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Cluster-formula-embedded machine learning for design of
multicomponent β-Ti alloys with low Young’s modulus
Fei Yang1, Zhen Li 2✉, Qing Wang 1✉, Beibei Jiang3, Biaojie Yan4, Pengcheng Zhang4, Wei Xu5, Chuang Dong1 and Peter K. Liaw6

The present work formulated a materials design approach, a cluster-formula-embedded machine learning (ML) model, to search for
body-centered-cubic (BCC) β-Ti alloys with low Young’s modulus (E) in the Ti–Mo–Nb–Zr–Sn–Ta system. The characteristic
parameters, including the Mo equivalence and the cluster-formula approach, are implemented into the ML to ensure the accuracy
of prediction, in which the former parameter represents the BCC-β structural stability, and the latter reflects the interactions among
elements expressed with a composition formula. Both auxiliary gradient-boosting regression tree and genetic algorithm methods
were adopted to deal with the optimization problem in the ML model. This cluster-formula-embedded ML can not only predict
alloy property in the forward design, but also design and optimize alloy compositions with desired properties in multicomponent
systems efficiently and accurately. By setting different objective functions, several new β-Ti alloys with either the lowest E (E=
48 GPa) or a specific E (E= 55 and 60 GPa) were predicted by ML and then validated by a series of experiments, including the
microstructural characterization and mechanical measurements. It could be found that the experimentally obtained E of predicted
alloys by ML could reach the desired objective E, which indicates that the cluster-formula-embedded ML model can make the
prediction and optimization of composition and property more accurate, effective, and controllable.
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INTRODUCTION
β-Ti alloys with a body-centered-cubic (BCC) structure have
attracted more attention due to their prominent properties (high
strength, low Young’s modulus (E), and good corrosion resistance),
showing a great potential for biomedical applications1,2. However,
the low Young’s modulus and BCC-β structural stability are a pair
of contradiction, which is difficult to be solved in simple alloy
systems. Low-E β-Ti alloys with E= 40–65 GPa are generally
formed in multicomponent systems, such as Ti-35Nb-5Ta-7Zr
(E= 55 GPa) and Ti-24Nb-4Zr-7.9Sn (E= 42 GPa, the number
before each element represents the weight percent, wt. %)2–7.
The BCC-β structural stabilities of these alloys are always in the
vicinity of the lower limit of β stabilization, which was often
characterized by a Mo-equivalent parameter (Moeq)

8,9. Besides
Moeq, the d-electron theory method10,11 and valence electron
concentration12–14 are frequently used to design multicomponent
low-E alloys. A cluster-formula approach is also applied to design
alloy compositions in multicomponent systems, which considers
the correlations among alloying solute elements and the base
element in light of the chemical short-range orders (CSROs) of
solid solutions and then gives chemical compositions intuitively15–17.
Thus, a series of low-E β-Ti alloys have been achieved by the
cluster formula of [(Mo,Sn)− (Ti,Zr)14](Nb,Ta)1–3, in which the
lowest E= 48 GPa could reach at the [(Mo0.5Sn0.5)− (Ti13Zr1)]Nb1
alloy (Ti81.25Zr6.25Nb6.25Mo3.125Sn3.125 in atomic percent at. %)18.
Moreover, these alloy compositions were restrained further by a
modified Moeq parameter, and it was found that the Moeq values of
these low-E alloys are very close to the lower limit of β stabilization
(11.8 wt.% Mo)19. A higher Moeq corresponds to a relatively high E,
and a relatively lower Moeq could not render alloys with a single

BCC-β structure, which induces a high E due to the precipitation of
second phases, such as ω and α′′20.
Although the experimental trial-and-error approaches based on

several physical-metallurgy-guided rules could design and obtain
new materials with targeted properties, it could not consider
issues comprehensively and efficiently21,22. Recently, artificial
intelligence methods, especially the machine learning (ML), have
attracted more attention since these methods could predict alloy
properties and design new high-performance materials efficiently
and accurately with the assistance of physical-metallurgy rules23–28.
For instance, the ML model could establish a relationship between
the input and output through training data, in which the
predicted capability strongly depends on the size and quality of
the database as well as the range and distribution of the input
parameters. Since these databases generally contain small data,
the predictions that rely on ML alone may not be accurate
enough. Furthermore, complex interactions among alloying
elements will also affect the predicted accuracy. Therefore, the
ML method should be combined with some characteristic
parameters in a given system, which could result in more effective
predictions. Xue et al. carried out the ML surrogate model,
together with characteristic parameters (such as itinerant electron
concentration e/a, modulus mismatch η, and work function w,
etc.), to search for high-entropy alloys with high microhardness in
Al–Co–Cr–Cu–Fe–Ni system, in which the predicted results are
well consistent with the experiments since these selected
characteristic parameters are closely related to the desired
property29. Similarly, the combination of structural and composi-
tional features (cohesive energy, atomic radius, and electronega-
tivity) with the ML could well predict the elastic properties of
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Al–Co–Cr–Fe–Ni high-entropy alloys30. Xu et al. embedded the
physical-metallurgy parameters, the volume fraction, and driving
force of second-phase precipitates that represent the microstruc-
tural features, into the ML model to design advanced ultrahigh-
strength stainless steels successfully31. The optimal prototype
alloy predicted by this model was well demonstrated by
experiments, in which an excellent agreement could be obtained
for the predicted optimal parameter settings and the final
mechanical property (microhardness). In fact, the introduction of
any characteristic parameters in the ML process aims mainly at
constructing a perfect target-oriented loop of the input (alloy
compositions) and output (properties) for an accurate and
efficient prediction and design.
It is noted that any composition formula has not been

