Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration

Abstract

Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse land plants exhibit separate-sexed gametophytes (dioicy) or sporophytes (dioecy).
Fig. 2: A single factor or two factors can determine sex in dioecious plants.
Fig. 3: Gene content and genomic extent of plant SDRs do not correlate with their age.
Fig. 4: Genetic networks controlling unisexual flower development in monoecious species can be recruited for the evolution of dioecy.
Fig. 5: Flexible sex-determining systems together with minimal sexual dimorphism keep plant sex chromosomes recombining and homomorphic.

Similar content being viewed by others

References

  1. Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (John Murray, 1876).

    Book  Google Scholar 

  2. Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).

    Article  PubMed  Google Scholar 

  3. Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Article  Google Scholar 

  4. Henry, I. M., Akagi, T., Tao, R. & Comai, L. One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annu. Rev. Plant Biol. 69, 553–575 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 208, 52–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Renner, S. S. Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am. J. Bot. 103, 587–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Müller, N. A. et al. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 6, 630–637 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Cronk, Q. & Müller, N. A. Default sex and single gene sex determination in dioecious plants. Front. Plant Sci. 11, 1162 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Golenberg, E. M. & West, N. W. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am. J. Bot. 100, 1022–1037 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, H.-W., Akagi, T., Kawakatsu, T. & Tao, R. Gene networks orchestrated by MeGI: a single-factor mechanism underlying sex determination in persimmon. Plant J. 98, 97–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cronk, Q., Soolanayakanahally, R. & Brautigam, K. Gene expression trajectories during male and female reproductive development in balsam poplar (Populus balsamifera L.). Sci. Rep. 10, 8413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKown, A. D. et al. Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus. Sci. Rep. 7, 1831 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Charlesworth, D. Plant sex chromosome evolution. J. Exp. Bot. 64, 405–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Charlesworth, D. Plant sex chromosomes. Annu. Rev. Plant Biol. 67, 397–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Charlesworth, D. Plant sex determination and sex chromosomes. Heredity 88, 94–101 (2002).

    Article  PubMed  Google Scholar 

  18. Charlesworth, D. Plant evolution: modern sex chromosomes. Curr. Biol. 14, R271–R273 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Charlesworth, D. Young sex chromosomes in plants and animals. New Phytol. 224, 1095–1107 (2019).

    Article  PubMed  Google Scholar 

  20. Janousek, B. & Mrackova, M. Sex chromosomes and sex determination pathway dynamics in plant and animal models. Biol. J. Linn. Soc. 100, 737–752 (2010).

    Article  Google Scholar 

  21. Hobza, R. et al. Sex and the flower—developmental aspects of sex chromosome evolution. Ann. Bot. 122, 1085–1101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bateman, R. M. & DiMichele, W. A. Heterospory: The most iterative key innovation in the evolutionary history of the plant kingdom. Biol. Rev. 69, 345–417 (1994).

    Article  Google Scholar 

  23. Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  24. Käfer, J. et al. A derived ZW chromosome system in Amborella trichopoda, the sister species to all other extant flowering plants. Preprint at bioRxiv https://doi.org/10.1101/2020.12.21.423833 (2020).

  25. Marks, R. A., Smith, J. J., Cronk, Q., Grassa, C. J. & McLetchie, D. N. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci. Rep. 9, 8722 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hisanaga, T. et al. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J. 38, e100240 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Eckenwalder, J. E. Systematics and Evolution of Populus (NRC Research Press, 1996).

  28. Percy, D. M. et al. Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from aÿtrans-specific selective sweep? Mol. Ecol. 23, 4737–4756 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Manchester, S. R., Judd, W. S. & Handley, B. Foliage and fruits of early poplars (Salicaceae: Populus) from the eocene of Utah, Colorado, and Wyoming. Int. J. Plant Sci. 167, 897–908 (2006).

    Article  Google Scholar 

  30. Sanderson, B. J. et al. Sex determination through X–Y heterogamety in Salix nigra. Heredity https://doi.org/10.1038/s41437-020-00397-3 (2021).

  31. Almeida, P. et al. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol. 18, 78 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, R. et al. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biol. 21, 38 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang, Z. et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica). Mol. Ecol. Resour. 20, 781–794 (2020).

    Article  CAS  Google Scholar 

  34. Schiffthaler, B. et al. An improved genome assembly of the European aspen Populus tremula. Preprint at bioRxiv https://doi.org/10.1101/805614 (2019).

  35. Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wei, S., Yang, Y. & Yin, T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Horticulture Res. 7, 45 (2020).

    Article  CAS  Google Scholar 

  37. Geraldes, A. et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol. Ecol. 24, 3243–3256 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Akagi, T., Henry, I. M., Kawai, T., Comai, L. & Tao, R. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 28, 2905–2915 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akagi, T. et al. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet. 16, e1008566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suo, Y. et al. A high-quality chromosomal genome assembly of Diospyros oleifera Cheng. Gigascience 9, giz164.

