences adipocyte metabolism448, and myostatin inhibitors can directly inhibit 

muscle loss. Myostatin inhibitors reduce expression of myostatin in both aerobic and 

resistance exercise449 and might be beneficial in treating sarcopenic obesity. Early data 

suggest improved physical function in patients with non-small-cell lung cancer427. 

Interventions should directly measure changes in levels of myostatin and corresponding 

changes in muscle mass, strength, function and insulin sensitivity.

Vitamin K.

Vitamin K might have a role in mitigating bone loss following intentional weight loss by 

inhibiting bone resorption450 and osteoclast formation451. Its deficiency has been associated 

with increased risk of fragility fractures452–455, particularly in patients who are 

malnourished456,457. Vitamin K supplementation can restore serum levels of the 

vitamin458,459 and might increase bone resorption markers460. Conflicting data exist; in 

some studies, vitamin K antagonists demonstrate no differences in BMD or fracture rates461, 

while other data suggest lessening of steroid-induced BMD462 and sex-specific 

improvements in insulin sensitivity463. One study464 reported that over 3 years vitamin K 

supplementation was not implicated in the age-related changes in skeletal muscle or adipose 

tissue mass in older community-dwelling adults. Our understanding of the complex 

relationship between vitamin K and weight loss-induced effects on bone, muscle and fat in 

sarcopenic obesity is currently in its infancy465.

Mesenchymal stem cells.

Muscle, bone and cartilage derived from mesenchymal cells share common precursor 

mesenchymal stem cells. In mice, transplantation of satellite cells into damaged muscle 

leads to self-renewal and muscle regeneration466,467. An early human study suggests a role 

for mesenchymal stem cells in managing frailty468. The cost, regulatory constraints and 

potential ethical barriers of applying such technology into clinical settings need to be 

addressed further.

Conclusions

The growing challenges associated with sarcopenic obesity will probably worsen with the 

changing demographic distribution of our ageing population. Effective evidence based 

therapies can be helpful for improving physical function in older adults. We encourage 

further agreement on defining sarcopenic obesity within both research and clinical settings. 

In our opinion, a lack of a consensus definition is one of the greatest limitations to 

advancing the science. Without being able to accurately identify populations of patients, 

there will be continued difficulties in targeting further obesity subtypes. Clarifying the 

mechanisms that contribute to sarcopenic obesity might elucidate novel therapies to improve 

function, quality of life and prevent institutionalization. A number of novel therapies 

independently hold promise or could be considered adjunctively for those who have 

struggled with a lifetime of reduced motivation. These potential strategies should be key 

research questions in future work.
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Glossary

Sarcopenia
The loss of muscle mass, strength or physical function with age.

Oxidative capacity
The maximal ability of muscle to utilize oxygen per g of muscle per hour.

Thermic effect of food
The amount of energy expended owing to the body’s processing and storage of food.

Fat-free mass
A term interchangeably used with muscle mass and lean mass; it refers to the mass of all 

visceral organs, muscles (smooth and skeletal), bones, ligaments and tendons but does not 

include fat that is present in the marrow of bones or internal organs.

Waist circumference
An anthropometric measure of central obesity (subcutaneous and visceral) measured at the 

level of the iliac crest.

Visceral fat
A measurement of the adiposity located among organs within the abdominal cavity; it is 

associated with inflammation and increased cardiometabolic risk.

Intramyocellular lipids
Fat depositions within the muscle structure.

Myostatin
A transforming growth factor-related protein that is synthesized and secreted in skeletal 

muscle and negatively regulates muscle mass and function.

VO2 max
The maximal amount of oxygen used per kg of body weight during maximal exercise.

Lean mass
A term that refers to the mass of all visceral organs, muscles (smooth and skeletal), bones, 

ligaments and tendons but excludes fat from bone.
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Appendicular lean mass
Muscle mass consisting of the sum of the upper and lower limbs.

Grip strength
A measurement used in the ascertainment of upper extremity strength; it is assessed using 

the dominant hand with a hand-held dynamometer.

Knee extensor strength
A measure of lower extremity strength. The test is performed using a dynamometer with the 

participant sitting with hips and knees flexed at 90°; the participant extends his or her knee 

and pushes against a resistance pad — the results are measured in kilograms or pounds.

Quadriceps muscle area
Cross-sectional 2D area at the level of the quadriceps muscle of the lower limb.

Skeletal muscle index
Absolute muscle mass (in kg) normalized for height (muscle mass in kg divided by height 

(in m)).

Absolute muscle mass
Muscle mass consisting of all limbs and muscle from visceral organs.
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Key points

• Body composition changes that occur with the ageing process can lead to 

sarcopenic obesity, an increasingly prevalent disorder owing to the increased 

prevalence of obesity in an ageing population.

• Hormonal, inflammatory and myocellular mechanisms impact underlying 

biological processes that promote fat deposition and loss of lean mass and 

strength.

• Definitions of sarcopenia and obesity can vary considerably, prompting 

difficulties in the diagnosis and epidemiological understanding of sarcopenic 

obesity as well as the development of treatment strategies for this disease.

• Lifestyle interventions including calorie restriction and physical activity 

consisting of aerobic and resistance exercises are the cornerstones of therapy.

• Clinicians and researchers need to be aware of weight loss-induced 

sarcopenia and osteopenia.

• Novel, promising therapies, including weight loss medications, bariatric 

surgery, whole-body vibration therapy, periodization (a systematic variation in 

physical training specificity, intensity and volume within periods), 

testosterone, selective androgen receptor modulators, anamorelin, myostatin 

inhibitors, vitamin K and mesenchymal stem cells, require further 

investigation.
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Box 1 |

Emerging therapies in sarcopenic obesity

Anamorelin

A ghrelin analogue used in cancer cachexia that could promote appetite and enhance lean 

mass with anti-inflammatory and anabolic properties.

Bariatric surgery

The safety and efficacy of different procedures (Roux-en-Y, gastric band and gastric 

sleeve) are currently unknown but can be considered in carefully selected older adults 

aged 65 years and older.

Mesenchymal stem cells

Shared precursors of muscle, bone and cartilage that hold promise in the regeneration of 

muscle tissue. Barriers exist but these cells may play a promising role in the future 

management of sarcopenia.

Myostatin inhibitors

A treatment type with biological plausibility for improving physical function by 

enhancing skeletal muscle growth development. This class of therapy can directly inhibit 

muscle loss, with data suggesting improvements in physical function in patients with 

cancer.

Neuromuscular activation

Whole-body vibration therapy (using electrical stimuli) or tai chi can enhance muscle 

contraction efficiency and function.

Periodization strategies

Systematic variation in training specificity, intensity and volume used in sports 

programmes to achieve peak physical performance. May be feasibly prescribed in 

sedentary, frail, older adults to improve function but it is premature to endorse these 

strategies.

Testosterone and selective androgen receptor modulators

Important regulators of body composition that increase muscle and bone mass by 

increasing insulin-like growth factor 1 (IGF1) and decreasing inflammatory markers. 

Data on their impact on muscle strength and function are conflicting. Selective androgen 

receptor modulators (that is, enobosarm) preferentially target androgen receptors on 

muscle and bone, sparing the androgenic impact elsewhere in the body. Early efficacy 

studies demonstrate improved lean mass and function in patients with cancer.

Weight loss therapies

Anti-obesity medications (liraglutide, lorcaserin, phentermine, topiramate, bupropion and 

orlistat) are approved for use in non-geriatric populations with weight loss as an 
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indication. Their use is restricted to off-label use for weight loss, and few data exist on 

their safety and efficacy in this population.

Vitamin K

Inhibits bone resorption and osteoclast formation and may be helpful in mitigating bone 

loss following intentional weight loss. Supplementation may increase bone resorption 

markers, although conflictive data exist on its effect on BMD and fractures.
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Fig. 1 |. A proposed model of mechanisms leading to sarcopenic obesity.
The proposed interplay between adipose and muscle tissue, which is believed to contribute 

to the development of sarcopenic obesity, is shown. The black lines are stimulatory, while 

red lines with flat ends indicate inhibition. IGF1, insulin-like growth factor 1; TNF, tumour 

necrosis factor.
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Fig. 2 |. MRi of individuals with and without obesity.
Cross-sectional MRI of the quadriceps area of an individual without obesity with normal 

muscle characteristics (part a) and an individual with obesity with small muscles and 

infiltration by adipose tissue (part b) is shown. More muscle tissue is visible in part a than in 

part b, and the higher intensity signals seen in part b indicate fat infiltration of the muscle. 

Images courtesy of Edward Weiss, St Louis University School of Medicine, St Louis, MO, 

USA.
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Fig. 3 |. Mean percentage changes in physical function and lean mass during the weight loss 
interventions.
Measures used included a physical performance test (PPT) (scores range from 0 to 36, with 

higher scores indicating better functional status) (part a); the Functional Status 

Questionnaire (FSQ) (scores range from 0 to 36, with higher scores indicating better 

functional status) (part b); lean mass (part c); and strength (measured as total one repetition 

maximum (that is, the total of the maximum weight a participant can lift, in one attempt, in 

the bicep curl, bench press, seated row, knee extension, knee flexion and leg press)) (part d). 

Scores on the PPT were used as an objective measure of frailty (primary outcome), and 

scores on the FSQ were used as a subjective measure of frailty. Percentage changes are 

presented as least-squares-adjusted means; T bars indicate standard errors. *P < 0.05 for the 

comparison with the control group. **P < 0.05 for the comparison with the aerobic group. 

***P < 0.05 for the comparison with the resistance group. Figure adapted with permission 

from REF247, New England Journal of Medicine, Villareal, D. T. et al. Aerobic or resistance 

exercise, or both in dieting obese older adults, 376, 1943–1955 Copyright © (2017) 

Massachusetts Medical Society. Reprinted with permission.
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