considered in the ML method until now. Therefore, the present
work will embed a cluster-formula approach into the ML model in
multicomponent low-E β-Ti alloys because this approach is closely
related to alloy compositions, besides the Moeq parameter. In the
forward design from the input (alloy compositions, ci) to output
(Young’s modulus, E), the auxiliary gradient-boosting regression
tree (XGBoost) method32, random forest (RF) method33, and
support vector regression (SVR) method34 will be applied to
establish the relationship between the composition and Young’s
modulus based on the existing experimental results in
Ti–Mo–Nb–Zr–Sn–Ta systems, including binary, ternary, quatern-
ary, and quinary low-E β-Ti alloys. The Moeq parameter will be
embedded into this process to constrain the BCC-β structural
stability. Then, in the reverse design of an alloy composition
according to a specific E value, the cluster-formula approach will
also be embedded into the ML model to simplify the selection of
alloy compositions since a given E value would correspond to
many compositions. Moreover, the genetic algorithm (GA) will be
adopted to deal with the nonlinear alloy optimization problem.
Finally, the predicted alloys with the cluster-formula-embedded
ML model will be validated through a series of experiments,
including microstructural characterizations and mechanical
measurements.

RESULTS
Characteristic parameters in low-E β-Ti alloys
Among all the parameters to characterize the structural stability of
the metastable β-Ti, the Mo equivalence (Moeq) is the most
popular parameter in multicomponent low-E β-Ti alloys. It is
expressed with the equation of

Moeq ¼ 1:0Moþ 1:25Vþ 0:59Wþ 0:33Nbþ 0:25Taþ 1:93Fe

þ 1:84Crþ 1:50Cuþ 2:46Niþ 2:67Coþ 2:26Mn

þ 0:30Snþ 0:31Zrþ 3:01Si� 1:47Al inwt:%ð Þ
(1)

in which the coefficient before each alloying element was
obtained by the slope ratio of the [β/ (α+ β)] phase boundary
of the binary Ti–M phase diagram to that of the Ti–Mo,
representing the contribution of each element to the β structural
stability9,19. The critical lower limit of β stabilization is determined
as (Moeq)C= 11.8 wt.%, indicating that any alloy with a larger Moeq
value above 11.8 wt.% would exhibit a single BCC β-Ti
structure9,19. It is known that in the vicinity of the lower limit of
β stabilization, some second phases of ω, α′′, and α′ could be
precipitated inevitably since they are sensitive to the preparation
processing and heat treatments, resulting in an increase of E20.
Experimentally, only when the Moeq value is larger than 13.0 wt.%,
these second phases could be avoided and the E could reach the
minimum9,35. It is noted that the Moeq parameter ignores the
interactions among elements, which is an important factor
because the excessive addition of elements with strong

interactions could result in the formation of intermetallic
compounds in solid-solution alloys9,20. Furthermore, the Moeq
describes the β structural stability of Ti alloys alone, and could not
correlate directly with the properties, such as the Young’s
modulus.
Actually, the interactions among alloying elements with the

base element could be incarnated into the CSROs of solid
solutions, which is the significant microstructural feature15–17.
Based on CSROs, we proposed a ‘cluster-plus-glue-atom’ structural
model to describe the local atomic distribution of alloying solute
elements. In this model, the cluster is the nearest-neighbor
polyhedron centered by a solute atom that has strong interaction
(characterized by a large negative enthalpy of mixing (ΔH)36) with
the base solvent atoms to represent the strongest CSRO. Some
other solute atoms having weak interactions with the base (a
positive ΔH) are certainly required to fill the space among clusters
for the balance of atomic-packing density, named as glue atoms37.
Thus, an uniform composition formula [cluster](glue atom)m (m
being the glue-atom number) can be abstracted from this model,
which is called the cluster-formula approach18,19. Specifically, in
the Ti–Mo–Nb–Zr–Sn–Ta multicomponent system, Mo and Sn
occupy preferentially the cluster center due to the relatively
strong interactions with Ti (ΔHTi–Mo=−4 kJ/mol, ΔHTi–Sn=−21 kJ/
mol), while Nb and Ta tend to occupy the glue sites owing to their
weak interactions with Ti (ΔHTi–Nb=+2 kJ/mol, ΔHTi–Ta=+1 kJ/
mol). For the Zr element, it can enter into any site to replace the Ti
since they are in the same group (ΔHTi–Zr= 0 kJ/mol). Thus, an
ideal cluster formula could be expressed as [(Mo,Sn)− (Ti,Zr)14]
(Nb,Ta)m, which contains crucial information on the alloy
chemistry, i.e., chemical compositions and chemical interactions18.
When considering the β-stability and low-E simultaneously, this
formula should be classified into two groups:

MouSnvð Þ � TiwZrz1ð Þ½ � NbxTayZrz3
� �

x þ y þ z3 ¼ m ¼ 1; 2; 3ð Þ
(2)

in which the total amount (x+ y+ z3) of Nb, Ta, and Zr (i.e., the
glue-atom number, m) varies from m= 1 to m= 3 according to
the Mo content (u) since Mo is a strong β-stabilized element; the
amount of Mo and Sn in the cluster center is u+ v= 1 (0 ≤ v < 1);
the amount of the base Ti and partial Zr in the cluster shell is
defined as w+ z1= 14 (0 ≤ z1 ≤ 1); and the total amount of Zr is
the sum of that in the cluster shell and glue site, being z= z1+ z3.
It is noted that the glue atoms contain the Zr element occasionally
for the consistence with the existing experimental results of Zr
substitution for Nb.

Zrz2Snvð Þ � TiwZrz1ð Þ½ � NbxTay
� �

x þ y ¼ m ¼ 3; 4; 5ð Þ (3)

in which the glue-atom number (x+ y) of Nb and Ta should be
increased because Nb and Ta are weak β-stabilizers when the Mo
element is not added; the amount of Sn and partial Zr in the
cluster center is z2+ v= 1 (0 ≤ v < 1); the amount of the base Ti
and partial Zr in the cluster shell is w+ z1= 14 (0 ≤ z1 ≤ 1); the
total Zr content is z= z1+ z2.
These concrete composition formulas will be then embedded

into the ML to constrain complex compositions during the reverse
design process in the present work.

Machine-learning model
A ML model will be trained based on a dataset containing Young’s
modulus (E) and alloy composition (ci) for each element to build
the relationship of E= f(ci) in the present work, as seen in Fig. 1.
Thus, the E value of any alloy could be predicted when the
composition is known in the forward design (Loop I in Fig. 1). On
the other side, the prediction of an alloy composition could also
be realized if the E value is given in the reverse design (Loop II in
Fig. 1). In order to make the prediction more accurate, some
characteristic parameters representing the low-E and β structural
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stability should be set into the ML process to constrain the
relationship of E= f(ci), since it is a function of multiple variables
for a single target. For the dataset, it is constituted of 82 existing
low-E β-Ti alloy samples3,5,7,9–11,18,19,38–59, including binary, tern-
ary, quaternary, and quinary alloys in Ti–Mo–Nb–Zr–Sn–Ta
systems, which are listed in Supplementary Table 1. Sample data
were screened strictly with the Moeq parameter to avoid the
effects of second-phase precipitation and processing conditions
on E. That is to say, alloys containing only a minor amount of α″
and ω, which was checked scarcely, were permitted in the dataset
since the obvious phase precipitation could enhance the E.
Besides, all these alloys were prepared by rapid-quenching
processing.
In the forward design of ML (Loop I in Fig.1), we employed three

representative ML models, XGBoost implemented in the XGBoost
machine-learning libraries32, RF, and SVR with a radial basis
function kernel implemented in the scikit-learn package34. During
the ML process, the characteristic Moeq parameter was also put
into the dataset to constrain alloy compositions further because it
represents the β structural stabilities of Ti alloys. Then, this dataset
was split into a training set and a testing set by using a split ratio
of 9:1 for the generalization ability of the models, i.e., the training
set was taken from 90% of the dataset. We used both the root
mean-squares error (RMSE) and the coefficient of determination
(R2) as the criterion for the prediction accuracy. The RMSE and R2

are expressed with the equations of

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � f ðxiÞð Þ2
s

(4)

and

R2 ¼ 1�
Pn

i¼1 yi � f ðxiÞð Þ2Pn
i¼1 yi � yð Þ2 ; (5)

respectively, where n is the number of samples, y is the mean
Young’s modulus of samples, yi and f(xi) are the experimental
Young’s modulus and the predicted value by ML, respectively.
Since the dataset capacity of 82 samples is somewhat limited in
the present work, it is necessary to employ the multiple hold-out
method to calculate the RMSE and R2 of ML models for the
guarantee of accuracy31. This procedure was repeated for 500
times in these three models by partitioning the training set and
testing set randomly with a ratio of 9/1, and then the RMSE and R2

values were counted, as shown in Fig. 2. The mean values of RMSE
of the training set are 1.3 ± 0.6, 3.8 ± 0.3, and 3.9 ± 0.4 GPa for