  41. Fujito, S. et al. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. G3 5, 1663–1673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu, L., Ma, X., Deng, B., Yue, J. & Ming, R. Construction of high-density genetic maps defined sex determination region of the Y chromosome in spinach. Mol. Genet. 296, 41–53 (2020).

    Google Scholar 

  43. Okazaki, Y., Takahata, S., Hirakawa, H., Suzuki, Y. & Onodera, Y. Molecular evidence for recent divergence of X- and Y-linked gene pairs in Spinacia oleracea L. PLoS ONE 14, e0214949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. West, N. W. & Golenberg, E. M. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. New Phytol. 217, 1322–1334 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, S. et al. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 4, 2640 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Pilkington, S. M. et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 19, 257 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wu, H. et al. A high-quality Actinidia chinensis (kiwifruit) genome. Horticulture Res. 6, 117 (2019).

    Article  CAS  Google Scholar 

  48. Tang, W. et al. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. Gigascience 8, giz027 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Akagi, T. et al. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30, 780–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akagi, T., Pilkington, S. M., Varkonyi-Gasic, E. & Henry, I. M. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 5, 801–809 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Norup, M. F. et al. Evolution of Asparagus L. (Asparagaceae): out-of-South-Africa and multiple origins of sexual dimorphism. Mol. Phylogenet. Evol. 92, 25–44 (2015).

    Article  PubMed  Google Scholar 

  52. Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Harkess, A. et al. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 32, 1790–1796 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, S.-F. et al. Chromosome-level genome assembly, annotation and evolutionary analysis of the ornamental plant Asparagus setaceus. Horticulture Res. 7, 48 (2020).

    Article  CAS  Google Scholar 

  55. Deng, C. L. et al. Karyotype of asparagus by physical mapping of 45S and 5S rDNA by FISH. J. Genet. 91, 209–212 (2012).

    Article  PubMed  Google Scholar 

  56. Casimiro-Soriguer, I., Buide, M. L. & Narbona, E. Diversity of sexual systems within different lineages of the genus Silene. AoB PLANTS 7, plv037 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Slancarova, V. et al. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67, 3669–3677 (2013).

    Article  PubMed  Google Scholar 

  58. Howell, E. C., Armstrong, S. J. & Filatov, D. A. Evolution of neo-sex chromosomes in Silene diclinis. Genetics 182, 1109–1115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balounova, V. et al. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci. Rep. 9, 1045 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Martin, H. et al. Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex determination systems. Genome Biol. Evol. 11, 350–361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barankova, S. et al. Sex-chrom, a database on plant sex chromosomes. New Phytol. 227, 1594–1604 (2020).

    Article  PubMed  Google Scholar 

  62. Westergaard, M. Aberrant Y chromosomes and sex expression in Melandrium album. Hereditas 32, 419–443 (1946).

    Article  CAS  PubMed  Google Scholar 

  63. Kazama, Y. et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 6, 18917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hazzouri, K. M. et al. Genome-wide association mapping of date palm fruit traits. Nat. Commun. 10, 4680 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Torres, M. F. et al. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nat. Commun. 9, 3969 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Carvalho, F. A. & Renner, S. S. A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol. Phylogenet. Evol. 65, 46–53 (2012).

    Article  PubMed  Google Scholar 

  67. Wang, J. et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. VanBuren, R. et al. Origin and domestication of papaya Yh chromosome. Genome Res. 25, 524–533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Picq, S. et al. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol. 14, 229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D. & Gaut, B. S. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl Acad. Sci. USA 114, 11715–11720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fechter, I. et al. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol. Genet Genomics 287, 247–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Coito, J. L. et al. VviAPRT3 and VviFSEX: two genes involved in sex specification able to distinguish different flower types in Vitis. Front. Plant Sci. 8, 98 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Massonnet, M. et al. The genetic basis of sex determination in grapes. Nat. Commun. 11, 2902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Badouin, H. et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol. 21, 223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahmadi, H. & Bringhurst, R. S. Genetics of sex expression in Fragaria species. Am. J. Bot. 78, 504–514 (1991).

    Article  CAS  Google Scholar 

  76. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Edger, P. P. et al. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience 7, gix124 (2018).

    Article  CAS  Google Scholar 

  78. Edger, P. P. et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51, 541–547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tennessen, J. A. et al. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol. 16, e2006062 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ashman, T.-L. et al. Multilocus sex determination revealed in two populations of gynodioecious wild strawberry, Fragaria vesca subsp. bracteata. G3 5, 2759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamiya, T. et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 8, e1002798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ming, R., Bendahmane, A. & Renner, S. S. Sex chromosomes in land plants. Annu Rev. Plant Biol. 62, 485–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Sousa, A., Fuchs, J. & Renner, S. S. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 139, 107–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Sousa, A., Fuchs, J. & Renner, S. S. Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosome Res. 25, 191–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Perrin, N. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043–3049 (2009).

    Article  PubMed  Google Scholar 

  86. Roco, A. S. et al. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752–E4761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Charlesworth, B. The evolution of sex chromosomes. Science 251, 1030–1033 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Immler, S. & Otto, S. P. The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 69, 694–708 (2015).

    Article  PubMed  Google Scholar 

  89. Papadopulos, A. S., Chester, M., Ridout, K. & Filatov, D. A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl Acad. Sci. USA 112, 13021–13026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Prentout, D. et al. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res. 30, 164–172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Darwin, C. The Different Forms of Flowers on Plants of the Same Species (John Murray, 1977).

    Google Scholar 

  92. Godin, V. N. & Demyanova, E. I. On the distribution of gynodioecy in flowering plants. Botanicheskiy Zh. 93, 1465–1487 (2013).

    Article  Google Scholar 

  93. Renner, S. S. & Ricklefs, R. E. Dioecy and its correlates in the flowering plants. Am. J. Bot. 82, 596–606 (1995).

    Article  Google Scholar 

  94. Frank, S. A. The evolutionary dynamics of cytoplasmic male sterility. Am. Nat. 133, 345–376 (1989).

    Article  Google Scholar 

  95. McCauley, D. E. & Bailey, M. F. Recent advances in the study of gynodioecy: the interface of theory and empiricism. Ann. Bot. 104, 611–620 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Spigler, R. B. & Ashman, T.-L. Gynodioecy to dioecy: are we there yet? Ann. Bot. 109, 531–543 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Westergaard, M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9, 217–281 (1958).

    Article  CAS  PubMed  Google Scholar 

  98. Lloyd, D. G. Breeding systems in Cotula L. (Compositae, Anthemideae). I. The array of monoclinous and diclinous systems. New Phytol. 71, 1181–1194 (1972).

    Article  Google Scholar 

  99. Lloyd, D. G. Breeding systems in Cotula L. (Compositae, Anthemideae). II. Monoecious populations. New Phytol. 71, 1195–1202 (1972).

    Article  Google Scholar 

  100. Lloyd, D. G. Breeding systems in Cotula. III. Dioecious populations. New Phytol. 74, 109–123 (1975).

    Article  Google Scholar 

  101. Renner, S. S. & Won, H. Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales). Syst. Biol. 50, 700–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Anger, N., Fogliani, B., Scutt, C. P. & Gateble, G. Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the breeding system in early angiosperms. Ann. Bot. 119, 591–597 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Jones, D. F. Unisexual maize plants and their bearing on sex differentiation in other plants and in animals. Genetics 19, 552–567 (1934).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boualem, A. et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350, 688–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Yin, T. & Quinn, J. A. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am. J. Bot. 82, 1537–1546 (1995).

    Article  CAS  Google Scholar 

  106. Lester, D. T. Variation in sex expression in Populus tremuloides Michx. Silvae Genet. 12, 141–151 (1963).

    Google Scholar 

  107. Cronk, Q. C. B., Needham, I. & Rudall, P. J. Evolution of catkins: inflorescence morphology of selected Salicaceae in an evolutionary and developmental context. Front. Plant Sci. 6, 1030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Akagi, T. & Charlesworth, D. Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proc. R. Soc. B 286, 20191805 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, M. et al. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. New Phytol. 225, 1370–1382 (2020).

    Article  PubMed  Google Scholar 

  110. Shang, H. et al. Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group. Philos. Trans. R. Soc. Lond. B 375, 20190544 (2020).

    Article  CAS  Google Scholar 

  111. Yang, W. et al. A general model to explain repeated turnovers of sex determination in the Salicaceae. Mol. Biol. Evol. 38, 968–980 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

N.A.M. acknowledges funding from a grant from the German Research Foundation (DFG MU 4357/1-1) and S.S.R. is grateful for support from the Elfriede and Franz Jakob Foundation for research in the Botanical Garden Munich.

Author information

Authors and Affiliations

Authors

Contributions

S.S.R. and N.A.M. both performed literature searches and wrote the paper. N.A.M. produced the figures.

Corresponding authors

Correspondence to Susanne S. Renner or Niels A. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Takashi Akagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Note 1 and references.

Supplementary Table 1

Information on plant SDRs, including gene number, physical size and age estimates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renner, S.S., Müller, N.A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 7, 392–402 (2021). https://doi.org/10.1038/s41477-021-00884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00884-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing