Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stroke prevention strategies in high-risk patients with atrial fibrillation

Abstract

Effective stroke prevention with oral anticoagulation (OAC) is the cornerstone of the management of patients with atrial fibrillation. The use of OAC reduces the risk of stroke and death. For most patients with atrial fibrillation without moderate or severe mitral valve stenosis or prosthetic mechanical heart valves, treatment options include vitamin K antagonists, such as warfarin, and non-vitamin K antagonist oral anticoagulants (NOACs). Although most guidelines generally recommend NOACs as the first-line OAC, caution is required in some groups of patients with atrial fibrillation at high risk of stroke and bleeding who have been under-represented or not studied in the randomized clinical trials on NOACs for stroke prevention. In addition to OAC, non-pharmacological, percutaneous therapies, including left atrial appendage occlusion, for stroke prevention have emerged, sometimes used in combination with catheter ablation for the treatment of the atrial fibrillation. High-risk groups of patients with atrial fibrillation include patients with end-stage renal failure (including those receiving dialysis), extremely old patients (such as those aged >80 years with multiple risk factors for bleeding), patients with dementia or those living in a long-term care home, patients with previous intracranial bleeding or recent acute bleeding (such as gastrointestinal bleeding), patients with acute ischaemic stroke and patients with an intracardiac thrombus. This Review provides an overview of stroke prevention strategies, including left atrial appendage occlusion, in patients with atrial fibrillation at high risk of stroke and bleeding.

Key points

  • Oral anticoagulation (OAC) in patients with atrial fibrillation (AF) reduces both AF-related thromboembolic strokes and all-cause mortality.

  • International guidelines for the management of AF recommend that OAC should be considered in all patients with AF and risk factors for stroke.

  • In patients at high risk of stroke and bleeding, a ‘tailored’ approach is needed to achieve a positive net clinical benefit of applied therapies (balancing the risks and the benefits of a treatment).

  • Maintaining a good quality of anticoagulation (with a good time in therapeutic range for those receiving warfarin or label-adherent dosing if receiving non-vitamin K antagonist oral anticoagulants) and mitigating modifiable risk factors for bleeding can positively affect outcomes in patients with AF.

  • Left atrial appendage closure can be considered as an alternative strategy for stroke prevention in patients with AF who have contraindications to OAC therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General algorithm for the re-initiation of OAC in patients with AF and previous major bleeding.
Fig. 2: General algorithm for the re-initiation of OAC in patients with AF and acute stroke.

Similar content being viewed by others

References

  1. Lip, G. Y. H. The ABC pathway: an integrated approach to improve AF management. Nat. Rev. Cardiol. 14, 627–628 (2017).

    PubMed  Google Scholar 

  2. Hindricks G. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaa612 (2020).

  3. Lip, G. Y. H. et al. Antithrombotic therapy for atrial fibrillation: CHEST guideline and expert panel report. Chest 154, 1121–1201 (2018).

    PubMed  Google Scholar 

  4. Lip, G. Y. H., Freedman, B., de Caterina, R. & Potpara, T. S. Stroke prevention in atrial fibrillation: past, present and future comparing the guidelines and practical decision-making. Thromb. Haemost. 117, 1230–1239 (2017).

    PubMed  Google Scholar 

  5. Mazurek, M. et al. Guideline-adherent antithrombotic treatment improves outcomes in patients with atrial fibrillation: insights from the community-based Darlington Atrial Fibrillation Registry. Mayo Clin. Proc. 92, 1203–1213 (2017).

    CAS  PubMed  Google Scholar 

  6. Wan, Y. et al. Anticoagulation control and prediction of adverse events in patients with atrial fibrillation: a systematic review. Circ. Cardiovasc. Qual. Outcomes 1, 84–91 (2008).

    PubMed  Google Scholar 

  7. Lip, G. Y. H. et al. Patient outcomes using the European label for dabigatran: a post-hoc analysis from the RE-LY database. Thromb. Haemost. 111, 933–942 (2014).

    CAS  PubMed  Google Scholar 

  8. Lee, S.-R. et al. Optimal rivaroxaban dose in Asian patients with atrial fibrillation and normal or mildly impaired renal function. Stroke 50, 1140–1148 (2019).

    CAS  PubMed  Google Scholar 

  9. Cheng, W. H. et al. Low-dose rivaroxaban and risks of adverse events in patients with atrial fibrillation. Stroke 50, 2574–2577 (2019).

    CAS  PubMed  Google Scholar 

  10. Eckman, M. H., Singer, D. E., Rosand, J. & Greenberg, S. M. Moving the tipping point: the decision to anticoagulate patients with atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes 4, 14–21 (2011).

    PubMed  Google Scholar 

  11. Proietti, M. & Lip, G. Y. H. Major outcomes in atrial fibrillation patients with one risk factor: impact of time in therapeutic range observations from the SPORTIF trials. Am. J. Med. 129, 1110–1116 (2016).