XGBoost, RF, and SVR models, respectively; and these values of the
testing set are 4.6 ± 0.7, 4.9 ± 0.9, and 5.2 ± 0.9 GPa for XGBoost,
RF, and SVR, respectively. Besides, the mean values of R2 of the
training set are 98 ± 1, 89 ± 1, and 88 ± 2% for XGBoost, RF, and
SVR, respectively; and these values of the testing set are 87 ± 2,
84 ± 4, and 73 ± 3%, respectively. Thereof, both the predicted
accuracy and generalized ability of the XGBoost model are better
than the RF and SVR models for the prediction of alloy property.
Figure 3 gives the optimal results for both the training and

testing sets trained by the XGBoost, RF, and SVR models,
respectively, in which the blue and red points represent the
training set and the testing set. The RMSE values of the training
and testing sets for XGBoost are 1.5 and 3.2 GPa, respectively,
while the RMSE values of the training and testing sets for RF and
SVR are 3.8 and 4.1 GPa, 3.9 and 4.7 GPa, respectively. Meanwhile,
the R2 values of the training and testing sets for XGBoost are 98
and 92%, while the corresponding R2 values are 90 and 88% for
RF, and 89 and 79% for SVR, respectively. It could be found that
most of the predicted values by the XGBoost model in both the
training and testing sets are more consistent with the experi-
mental results than the RF and SVR predictions, indicating that the
XGBoost prediction is more accurate than the RF and SVR.
Once the relationship between the alloy composition and

Young’s modulus was established by the XGBoost model in Loop I,
the Young’s modulus of any given composition alloy could be well
predicted. However, in the reverse design of ML, a given E value

Fig. 1 Schematic diagram of the design of multicomponent β-Ti
alloys with low-E based by machine learning. XGBoost, RF, and SVR
models are trained by the database constituted by
Ti–Mo–Nb–Zr–Sn–Ta alloys, containing alloy composition, E and
Moeq in the forward design (Loop I) from the input (composition) to
the output (E). While in the reverse design (Loop II), the genetic
algorithm is used to solve the optimization problems (Min E and Min
|E− ES|), during which the cluster-formula approach is embedded to
further constraint alloy compositions for a specific E, combined with
Moeq.

Fig. 2 Machine-learning models and their statistical results on
both training set and testing set. a RMSE. b R2. The error bars are
the standard deviation from the predictions of 500 regression
models.
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might correspond to dozens or hundreds of multicomponent
compositions, which would certainly lead to a complexity in the
prediction of low-E β-Ti alloys. In order to solve this problem, we

implemented the cluster-formula approach into the reverse
design (Loop II in Fig. 1) to constrain the correlations among
alloying elements with the aid of their interactions with the base
Ti, besides the Moeq parameter. Thus, a given E value will
correspond to very few compositions alone in a given system,
which could reduce the difficulty of composition exploration
drastically. Thereof, this problem can be converted into an
optimization problem by virtue of the cluster-composition
formula:

Minimize Eðx; y; z; u; v;wÞ
subject to CFðx; y; z; u; v;wÞ

11:0 � Moeqðx; y; z; u; v;wÞ � 14:0

(6)

Or

Minimize jEðx; y; z; u; v;wÞ � ESj
subject to CFðx; y; z; u; v;wÞ

11:0 � Moeqðx; y; z; u; v;wÞ � 14:0

; (7)

where x, y, z, u, v, and w represent the atom numbers (or the
amounts) of Nb, Ta, Zr, Mo, Sn, and Ti in a given cluster-
composition formula, respectively; E(x, y, z, u, v, w) is the predicted
Young’s modulus trained by the XGBoost model; CF(x, y, z, u, v, w)
is the specific cluster-composition formula given in above-
mentioned Eqs. (2) and (3). Here, we took the strengthen elitist
selection of the GA60–63 to solve this optimization problem. For the
optimization problem given in Eq. (6), we aim at exploring of β-Ti
alloys with the lowest Young’s modulus (Min E). While for a specific
ES value, it is necessary to minimize the difference between E(x, y,
z, u, v, w) and ES, i.e., Min |E− ES|, as described in the optimization
problem given in Eq. (7).
Thus, an integrated ML process would be established, as

presented in Fig. 1. According to it, the predicted new
composition alloys will be verified by a series of experiments,
then they will be put into the original database for a much more
accurate prediction.

Experimental verification
Firstly, the XGBoost model is used to predict the Young’s modulus
E of any given alloy in Ti–Mo–Nb–Zr–Sn–Ta system in the forward
design of ML. We selected two alloys randomly only with the Moeq
constraint, Ti84.5Mo2.0Nb10.0Sn1.0Ta2.5 (I-1, at. %) and
Ti82.5Mo3.0Nb10.5Sn1.0Ta3.0 (I-2, at. %). The E values of these two
alloys predicted by ML is E= 67 GPa for I-1 and E= 65 GPa for I-2
alloy, respectively (as seen in Table 1). Then, a series of
experimental measurements were carried out to verify this
prediction.
The X-ray diffractometer (XRD) results in Fig. 4a show that the

I-2 alloy with Moeq= 13.30 wt.% exhibits a single BCC-β structure,
while the diffraction peaks of the α′′ martensite with an
orthorhombic structure appear in I-1 alloy, besides the BCC-β. It
is resulted from that the Moeq= 11.28 wt.% of I-1 is relatively lower
than the critical lower limit ((Moeq)C= 11.8 wt.%) for the β
stabilization. The tensile tests of these alloys were then measured,
and the engineering tensile stress-strain curves were given in Fig. 4b,
from which the Young’s modulus could be calculated. The
experimental E values of I-1 and I-2 alloys are E= 76 ± 3 and
E= 73 ± 2 GPa, respectively, which is somewhat different from the
corresponding predicted values (67 and 65 GPa). The difference
between the predicted and experimental E values might be
ascribed to that alloy samples in this quinary system were not
included in the dataset due to no existing results, which would
give rise to an uncertainty and then reduce the prediction
accuracy. In addition, the higher measured E value of I-1 alloy is
also resulted from the obvious precipitation of α′′ martensite that
could increase the E slightly. Thereof, the predication of E is not
accurate enough when the Moeq is considered in ML alone. There

Fig. 3 The experimental E values vs. the predicted values by the
optimal model. a XGBoost. b RF. c SVR. The blue points and red points
represent the training set and the testing set, respectively.
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must exist some inevitable uncertainties in the ML process, which
needs to consider more other parameters for a further constraint
of alloy compositions, such as the factor to reflect complex
interactions among elements in multicomponent systems.
Thereof, we add the cluster formulas as a constraint in the
reverse design (Loop II) to explore alloy composition according to
a given E value.
During the process of the GA optimization in the reverse design

(Loop II), we still use the XGBoost model in the forward design and
take the Moeq and the cluster formulas as constraints simulta-
neously. A wide composition range of each element was first set,
in which a population containing 3000000 individuals (i.e., alloy
compositions) was generated randomly. Then, the composition
alloys satisfying both the cluster formula and the Moeq parameters
were obtained with the XGBoost model, and the fitness of each
alloy composition was calculated according to the objective
function of Min E for the optimization problem given in Eq. (6) or
Min |E− ES| for the optimization problem given in Eq. (7). Thus, the
next generation of population was produced by the genetic
operations (including selection, crossover, and mutation) in light
of the survival of the fittest principle. Finally, the GA would
terminate after 100 iterations, and the optimal alloy composition
could be achieved. Figure 5 gives the evolution histories of the GA
with the objective functions of Min E (Fig. 5a–c) and Min |E− ES|
(Fig. 5d, e), in which the red line represents the objective function
while the black line represents the mean value of E or |E− ES| for
each generation. It was found that these two values will be
converged after about 50 iterations, indicating a high efficiency ofTa

bl
e
1.

Th
e
al
lo
ys

p
re
d
ic
te
d
b
y
m
ac
h
in
e
le
ar
n
in
g
an

d
th
ei
r
p
re
d
ic
te
d
an

d
ex
p
er
im

en
ta
l
Yo

u
n
g’
s
m
o
d
u
lu
s
(E
).

A
llo

y
n
o.

C
lu
st
er

fo
rm

u
la
s

C
o
m
p
o
si
ti
o
n
s

M
o e

q
(w

t.
%
)

Ex
p
er
im

en
ta
l
E
(G
Pa

)
Pr
ed

ic
te
d
E
(G
Pa

)

(a
t.
%
)

(w
t.
%
)

I-1
–

Ti
8
4
.5
M
o
2
N
b
1
0
Sn

1
Ta

2
.5

Ti
-3
.3
M
o
-1
6.
2N

b
-2
.1
Sn

-7
.9
Ta

11
.2
8

76
±
3

67

I-2
–

Ti
8
2
.5
M
o
3
N
b
1
0
.5
Sn

1
Ta

3
Ti
-4
.9
M
o
-1
6.
6N

b
-2
Sn

-9
.2
Ta

13
.3
0

73
±
2

65

II-
1

[(
M
o
0
.5
Sn

0
.5
)−

(T
i 1
3
Z
r 1
)]
(N
b
0
.5
Ta

0
.5
)

Ti
8
1
.3
M
o
3
.1
N
b
3
.1
Z
r 6
.3
Sn

3
.1
Ta

3
.1

Ti
-5
M
o
-4
.9
N
b
-9
.5
Z
r-
6.
2S

n
-9
.4
Ta

13
.7
8

49
±
1

49

II-
2

[(
M
o
0
.3
Sn

0
.7
)−

(T
i 1
3
.5
Z
r 0
.5
)]
(N
b
1
.5
Ta

0
.5
)

Ti
7
9
.4
M
o
1
.8
N
b
8
.8
Z
r 2
.9
Sn

4
.1
Ta

2
.9

Ti
-2
.8
M
o
-1
3.
5N

b
-4
.4
Z
r-
8S

n
-8
.8
Ta

13
.2
0

46
±
1

48

II-
3

[(
Sn

0
.5
Z
r 0
.5
)−

(T
i 1
4
)]
(N
b
2
.5
Ta

0
.5
)

Ti
7
7
.8
N
b
1
3
.9
Z
r 2
.8
Sn

2
.8
Ta

2
.8

Ti
-2
1.
2N

b
-4
.2
Z
r-
5.
4S

n
-8
.2
Ta

11
.9
5

47
±
2

48

II-
4

[(
M
o
0
.5
Sn

0
.5
)−

(T
i 1
3
Z
r 1
)]
(N
b
0
.8
Z
r 0
.2
)

Ti
8
1
.3
M
o
3
.1
N
b
5
Z
r 7
.5
Sn

3
.1

Ti
-5
.3
M
o
-8
.1
N
b
-1
2Z

r-
6.
5S

n
13

.6
0

58
±
2

55

II-
5

[(
M
o
0
.5
Sn

0
.5
)−

(T
i 1
3
Z
r 1
)]
(N
b
0
.5
Z
r 0
.5
)

Ti
8
1
.3
M
o
3
.1
N
b
3
.1
Z
r 9
.4
Sn

3
.1

Ti
-5
.3
M
o
-5
.1
N
b
-1
5Z

r-
6.
5S

n
13

.5
3

56
±
2

60

Tw
o
al
lo
y
co

m
p
o
si
ti
o
n
s
(I-
1
an

d
I-2

)w
it
h
b
o
th

at
o
m
ic
p
er
ce
n
t
an

d
w
ei
g
h
t
p
er
ce
n
t
ex
p
re
ss
io
n
s
ar
e
se
le
ct
ed

w
it
h
th
e
M
o e

q
co

n
st
ra
in
t
in

th
e
fo
rw

ar
d
d
es
ig
n
.F
iv
e
al
lo
y
co

m
p
o
si
ti
o
n
s
(II
-1
–
II-
5)

ar
e
p
re
d
ic
te
d
w
it
h
th
e

cl
u
st
er
-f
o
rm

u
la

co
n
st
ra
in
t
in

th
e
re
ve

rs
e
d
es
ig
n
,w

h
ic
h
ar
e
ex
p
re
ss
ed

w
it
h
b
o
th

cl
u
st
er

fo
rm

u
la

an
d
at
o
m
ic

p
er
ce
n
t.
Th

e
M
o
eq

u
iv
al
en

ce
is
ex
p
re
ss
ed

w
it
h
M
o e

q
=
1.
0M

o
+
0.
33

N
b
+
0.
30

Sn
+
0.
31

Z
r+

0.
25

Ta
(w

t.
%
).

Fig. 4 Experimental results of Ti84.5Mo2.0Nb10.0Sn1.0Ta2.5 (I-1, at.
%) and Ti82.5Mo3.0Nb10.5Sn1.0Ta3.0 (I-2, at. %) alloys. a XRD
patterns. b Engineering tensile stress-strain curves. The I-2 alloy
exhibits a single BCC-β structure, while the I-1 alloy consists of the
BCC-β and orthorhombic α′′ martensite.
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this optimization. So, three new alloys with the cluster formulas of
[(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Ta0.5) (II-1), [(Mo0.3Sn0.7)−
(Ti13.5Zr0.5)](Nb1.5Ta0.5) (II-2), and [(Sn0.5Zr0.5)− Ti14](Nb2.5Ta0.5)
(II-3) are obtained by setting the objective function of Min E,
being E= 49, E= 48, and E= 48 GPa, respectively. And the other
two alloys with the cluster formulas of [(Mo0.5Sn0.5)− (Ti13Zr1)]
(Nb0.8Zr0.2) (II-4) and [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Zr0.5) (II-5) are
also predicted by setting the objective function ofMin |E− ES| with
ES= 55 and ES= 60 GPa, respectively.

Figure 6a gives the XRD patterns of these five predicted alloys
by the reverse design in ML, in which the II-2, II-4, and II-5 alloys
possess a single BCC-β structure. While for II-1 and II-3 alloys,
several weak diffraction peaks of the α′′ martensite appear on the
β matrix. Although the Moeq values of these alloys surpass the
critical lower limit ((Moeq)C= 11.8 wt.%) of β stabilization, they are
still in the vicinity of this limit, at which the β stability is
susceptible to external conditions. Figure 7 gives the tensile
engineering stress-strain curves of these alloys, from which the

Fig. 5 The evolution histories of the GA with the objective functions of Min E and Min |E− ES|. a [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Ta0.5) (II-1).
b [(Mo0.3Sn0.7)− (Ti13.5Zr0.5)](Nb1.5Ta0.5) (II-2). c [(Sn0.5Zr0.5)− Ti14](Nb2.5Ta0.5) (II-3). d [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.8Zr0.2) (II-4). e [(Mo0.5Sn0.5)−
(Ti13Zr1)](Nb0.5Zr0.5) (II-5). The red line represents the value of the objective function while the black line represents the mean value of the E or
|E− ES| for each generation. Five alloy compositions presented in (a–e) are obtained finally.
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E values were measured, being E= 49 ± 1, 46 ± 1, 47 ± 2, 58 ± 2,
and 56 ± 2 GPa, respectively. Both the experimental and predicted
E values of these designed alloys are all listed in Table 1. It could
be found that the predicted E is consistent well with the
experimental E for each alloy, which indicates that the cluster-
formula-embedded ML can predict the alloy property (forward
design) or alloy composition (reverse design) precisely. In addition,
the Moeq values of these alloys, as well as alloy compositions (both
at. % and wt. %) are also given in Table 1.

We also did the XRD analysis on the alloy samples after tension
to check the variation of the crystalline structure induced by the
applied load, which is shown in Fig. 6b. It is found that the
diffraction peaks of the stress-induced α′′ martensite appear
obviously in the β matrix of each alloy, which is also validated by
the double-yielding phenomenon in the engineering stress-stain
curves shown in Fig. 7. It is ascribed to the stress-induced α′′
martensite transformation when the β structural stability is
relatively lower, which is consistent with the existing results20.
The β-Ti alloys with such a transformation generally possess a
relatively lower Young’s modulus. Further detailed characteriza-
tions were carried on by TEM.
For the [(Mo0.3Sn0.7)− (Ti13.5Zr0.5)](Nb1.5Ta0.5) (II-2) and

[(Sn0.5Zr0.5)− Ti14](Nb2.5Ta0.5) (II-3) alloys with the lowest Young’s
modulus (E= 46–47 GPa), the SAED pattern shows that the II-2
alloy exhibits a single β-Ti structure without any other diffraction
spots of either α′′ or ω phase, as presented in Fig. 8a. In fact, the
Young’s moduli of α′′ and ω phases are higher than that of β-Ti,
especially the ω phase20. While the diffraction spots of the α′′
martensite appear in II-3 alloy, as found in Fig. 9a, in which both
the bright-field and dark-field images demonstrate that a small
amount of α′′ martensitic plates are distributed in the β-Ti matrix.
It is consistent with the XRD result, which might be resulted from
the relatively lower Moeq value (Moeq= 11.95 wt. %) in II-3 than
that (Moeq= 13.20 wt. %) in II-2. Nevertheless, there does not exist
the ω phase in II-3 alloy yet, in which the appearance of ω could
enhance the Young’s modulus of β-Ti alloys drastically. After
tension, the stress-induced α′′ martensitic plates (including coarse
and fine plates) appear in the βmatrix in the II-2 alloy, as observed
in the dark-field images (Fig. 8b). By comparison, a much larger
amount of α′′ martensitic plates appear in the tensioned II-3 alloy,

Fig. 6 XRD patterns of the predicted alloys by ML in the reverse
design. a Before tension. b After tension.

Fig. 7 Engineering tensile stress-strain curves of the predicted
alloys by ML in the reverse design. The deformation part at the
early stage of each alloy is magnified in the inset.

Fig. 8 TEM morphological images and the corresponding SAED
patterns of the [(Mo0.3Sn0.7)− (Ti13.5Zr0.5)](Nb1.5Ta0.5) (II-2) alloy
at different states. a TEM results of the as-cast sample exhibiting a
single β-Ti structure. b TEM results after tension showing stress-
induced α′′ martensitic plates with different orientations in dark-
field images.
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as seen in Fig. 9b, which is closely related to the relatively lower β
stability in the latter. Actually, it could be also confirmed by the
fact that the double-yielding platform of II-3 is more obvious than
that of II-2, indicating that a much higher amount of α′′martensite
transformed from the β matrix during the tension process.
For the designed [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Zr0.5) (II-5) alloy

with a given Young’s modulus of ES= 60 GPa, the TEM character-
ization (Fig. 10a) indicates that this alloys exhibit a single BCC β-Ti
structure owing to the relatively higher Moeq value (Moeq= 13.53
wt. %). After tension, there still exists a small amount of the stress-
induced α′′ martensite (Fig. 10b), similar to those in II-2 and II-3
alloys. All of these results certify again that the BCC-β phase with
lower stability would like to be accompanied by the protogenous
α′′ or stress-induced α′′ martensite, which could render β-Ti alloys
with lower Young’s moduli.

DISCUSSION
In the forward design of Loop I in ML, the relationship between
the alloy composition (ci) and alloy property (Young’s modulus, E)
was established by using the XGBoost model, in which the
characteristic Moeq parameter for the representation the β
structural stability of alloys is implemented to further restrict
alloy compositions. Based on it, two alloys of I-1 and I-2 in
Ti–Mo–Nb–Sn–Ta system were designed, but the experimental E
values of these two alloys are somewhat different from the
predicted ones, as seen in Table 1. This trend might be caused by
the fact that alloy samples in this quinary system are not included
in the ML database due to no existing experimental results, which
would give rise to an uncertainty, and then reduce the prediction
accuracy. More importantly, in the reverse design of Loop I, a
given specific E value could predict many compositions because it
is a multivariable function for a single target. For instance, if we set

the specific Young’s modulus as ES= 55 GPa only with the Moeq
constraint, we can obtain 85 compositions, in which the
compositions vary with a step size of 1.0 at. %, as seen in
Supplementary Table 2. It is difficult to validate all these predicted
composition alloys by experiments, which could not manifest the
superiority and efficiency of ML. In addition, there might exist
some inevitable uncertainties that could not be reflected by the
Moeq alone, which has been demonstrated by the present
experiments for I-1 and I-2 alloys.
Then, we embedded the cluster-formula approach into the

reverse design of ML (Loop II), which is a direct constraint to the
composition. This approach considers the interactions among
alloying elements with the base Ti, as well as among themselves.
Our previous experimental results have demonstrated the validity
of the cluster-formula approach, i.e., the β-Ti alloys with cluster
formulas generally possess relatively lower Young’s moduli, as
evidenced by the quinary β-Ti [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb1) alloy

Fig. 9 TEM morphological images and the corresponding SAED
patterns of the [(Sn0.5Zr0.5)− Ti14](Nb2.5Ta0.5) (II-3) alloy at
different states. a TEM results of the as-cast sample exhibiting a
small amount of α′′ martensitic plates in the β-Ti matrix. b TEM
results after tension showing a much larger amount of α′′
martensitic plates induced by applied stress in dark-field image.

Fig. 10 TEM morphological images and the corresponding SAED
patterns of the [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Zr0.5) (II-5) alloy at
different states. a TEM results of the as-cast sample exhibiting a
single β-Ti structure. b TEM results after tension showing a small
amount of the stress-induced α′′ martensite.
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with E= 48 GPa20. Thus, for a specific E value, there exist a limited
number of alloy commotions or just only one composition in a
given multicomponent system. For example, there have only two
compositions (II-1, II-2) in the Ti–Mo–Nb–Zr–Sn–Ta hexa-
component system and one composition (II-3) in the
Ti–Nb–Zr–Sn–Ta quinary system to correspond to the Min E
(Optimization problem given in Eq. (6)). More significantly, the
experimental E values of these three composition alloys are in a
great consistence with the predicted ones (Table 1). Furthermore,
these two complex systems are not included in the ML database
since no existing experimental results have been reported. Similar
tendency also appears in II-4 and II-5 alloys for a specific E value.
Therefore, by embedding the cluster formula and Moeq into the
ML, we can optimize alloy compositions orientated by targets
more effectively and precisely than the previous random research.
In fact, when selecting alloy compositions in the forward design of
ML, the compositions should satisfy the cluster-formula approach
for a better prediction of E. It means that implementation of
characteristic parameters that represent the features of a given
system is crucial to establish the ML model, which is contributed
to the prediction and design of the alloy composition and
property with a much higher accuracy.
In our previous alloys, we applied the cluster-formula

approach into other compositionally complex systems to
explore the relationship between the alloy composition and
properties37,64. For instance, it is found that the compositions of
Ni-base single crystal superalloys with prominent creep resis-
tance satisfy a uniform cluster formula of ½Al� Ni12�ðAl1:5Cr1:5Þ, in
which all the alloying elements are classified into three groups,
Al series (Al), Cr series (Cr), and Ni series (Ni)65. Since the creep
rupture lifetime of these superalloys could be correlated to the
composition in light of the cluster-formula approach, the
cluster-formula-embedded ML model would predict the rupture
lifetime of alloys and design new alloy compositions with high
performance.
To summarize, a property-orientated alloy-design strategy

combining the ML and characteristic parameters has been
proposed to search for the low-E β-Ti alloys in the
Ti–Mo–Nb–Zr–Sn–Ta system. The characteristic parameters are
Moeq and cluster-composition formula, respectively. The XGBoost
could establish the relationship between the alloy composition
and Young’s modulus E well in the forward design of ML with the
guidance of Moeq. However, the experimental E value is indeed
somewhat different from the predicted value of a given alloy
when such alloy samples are not included into the ML database.
On this basis, the cluster-formula approach was embedded in the
reverse design to design new alloys with the desired E.
Successfully, the experimental E values of predicted new alloys
with the lowest E indeed reach the minimum (E= 46–49 GPa),
which are [(Mo0.5Sn0.5)− (Ti13Zr1)](Nb0.5Ta0.5), [(Mo0.3Sn0.7)−
(Ti13.5Zr0.5)](Nb1.5Ta0.5), and [(Sn0.5Zr0.5)− Ti14](Nb2.5Ta0.5), respec-
tively, even though such kind of alloy samples are not included in
the ML database. Therefore, for any specific E, this cluster-formula-
embedded ML model could predict alloy composition precisely
and efficiently in multicomponent systems. This design framework
would be expected to predict other high-performance alloys, such
as high-entropy alloys and Ni-base superalloys, in which the
cluster-formula approach is of importance due to their chemical
complexity.

METHODS
Modeling method
All the machine-learning models were created using the Scikit-learn
(including RF and SVR) and XGBoost machine-learning libraries. The

reverse design was realized by the GA using geatpy library63, Scikit-learn,
XGBoost, and geatpy are available under open-source licenses.

Experimental procedures
The predicted alloys by ML were prepared by copper-mold suction cast
processing, in which the experimental details are same as those in ref. 19.
Crystalline structures of alloys were first analyzed by the BRUKER D8 XRD
with a Cu Kα radiation (λ= 0.15406 nm). The microstructures were then
verified with the JEM2100F FEG scanning transmission electron micro-
scopy, in which the samples were prepared by twin-jet electro-polishing in
a solution of 6% HClO4+ 59% CH3OH+ 35% CH3(CH2)3OH (volume
fraction) at about 243 K. Tensile tests were executed on an UTM5504-G
Material Test System (MTS) with a strain gage, where the tensile rate is set
as 0.5 mm/min. The gauge size of rod tensile samples is 3 × 25mm
(diameter × length), and three samples for each composition alloy were
measured to assure the reliabilities of tensile data.
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