    PubMed  Google Scholar 

  12. Borre, E. D. et al. Predicting thromboembolic and bleeding event risk in patients with non-valvular atrial fibrillation: a systematic review. Thromb. Haemost. 118, 2171–2187 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Chao, T. F. et al. Incident risk factors and major bleeding in patients with atrial fibrillation treated with oral anticoagulants: a comparison of baseline, follow-up and delta HAS-BLED scores with an approach focused on modifiable bleeding risk factors. Thromb. Haemost. 118, 768–777 (2018).

    PubMed  Google Scholar 

  14. Chao, T. F. et al. Relationship of aging and incident comorbidities to stroke risk in patients with atrial fibrillation. J. Am. Coll. Cardiol. 71, 122–132 (2018).

    PubMed  Google Scholar 

  15. Yoon, M. et al. Dynamic changes of CHA2DS2-VASc score and the risk of ischaemic stroke in Asian patients with atrial fibrillation: a nationwide cohort study. Thromb. Haemost. 118, 1296–1304 (2018).

    PubMed  Google Scholar 

  16. Esteve-Pastor, M. A. et al. The use of biomarkers in clinical management guidelines: a critical appraisal. Thromb. Haemost. 119, 1901–1919 (2019).

    PubMed  Google Scholar 

  17. Rivera-Caravaca, J. M. et al. Refining stroke and bleeding prediction in atrial fibrillation by adding consecutive biomarkers to clinical risk scores. Stroke 50, 1372–1379 (2019).

    CAS  PubMed  Google Scholar 

  18. LaHaye, S. et al. Evaluation of patients’ attitudes towards stroke prevention and bleeding risk in atrial fibrillation. Thromb. Haemost. 111, 465–473 (2013).

    PubMed  Google Scholar 

  19. Potpara T. S. et al. The 4S-AF scheme (stroke risk; symptoms; severity of burden; substrate): a novel approach to in-depth characterization (rather than classification) of atrial fibrillation. Thromb. Haemost. https://doi.org/10.1055/s-0040-1716408 (2020).

  20. Arbelo E. et al. Quality indicators for the care and outcomes of adults with atrial fibrillation. Europace https://doi.org/10.1093/europace/euaa253 (2020).

  21. Glikson, M. et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion–an update. Europace 22, 184 (2020).

    PubMed  Google Scholar 

  22. Tomaselli, G. F. et al. 2017 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J. Am. Coll. Cardiol. 70, 3042–3067 (2017).

    PubMed  Google Scholar 

  23. Zimmerman, D. et al. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol. Dial. Transpl. 27, 3816–3822 (2012).

    CAS  Google Scholar 

  24. Ding W. Y., Gupta D., Wong C. F. & Lip G. Y. H. Pathophysiology of atrial fibrillation and chronic kidney disease. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvaa258 (2020).

  25. Marinigh, R., Lane, D. A. & Lip, G. Y. H. Severe renal impairment and stroke prevention in atrial fibrillation: implications for thromboprophylaxis and bleeding risk. J. Am. Coll. Cardiol. 57, 1339–1348 (2011).

    PubMed  Google Scholar 

  26. Boriani, G. et al. Glomerular filtration rate in patients with atrial fibrillation and 1-year outcomes. Sci. Rep. 6, 1–11. (2016).

    Google Scholar 

  27. Lau, Y. C., Proietti, M., Guiducci, E., Blann, A. D. & Lip, G. Y. H. Atrial fibrillation and thromboembolism in patients with chronic kidney disease. J. Am. Coll. Cardiol. 68, 1452–1464 (2016).

    PubMed  Google Scholar 

  28. Fauchier, L. et al. Changes in glomerular filtration rate and outcomes in patients with atrial fibrillation. Am. Heart J. 198, 39–45 (2018).

    PubMed  Google Scholar 

  29. Roldán, V. et al. Renal impairment in a “real-life” cohort of anticoagulated patients with atrial fibrillation (implications for thromboembolism and bleeding). Am. J. Cardiol. 111, 1159–1164 (2013).

    PubMed  Google Scholar 

  30. Bai, Y., Shantsila, A. & Lip, G. Y. H. Clinical outcomes associated with kidney function changes in anticoagulated atrial fibrillation patients: an ancillary analysis from the BOREALIS trial. J. Arrhythmia 36, 282–288 (2020).

    Google Scholar 

  31. Bansal, N. et al. Atrial fibrillation and risk of ESRD in adults with CKD. Clin. J. Am. Soc. Nephrol. 11, 1189–1196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Böhm, M. et al. Changes in renal function in patients with atrial fibrillation: an analysis from the RE-LY trial. J. Am. Coll. Cardiol. 65, 2481–2493 (2015).

    PubMed  Google Scholar 

  33. Kuno, T. et al. Oral anticoagulation for patients with atrial fibrillation on long-term hemodialysis. J. Am. Coll. Cardiol. 75, 273–285 (2020).

    CAS  PubMed  Google Scholar 

  34. Tan, J. et al. Warfarin use and the risk of stroke, bleeding, and mortality in older adults on dialysis with incident atrial fibrillation. Nephrology 24, 234–244 (2019).

    CAS  PubMed  Google Scholar 

  35. Chan, K. E., Michael Lazarus, J., Thadhani, R. & Hakim, R. M. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J. Am. Soc. Nephrol. 20, 2223–2233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Friberg, L., Rosenqvist, M. & Lip, G. Y. H. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur. Heart J. 33, 1500–1510 (2012).

    PubMed  Google Scholar 

  37. Bonde, A. N. et al. Net clinical benefit of antithrombotic therapy in patients with atrial fibrillation and chronic kidney disease: a nationwide observational cohort study. J. Am. Coll. Cardiol. 64, 2471–2482 (2014).

    CAS  PubMed  Google Scholar 

  38. Miao, B., Sood, N., Bunz, T. J. & Coleman, C. I. Rivaroxaban versus apixaban in non-valvular atrial fibrillation patients with end-stage renal disease or receiving dialysis. Eur. J. Haematol. 104, 328–335 (2020).

    CAS  PubMed  Google Scholar 

  39. Siontis, K. C. et al. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation 138, 1519–1529 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140, e125–e151 (2019).

    PubMed  Google Scholar 

  41. Macle, L. et al. 2016 focused update of the Canadian Cardiovascular Society guidelines for the management of atrial fibrillation. Can. J. Cardiol. 32, 1170–1185 (2016).

    PubMed  Google Scholar 

  42. Chiang, C. E. et al. 2017 consensus of the Asia Pacific Heart Rhythm Society on stroke prevention in atrial fibrillation. J. Arrhythmia 33, 345–367 (2017).

    Google Scholar 

  43. Pokorney, S. D. RENalhemodialysis patients ALlocatedapixaban versus warfarin in Atrial Fibrillation (RENAL-AF). https://www.acc.org/~/media/Clinical/PDF-Files/Approved-PDFs/2019/11/11/AHA19/Nov16-Sat/345pm-Apixaban-vs-Warfarin-aha-2019.pdf (2019).

  44. Reinecke, H. et al. Design and rationale of a randomised controlled trial comparing apixaban to phenprocoumon in patients with atrial fibrillation on chronic haemodialysis: the AXADIA-AFNET 8 study. BMJ Open 8, e022690 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Okumura K. et al. Low-dose edoxaban in very elderly patients with atrial fibrillation. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2012883 (2020).

  46. Zoni-Berisso, M., Lercari, F., Carazza, T. & Domenicucci, S. Epidemiology of atrial fbrillation: European perspective. Clin. Epidemiol. 6, 213–220 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Lip, G. Y. H. et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation. Chest 137, 263–272 (2010).

    PubMed  Google Scholar 

  48. Lip, G. Y. H., Clementy, N., Pericart, L., Banerjee, A. & Fauchier, L. Stroke and major bleeding risk in elderly patients aged ≥75 years with atrial fibrillation: the Loire Valley atrial fibrillation project. Stroke 46, 143–150 (2015).

    PubMed  Google Scholar 

  49. Chan, E. W. et al. Effect of suboptimal anticoagulation treatment with antiplatelet therapy and warfarin on clinical outcomes in patients with nonvalvular atrial fibrillation: a population-wide cohort study. Heart Rhythm 13, 1581–1588 (2016).

    PubMed  Google Scholar 

  50. Chao, T. F. et al. Oral anticoagulation in very elderly patients with atrial fibrillation: a nationwide cohort study. Circulation 138, 37–47 (2018).

    PubMed  Google Scholar 

  51. Mant, J. et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet 370, 493–503 (2007).

    CAS  PubMed  Google Scholar 

  52. Fauchier, L. et al. Reduced dose of rivaroxaban and dabigatran vs. vitamin K antagonists in very elderly patients with atrial fibrillation in a nationwide cohort study. Europace 22, 205–215 (2020).

    PubMed  Google Scholar 

  53. Subic, A. et al. Treatment of atrial fibrillation in patients with dementia: a cohort study from the Swedish Dementia Registry. J. Alzheimers Dis. 61, 1119–1128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chao, T. F. et al. Comparing the effectiveness and safety of nonvitamin K antagonist oral anticoagulants and warfarin in elderly Asian patients with atrial fibrillation: a nationwide cohort study. Chest 157, 1266–1277 (2020).

    CAS  PubMed  Google Scholar 

  55. Rash, A. et al. A randomised controlled trial of warfarin versus aspirin for stroke prevention in octogenarians with atrial fibrillation (WASPO). Age Ageing 36, 151–156 (2007).

    PubMed  Google Scholar 

  56. Caldeira, D. et al. Non-vitamin K antagonist oral anticoagulants in elderly patients with atrial fibrillation: a systematic review with meta-analysis and trial sequential analysis. Arch. Gerontol. Geriatr. 81, 209–214 (2019).

    CAS  PubMed  Google Scholar 

  57. Sardar, P., Chatterjee, S., Chaudhari, S. & Lip, G. Y. H. New oral anticoagulants in elderly adults: evidence from a meta-analysis of randomized trials. J. Am. Geriatr. Soc. 62, 857–864 (2014).

    PubMed  Google Scholar 

  58. Deitelzweig, S. et al. Comparisons between oral anticoagulants among older nonvalvular atrial fibrillation patients. J. Am. Geriatr. Soc. 67, 1662–1671 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Bahri, O. et al. Underuse of oral anticoagulation for individuals with atrial fibrillation in a nursing home setting in France: comparisons of resident characteristics and physician attitude. J. Am. Geriatr. Soc. 63, 71–76 (2015).

    PubMed  Google Scholar 

  60. Wolff, A., Shantsila, E., Lip, G. Y. H. & Lane, D. A. Impact of advanced age on management and prognosis in atrial fibrillation: insights from a population-based study in general practice. Age Ageing 44, 874–878 (2015).

    PubMed  Google Scholar 

  61. Yamashita, Y. et al. Clinical characteristics and outcomes in extreme elderly (age ≥85 years) Japanese patients with atrial fibrillation: the Fushimi AF Registry. Chest 149, 401–412 (2016).

    PubMed  Google Scholar 

  62. Saczynski, J. S. et al. Geriatric elements and oral anticoagulant prescribing in older atrial fibrillation patients: SAGE-AF. J. Am. Geriatr. Soc. 68, 147–154 (2020).

    PubMed  Google Scholar 

  63. Mazurek, M. et al. Antithrombotic treatment for newly diagnosed atrial fibrillation in relation to patient age: the GLORIA-AF registry programme. Europace 22, 47–57 (2020).

    PubMed  Google Scholar 

  64. Madhavan, M. et al. Association of frailty and cognitive impairment with benefits of oral anticoagulation in patients with atrial fibrillation. Am. Heart J. 211, 77–89 (2019).

    PubMed  Google Scholar 

  65. Field, T. S. et al. Incident atrial fibrillation, dementia and the role of anticoagulation: a population-based cohort study. Thromb. Haemost. 119, 981–991 (2019).

    PubMed  Google Scholar 

  66. Kim, D. et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a population-based cohort. Eur. Heart J. 40, 2313–2323 (2019).

    CAS  PubMed  Google Scholar 

  67. Søgaard, M. et al. Nonvitamin K antagonist oral anticoagulants versus warfarin in atrial fibrillation patients and risk of dementia: a nationwide propensity-weighted cohort study. J. Am. Heart Assoc. 8, e011358 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Banerjee, G. et al. Cognitive impairment before atrial fibrillation–related ischemic events: neuroimaging and prognostic associations. J. Am. Heart Assoc. 9, e014537 (2020).

    PubMed  PubMed Central  Google Scholar 

  69. Kim, D. et al. Blood pressure control and dementia risk in midlife patients with atrial fibrillation. Hypertension 75, 1296–1304 (2020).

    CAS  PubMed  Google Scholar 

  70. Diener, H. C., Hart, R. G., Koudstaal, P. J., Lane, D. A. & Lip, G. Y. H. Atrial fibrillation and cognitive function: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 612–619 (2019).

    PubMed  Google Scholar 

  71. Udompanich, S., Lip, G. Y. H., Apostolakis, S. & Lane, D. A. Atrial fibrillation as a risk factor for cognitive impairment: a semi-systematic review. QJM 106, 795–802 (2013).

    CAS  PubMed  Google Scholar 

  72. Proietti, M. et al. Increased burden of comorbidities and risk of cardiovascular death in atrial fibrillation patients in Europe over ten years: a comparison between EORP-AF pilot and EHS-AF registries. Eur. J. Intern. Med. 55, 28–34 (2018).

    PubMed  Google Scholar 

  73. Proietti, M., Romiti, G. F., Olshansky, B., Lane, D. A. & Lip, G. Y. H. Comprehensive management with the ABC (Atrial Fibrillation Better Care) pathway in clinically complex patients with atrial fibrillation: a post hoc ancillary analysis from the AFFIRM trial. J. Am. Heart Assoc. 9, e014932 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Jani, B. D. et al. Multimorbidity and co-morbidity in atrial fibrillation and effects on survival: findings from UK Biobank cohort. Europace 20, f329–f336 (2018).

    PubMed  Google Scholar 

  75. Proietti, M. et al. Long-term relationship between atrial fibrillation, multimorbidity and oral anticoagulant drug use. Mayo Clin. Proc. 94, 2427–2436 (2019).

    CAS  PubMed  Google Scholar 

  76. Proietti, M., Raparelli, V., Olshansky, B. & Lip, G. Y. H. Polypharmacy and major adverse events in atrial fibrillation: observations from the AFFIRM trial. Clin. Res. Cardiol. 105, 412–420 (2016).

    CAS  PubMed  Google Scholar 

  77. Piccini, J. P. et al. Polypharmacy and the efficacy and safety of rivaroxaban versus warfarin in the prevention of stroke in patients with nonvalvular atrial fibrillation. Circulation 133, 352–360 (2016).

    CAS  PubMed  Google Scholar 

  78. Gallagher, C. et al. Polypharmacy and health outcomes in atrial fibrillation: a systematic review and meta-analysis. Open Heart 7, e001257 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093–2104 (2013).

    CAS  PubMed  Google Scholar 

  80. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    CAS  PubMed  Google Scholar 

  81. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    CAS  PubMed  Google Scholar 

  82. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    CAS  PubMed  Google Scholar 

  83. Ottosen, T. P. et al. Use of antithrombotic therapy and long-term clinical outcome among patients surviving intracerebral hemorrhage. Stroke 47, 1837–1843 (2016).

    CAS  PubMed  Google Scholar 

  84. Nielsen, P. B. et al. Restarting anticoagulant treatment after intracranial hemorrhage in patients with atrial fibrillation and the impact on recurrent stroke, mortality, and bleeding: a nationwide cohort study. Circulation 132, 517–525 (2015).

    CAS  PubMed  Google Scholar 

  85. Chao, T.-F. et al. Use of oral anticoagulants for stroke prevention in patients with atrial fibrillation who have a history of intracranial hemorrhage. Circulation 133, 1540–1547 (2016).

    CAS  PubMed  Google Scholar 

  86. Murthy, S. B. et al. Restarting anticoagulant therapy after intracranial hemorrhage: a systematic review and meta-analysis. Stroke 48, 1594–1600 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Perreault, S. et al. Anticoagulants in older patients with nonvalvular atrial fibrillation after intracranial hemorrhage. J. Stroke 21, 195–206 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Nielsen, P. B., Larsen, T. B., Skjøth, F. & Lip, G. Y. H. Outcomes associated with resuming warfarin treatment after hemorrhagic stroke or traumatic intracranial hemorrhage in patients with atrial fibrillation. JAMA Intern. Med. 177, 563–570 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Lee, S. R. et al. Oral anticoagulation in Asian patients with atrial fibrillation and a history of intracranial hemorrhage. Stroke 51, 416–423 (2020).

    PubMed  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03996772 (2020).

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03153150 (2020).

  92. Kozieł, M., Ding, W. Y., Kalarus, Z. & Lip, G. Y. H. Considerations when restarting anticoagulants in patients with atrial fibrillation after bleeding. Expert Rev. Hematol. 12, 845–855 (2019).

    PubMed  Google Scholar 

  93. Li, Y.-G. & Lip, G. Y. H. Anticoagulation resumption after intracerebral hemorrhage. Curr. Atheroscler. Rep. 20, 32 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Wilson, D. et al. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurol. 17, 539–547 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Hemphill, J. C. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46, 2032–2060 (2015).

    PubMed  Google Scholar 

  96. Halvorsen, S. et al. Management of antithrombotic therapy after bleeding in patients with coronary artery disease and/or atrial fibrillation: expert consensus paper of the European Society of Cardiology working group on thrombosis. Eur. Heart J. 38, 1455–1462 (2017).

    CAS  PubMed  Google Scholar 

  97. Rivera-Caravaca, J. M. et al. Cessation of oral anticoagulation is an important risk factor for stroke and mortality in atrial fibrillation patients. Thromb. Haemost. 117, 1448–1454 (2017).

    PubMed  Google Scholar 

  98. Rasmussen P. V. et al. Gastrointestinal bleeding and the risk of colorectal cancer in anticoagulated patients with atrial fibrillation. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehz964 (2020).

  99. Chai-Adisaksopha, C., Hillis, C., Monreal, M., Witt, D. M. & Crowther, M. Thromboembolic events, recurrent bleeding and mortality after resuming anticoagulant following gastrointestinal bleeding: a meta-analysis. Thromb. Haemost. 114, 819–825 (2015).

    PubMed  Google Scholar 

  100. Little, D. et al. Resumption of anticoagulant therapy after anticoagulant-related gastrointestinal bleeding: a systematic review and meta-analysis. Thromb. Res. 175, 102–109 (2019).

    CAS  PubMed  Google Scholar 

  101. Staerk, L. et al. Stroke and recurrent haemorrhage associated with antithrombotic treatment after gastrointestinal bleeding in patients with atrial fibrillation: nationwide cohort STUDY. BMJ 351, h5876 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Qureshi, W. et al. Restarting anticoagulation and outcomes after major gastrointestinal bleeding in atrial fibrillation. Am. J. Cardiol. 113, 662–668 (2014).

    CAS  PubMed  Google Scholar 

  103. Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).

    CAS  PubMed  Google Scholar 

  104. Proietti, M. et al. Restarting oral anticoagulant therapy after major bleeding in atrial fibrillation: a systematic review and meta-analysis. Int. J. Cardiol. 261, 84–91 (2018).

    PubMed  Google Scholar 

  105. Berge, E., Abdelnoor, M., Nakstad, P. H. & Sandset, P. M. Low molecular-weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double-blind randomised study. Lancet 355, 1205–1210 (2000).

    CAS  PubMed  Google Scholar 

  106. Smythe, M. A., Parker, D., Garwood, C. L., Cuker, A. & Messé, S. R. Timing of initiation of oral anticoagulation after acute ischemic stroke in patients with atrial fibrillation. Pharmacotherapy 40, 55–71 (2020).

    PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03759938 (2019).

  108. Åsberg, S. et al. Timing of oral anticoagulant therapy in acute ischemic stroke with atrial fibrillation: study protocol for a registry-based randomised controlled trial. Trials 18, 581 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Paciaroni, M. et al. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. Stroke 46, 2175–2182 (2015).

    CAS  PubMed  Google Scholar 

  110. Seiffge, D. J. et al. Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann. Neurol. 85, 823–834 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Arihiro, S. et al. Three-month risk-benefit profile of anticoagulation after stroke with atrial fibrillation: the SAMURAI-Nonvalvular Atrial Fibrillation (NVAF) study. Int. J. Stroke 11, 565–574 (2016).

    PubMed  Google Scholar 

  112. Ntaios, G., Papavasileiou, V., Diener, H.-C., Makaritsis, K. & Michel, P. Nonvitamin-K-antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and previous stroke or transient ischemic attack: an updated systematic review and meta-analysis of randomized controlled trials. Int. J. Stroke 12, 589–596 (2017).

    PubMed  Google Scholar 

  113. Kernan, W. N. et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 2160–2236 (2014).

    PubMed  Google Scholar 

  114. Wein, T. et al. Canadian stroke best practice recommendations: secondary prevention of stroke, sixth edition practice guidelines, update 2017. Int. J. Stroke 13, 420–443 (2018).

    PubMed  Google Scholar 

  115. Steffel, J. et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 39, 1330–1393 (2018).

    CAS  PubMed  Google Scholar 

  116. Manning, W. J. et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann. Intern. Med. 123, 817–822 (1995).

    CAS  PubMed  Google Scholar 

  117. Blackshear, J. L. & Odell, J. A. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann. Thorac. Surg. 61, 755–759 (1996).

    CAS  PubMed  Google Scholar 

  118. Reers, S. et al. Frequency of atrial thrombus formation in patients with atrial fibrillation under treatment with non-vitamin K oral anticoagulants in comparison to vitamin K antagonists: a systematic review and meta-analysis. Eur. J. Med. Res. 23, 49 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zylla, M. M. et al. Prevalence of intracardiac thrombi under phenprocoumon, direct oral anticoagulants (dabigatran and rivaroxaban), and bridging therapy in patients with atrial fibrillation and flutter. Am. J. Cardiol. 115, 635–640 (2015).

    CAS  PubMed  Google Scholar 

  120. Reers, S. et al. Incidence of left atrial abnormalities under treatment with dabigatran, rivaroxaban, and vitamin K antagonists. Eur. J. Med. Res. 21, 41 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Petersen, M. et al. Left atrial appendage morphology is closely associated with specific echocardiographic flow pattern in patients with atrial fibrillation. Europace 17, 539–545 (2015).

    PubMed  Google Scholar 

  122. Chen, Y. Y. et al. Effect of metabolic syndrome on risk stratification for left atrial or left atrial appendage thrombus formation in patients with nonvalvular atrial fibrillation. Chin. Med. J. 129, 2395–2402 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Kitkungvan, D. et al. Detection of LA and LAA thrombus by CMR in patients referred for pulmonary vein isolation. JACC Cardiovasc. Imaging 9, 809–818 (2016).

    PubMed  Google Scholar 

  124. Wallace, T. W. et al. Prevalence and clinical characteristics associated with left atrial appendage thrombus in fully anticoagulated patients undergoing catheter-directed atrial fibrillation ablation. J. Cardiovasc. Electrophysiol. 21, 849–852 (2010).

    PubMed  Google Scholar 

  125. Shah, M. et al. Predictors of left atrial appendage thrombus despite NOAC use in nonvalvular atrial fibrillation and flutter. Int. J. Cardiol. 317, 86–90 (2020).

    PubMed  Google Scholar 

  126. Bertaglia, E. et al. NOACs and atrial fibrillation: incidence and predictors of left atrial thrombus in the real world. Int. J. Cardiol. 249, 179–183 (2017).

    PubMed  Google Scholar 

  127. Farkowski, M. M. et al. Diagnosis and management of left atrial appendage thrombus in patients with atrial fibrillation undergoing cardioversion or percutaneous left atrial procedures: results of the European Heart Rhythm Association survey. Europace 22, 162–169 (2020).

    PubMed  Google Scholar 

  128. Miwa, Y. et al. Resolution of a warfarin and dabigatran-resistant left atrial appendage thrombus with apixaban. J. Arrhythmia 32, 233–235 (2016).

    Google Scholar 

  129. Lip, G. Y. H. et al. Left atrial thrombus resolution in atrial fibrillation or flutter: results of a prospective study with rivaroxaban (X-TRA) and a retrospective observational registry providing baseline data (CLOT-AF). Am. Heart J. 178, 126–134 (2016).

    PubMed  Google Scholar 

  130. Lattuca, B. et al. Antithrombotic therapy for patients with left ventricular mural thrombus. J. Am. Coll. Cardiol. 75, 1676–1685 (2020).

    CAS  PubMed  Google Scholar 

  131. Leow, A. S. T., Sia, C. H., Tan, B. Y. Q. & Loh, J. P. Y. A meta-summary of case reports of non-vitamin K antagonist oral anticoagulant use in patients with left ventricular thrombus. J. Thromb. Thrombolysis 46, 68–73 (2018).

    CAS  PubMed  Google Scholar 

  132. Robinson, A. A. et al. Off-label use of direct oral anticoagulants compared with warfarin for left ventricular thrombi. JAMA Cardiol. 5, 685–692 (2020).

    PubMed  PubMed Central  Google Scholar 

  133. Holmes, D. R. et al. Left atrial appendage closure as an alternative to warfarin for stroke prevention in atrial fibrillation: a patient-level meta-analysis. J. Am. Coll. Cardiol. 65, 2614–2623 (2015).

    PubMed  Google Scholar 

  134. Reddy, V. Y. et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation a randomized clinical trial. JAMA 312, 1988–1998 (2014).

    PubMed  Google Scholar 

  135. Sahay, S. et al. Efficacy and safety of left atrial appendage closure versus medical treatment in atrial fibrillation: a network meta-analysis from randomised trials. Heart 103, 139–147 (2017).

    CAS  PubMed  Google Scholar 

  136. Brachmann, J. et al. Interventional occlusion of left atrial appendage in patients with atrial fibrillation. Acute and long-term outcome of occluder implantation in the LAARGE registry. J. Interv. Card. Electrophysiol. 58, 273–280 (2019).

    PubMed  Google Scholar 

  137. Boersma, L. V. et al. Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation: 1-Year follow-up outcome data of the EWOLUTION trial. Heart Rhythm 14, 1302–1308 (2017).

    PubMed  Google Scholar 

  138. Mandrola, J., Foy, A. & Naccarelli, G. Percutaneous left atrial appendage closure is not ready for routine clinical use. Heart Rhythm 15, 298–301 (2018).

    PubMed  Google Scholar 

  139. Swaans, M. J., Post, M. C., Rensing, B. J. W. M. & Boersma, L. V. A. Ablation for atrial fibrillation in combination with left atrial appendage closure: first results of a feasibility study. J. Am. Heart Assoc. 1, e002212 (2012).

    PubMed  PubMed Central  Google Scholar 

  140. Phillips, K. P. et al. Combining left atrial appendage closure and catheter ablation for atrial fibrillation: 2-year outcomes from a multinational registry. Europace 22, 225–231 (2020).

    PubMed  Google Scholar 

  141. Wintgens, L. et al. Combined atrial fibrillation ablation and left atrial appendage closure: long-term follow-up from a large multicentre registry. Europace 20, 1783–1789 (2018).

    PubMed  Google Scholar 

  142. Ganesan, A. N. et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur. Heart J. 37, 1591–1602 (2016).

    PubMed  Google Scholar 

  143. Passman, R. et al. Targeted anticoagulation for atrial fibrillation guided by continuous rhythm assessment with an insertable cardiac monitor: the Rhythm Evaluation for Anticoagulation with Continuous Monitoring (REACT.COM) pilot study. J. Cardiovasc. Electrophysiol. 27, 264–270 (2016).

    PubMed  Google Scholar 

  144. Waks, J. W. et al. Intermittent anticoagulation guided by continuous atrial fibrillation burden monitoring using dual-chamber pacemakers and implantable cardioverter-defibrillators: results from the Tailored Anticoagulation for Non-Continuous Atrial Fibrillation (TACTIC-AF) pilot study. Heart Rhythm 15, 1601–1607 (2018).

    PubMed  Google Scholar 

  145. Zado, E. S. et al. “As needed” nonvitamin K antagonist oral anticoagulants for infrequent atrial fibrillation episodes following atrial fibrillation ablation guided by diligent pulse monitoring: a feasibility study. J. Cardiovasc. Electrophysiol. 30, 631–638 (2019).

    PubMed  Google Scholar 

  146. Stavrakis, S. et al. Intermittent vs. Continuous Anticoagulation theRapy in patiEnts with Atrial Fibrillation (iCARE-AF): a randomized pilot study. J. Interv. Card. Electrophysiol. 48, 51–60 (2017).

    PubMed  Google Scholar 

  147. Chen, L. Y. et al. Atrial fibrillation burden: moving beyond atrial fibrillation as a binary entity: a scientific statement from the American Heart Association. Circulation 137, e623–e644. (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Kaplan, R. M. et al. Stroke risk as a function of atrial fibrillation duration and CHA2DS2-VASc score. Circulation 140, 1639–1646 (2019).

    PubMed  Google Scholar 

  149. Daoud, E. G. et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm 8, 1416–1423 (2011).

    PubMed  Google Scholar 

  150. Brambatti, M. et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129, 2094–2099 (2014).

    PubMed  Google Scholar 

  151. Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 381, 1909–1917 (2019).

    PubMed  PubMed Central  Google Scholar 

  152. Guo, Y. et al. Mobile photoplethysmographic technology to detect atrial fibrillation. J. Am. Coll. Cardiol. 74, 2365–2375 (2019).

    PubMed  Google Scholar 

  153. Shen, J. I. et al. Outcomes after warfarin initiation in a cohort of hemodialysis patients with newly diagnosed atrial fibrillation. Am. J. Kidney Dis. 66, 677–688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Makani, A. et al. Safety and efficacy of direct oral anticoagulants versus warfarin in patients with chronic kidney disease and atrial fibrillation. Am. J. Cardiol. 125, 210–214 (2020).

    CAS  PubMed  Google Scholar 

  155. Coleman, C. I. et al. Rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and severe kidney disease or undergoing hemodialysis. Am. J. Med. 132, 1078–1083 (2019).

    CAS  PubMed  Google Scholar 

  156. Chan, K. E., Edelman, E. R., Wenger, J. B., Thadhani, R. I. & Maddux, F. W. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis. Circulation 131, 972–979 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Abraham, N. S., Noseworthy, P. A., Yao, X., Sangaralingham, L. R. & Shah, N. D. Gastrointestinal safety of direct oral anticoagulants: a large population-based study. Gastroenterology 152, 1014–1022.e1 (2017).

    CAS  PubMed  Google Scholar 

  158. Wilson, D. et al. Early versus late anticoagulation for ischaemic stroke associated with atrial fibrillation: multicentre cohort study. J. Neurol. Neurosurg. Psychiatry 90, 320–325 (2018).

    PubMed  Google Scholar 

  159. Cobas Paz, R. et al. Impact of anticoagulation in patients with dementia and atrial fibrillation. Results of the CardioCHUVI-FA registry. Rev. Esp. Cardiol. (Engl. Ed.) https://doi.org/10.1016/j.rec.2019.10.025 (2020).

  160. Wang, W. et al. Physical, cognitive, and psychosocial conditions in relation to anticoagulation satisfaction among elderly adults with atrial fibrillation: the SAGE-AF study. J. Cardiovasc. Electrophysiol. 30, 2508–2515 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Scowcroft, A. C. E., Lee, S. & Mant, J. Thromboprophylaxis of elderly patients with AF in the UK: an analysis using the General Practice Research Database (GPRD) 2000-2009. Heart 99, 127–132 (2013).

    PubMed  Google Scholar 

  162. Hylek, E. M. et al. Translating the results of randomized trials into clinical practice: the challenge of warfarin candidacy among hospitalized elderly patients with atrial fibrillation. Stroke 37, 1075–1080 (2006).

    PubMed  Google Scholar 

  163. Bertozzo, G. et al. Reasons for and consequences of vitamin K antagonist discontinuation in very elderly patients with non-valvular atrial fibrillation. J. Thromb. Haemost. 14, 2124–2131 (2016).

    CAS  PubMed  Google Scholar 

  164. Kapoor, A. et al. Geriatric conditions predict discontinuation of anticoagulation in long-term care residents with atrial fibrillation. J. Am. Geriatr. Soc. 68, 717–724 (2020).

    PubMed  Google Scholar 

  165. Biffi, A. et al. Oral anticoagulation and functional outcome after intracerebral hemorrhage. Ann. Neurol. 82, 755–765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Biffi, A. et al. Association between blood pressure control and risk of recurrent intracerebral hemorrhage. JAMA 314, 904–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kuramatsu, J. B. & Huttner, H. B. Management of oral anticoagulation after intracerebral hemorrhage. Int. J. Stroke 14, 238–246 (2019).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.K. and G.Y.H.L. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. M.M., Z.K. and T.S.P. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gregory Y. H. Lip.

Ethics declarations

Competing interests

G.Y.H.L. has been a consultant for Bayer/Janssen, BMS/Pfizer, Boehringer Ingelheim, Daiichi-Sankyo, Medtronic, Novartis and Verseon. G.Y.H.L. has been a speaker for Bayer, BMS/Pfizer, Boehringer Ingelheim, Daiichi-Sankyo and Medtronic. G.Y.H.L. received no fees for these activities personally. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A comprehensive literature search was performed using electronic databases (PubMed, Cochrane Library and ClinicalTrials.gov) to identify relevant studies and systematic reviews that reported on atrial fibrillation and stroke prevention. The following search terms were included: “atrial fibrillation”, “stroke prevention”, “thromboprophylaxis”, “bleeding risk”, “oral anticoagulation”, “warfarin”, “dabigatran”, “rivaroxaban”, “apixaban”, “edoxaban”, “left atrial appendage occlusion”, “chronic kidney disease”, “end-stage renal disease”, “renal replacement therapy”, “elderly”, “dementia”, “acute stroke”, “major bleeding”, “intracranial bleeding”, “gastrointestinal bleeding” and “intracardiac thrombus”. Abstracts were screened, and selected articles and guideline documents were included for discussion in this Review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotalczyk, A., Mazurek, M., Kalarus, Z. et al. Stroke prevention strategies in high-risk patients with atrial fibrillation. Nat Rev Cardiol 18, 276–290 (2021). https://doi.org/10.1038/s41569-020-00459-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00459-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing