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PD-L1 blockade in combination with inhibition of
MAPK oncogenic signaling in patients with
advanced melanoma
Antoni Ribas 1✉, Alain Algazi 2, Paolo A. Ascierto 3, Marcus O. Butler 4, Sunandana Chandra5,

Michael Gordon6, Leonel Hernandez-Aya7, Donald Lawrence8, Jose Lutzky 9, Wilson H. Miller Jr10,

Katie M. Campbell 1, Bruno Delafont11, Shannon Marshall11, Nancy Mueller11 & Caroline Robert12

Combining PD-L1 blockade with inhibition of oncogenic mitogen-activated protein kinase

(MAPK) signaling may result in long-lasting responses in patients with advanced melanoma.

This phase 1, open-label, dose-escalation and -expansion study (NCT02027961) investigated

safety, tolerability and preliminary efficacy of durvalumab (anti–PD-L1) combined with dab-

rafenib (BRAF inhibitor) and trametinib (MEK inhibitor) for patients with BRAF-mutated

melanoma (cohort A, n= 26), or durvalumab and trametinib given concomitantly (cohort B,

n= 20) or sequentially (cohort C, n= 22) for patients with BRAF-wild type melanoma.

Adverse events and treatment discontinuation rates were more common than previously

reported for these agents given as monotherapy. Objective responses were observed in

69.2% (cohort A), 20.0% (cohort B) and 31.8% (cohort C) of patients, with evidence of

improved tumor immune infiltration and durable responses in a subset of patients with

available biopsy samples. In conclusion, combined MAPK inhibition and anti–PD-L1 therapy

may provide treatment options for patients with advanced melanoma.
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The most active standard-of-care therapies for patients with
advanced melanoma are divided into two categories, each
with its own unique properties and characteristics: (i) small

molecule targeted therapy inhibiting aberrant signaling in the
mitogen-activated protein kinase (MAPK) pathway, and (ii)
immune checkpoint inhibitors, with monoclonal antibodies tar-
geting the programmed death receptor 1 (PD-1) and the cytotoxic
T lymphocyte antigen-4 (CTLA-4)1–3. However, as a significant
proportion of patients do not respond or progress after initial
therapy4–9, further treatment options are needed for patients with
advanced melanoma. Of particular scientific and clinical interest
has been combining both modes of therapy, MAPK pathway
inhibitors with cancer immunotherapies. This is supported by the
knowledge that blocking oncogenic BRAFV600 signaling results in
increased sensitivity of melanoma cells to immunotherapy and
increasing antitumor activity in combination with immunother-
apy in mouse models10–12, while in patients it makes melanoma
metastases permissive to immune cell infiltration13.

To maximize the clinical benefits of these distinct classes of
therapeutics, several studies have explored concurrent and
sequential combinations of MAPK inhibitors and immune
checkpoint inhibitors in patients with advanced melanoma; many
have examined combinations of BRAF and MEK inhibitors with
anti-PD-1 or anti-PD-L1 antibodies in patients with BRAFV600

mutant melanoma. A single-arm phase 1b study of the BRAF
inhibitor vemurafenib, the MEK inhibitor cobimetinib, and the
PD-L1 antibody atezolizumab showed an objective response rate
of 71.8% and a median response duration of 17.4 months14.
Furthermore, a phase 1 trial followed by a randomized phase 2
trial of the BRAF inhibitor dabrafenib and the MEK inhibitor
trametinib with or without pembrolizumab demonstrated sig-
nificant improvement in progression-free survival (PFS) with
triple therapy despite an 8.4% lower response rate, and at the
expense of increased toxicity15,16. Recently, results from the pri-
mary analysis of the first randomized phase 3 clinical trial com-
paring the triple combination of atezolizumab with vemurafenib
and cobimetinib, compared to placebo-controlled vemurafenib
and cobimetinib, demonstrated a significant improvement in
PFS17. Patients in the control arm with vemurafenib and cobi-
metinib double targeted therapy had a median PFS of
10.6 months, which was improved to 15.1 months with the
addition of atezolizumab (hazard ratio 0.78)17. There was an
increase in some toxicities with the triple therapy, in particular,
increased creatinine phosphokinase, transaminases, and lipase, as
well as an increase in arthralgia and pyrexia, but no change in the
rate of discontinuation of study drugs due to toxicities17.

Here we report the phase 1 clinical trial testing triple therapy
with dabrafenib, trametinib, and the anti-PD-L1 antibody dur-
valumab in patients with BRAFV600-mutant melanoma with a
long-term follow-up (at least 3 years in all patients) to analyze the
effect of these therapies on patients. The study includes immune
monitoring to explore potential combinatorial effects as well as
interference between these therapeutic modalities. In addition, we
examine clinical and immunologic effects of concurrent and
sequential dosing of trametinib and durvalumab in patients with
BRAF-wild type melanoma, including those with prior progres-
sion on anti-PD-1 antibodies, to explore the potential interactions
between these agents in patients in whom immunologic anti-
tumor effects are expected to predominate.

Results
Patient characteristics. Between December 2013 and April 2015,
99 patients were screened. Sixty-eight patients were enrolled from
11 study centers (Supplementary Fig. 1, Supplementary Data 1),
with 31 patients subsequently excluded due to screening failures.

Data cutoff for this analysis was May 30, 2018, when there were at
least 3 years of follow-up in all study subjects.

Cohort A initially included six patients who received durvalu-
mab 3 mg/kg every 2 weeks (Q2W) plus standard doses of
dabrafenib plus trametinib. Once the safety of this dose was
assessed, an additional 20 patients received durvalumab at 10mg/
kg Q2W, of which 7 were enrolled and treated in the second dose-
escalation phase and 13 were enrolled and treated as part of the
dose-expansion phase. Twenty patients were enrolled in cohort B
and received durvalumab 10mg/kg Q2W concomitantly with
trametinib 2 mg every day (QD); 6 patients were enrolled and
treated in the dose-escalation phase and 14 patients were enrolled
and treated in the dose-expansion phase. In cohort C, 22 patients
received the same combination but sequentially (trametinib: days
1–42; durvalumab: from day 29); 7 patients were enrolled and
treated in the dose-escalation phase and 15 patients were enrolled
and treated in the dose-expansion phase (Supplementary Fig. 1).
The median age in cohort A was 49.0 years (range: 23–71)
(Table 1), which is consistent with younger age observed in
patients with BRAFV600-mutant melanoma7. Cohorts B and C had
a median age of 68.0 years (range: 31–85) and 63.0 years (34–84),
respectively (Table 1). The majority of patients—21 (80.8%), 18
(90.0%), and 18 (81.8%) for cohorts A, B, and C, respectively—had
stage IV metastatic melanoma. Median lactate dehydrogenase
(LDH) levels at baseline for cohorts A, B, and C were 206.5 units
per liter (U/L), 215.0 U/L, and 225.0 U/L, respectively; levels were
elevated in approximately one-third of patients per cohort
(Table 1). In cohort A, 10 (38.5%) patients had received prior
systemic therapies, which was a lower proportion than those seen
in cohort B (13 [65.0%]) and cohort C (15 [68.2%]). Prior
treatments in cohorts B and C included immunotherapy in 12
(60.0%) and 11 (50.0%) patients, respectively.

Patient dispositions. The median treatment duration was
10.4 months in cohort A, 6.3 months in cohort B, and 5.9 months
in cohort C. Eleven (42.3%), 6 (30.0%), and 5 (22.7%) patients,
respectively, completed the intended 12 months of durvalumab
treatment, and were eligible to continue with the targeted therapy
beyond that time. For those who did not complete durvalumab
treatment, the most common reasons for treatment dis-
continuation were disease progression, occurring in 8 (30.8%), 9
(45.0%), and 11 (50.0%) patients in cohorts A, B, and C,
respectively, with adverse events (AEs), occurring in 5 (19.2%), 4
(20.0%), and 3 (13.6%) patients, respectively. Following the
protocol-specified option to be treated beyond progression and
receive a new cycle of durvalumab therapy, 8 patients received
retreatment with durvalumab, 3 of whom completed an addi-
tional 12 months of treatment.

Safety and tolerability. The most common treatment-emergent
AEs deemed related to any of the study drugs investigated are
listed in Supplementary Table 1. The most common treatment-
related AEs in cohort A were pyrexia (76.9%), chills (65.4%),
fatigue (61.5%), and arthralgia (50.0%); the majority of which
were grade 1/2 (2 and 1 patients [both received 10 mg/kg dur-
valumab] reported grade 3 treatment-related pyrexia and
arthralgia, respectively). The most common treatment-related
AEs in cohorts B and C, respectively, were diarrhea (55.0% and
40.9%) and rash (35.0 and 50.0%); the majority of which were
grade 1/2 (1 and 2 patients [both cohort C] reported grade 3
treatment-related diarrhea and rash, respectively. None of the
patients in cohort A, 1 patient (5.0%) in cohort B, and 1 patient
(4.5%) in cohort C had an increase in liver enzymes. Immune-
related AEs were reported in all study cohorts, including hyper-
thyroidism in 1 patient (3.8%) in cohort A, grade 2 pneumonitis
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in 1 (5.0%) in cohort B, and autoimmune hepatitis in 1 (4.5%) in
cohort C.

Grade ≥3 AEs were reported in 18 (69.2%) patients in cohort A
(3 patients received 3 mg/kg durvalumab and 15 patients received
the 10 mg/kg dose), 16 (80.0%) in cohort B, and 16 (72.7%) in
cohort C (Table 2). There was no consistent difference in
tolerability or toxicities between the patients in cohort A who
received durvalumab at 3 or 10 mg/kg (Table 2). Serious AEs were
reported in 16 (61.5% [2 patients received 3 mg/kg durvalumab
and 14 patients received 10 mg/kg durvalumab]), 9 (45.0%), and
10 (45.5%), respectively. AEs that led to dose modifications or
discontinuations, respectively, following any of the study drugs
were reported in 23 (88.5% [5 and 18 patients from the 3 and
10 mg/kg groups, respectively]) and 12 (46.2%) patients in cohort
A, 20 (100%) and 7 (35.0%) patients in cohort B, and 16 (72.7%)
and 11 (50.0%) patients in cohort C. The most common reasons
for treatment discontinuation due to treatment-emergent AEs T
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Table 1 Patient demographics at baseline (as-treated
population).

Characteristic Cohort A:
Durvalumab 3 or
10 mg/kg+
dabrafenib+
trametinib
(n= 26)

Cohort B:
Durvalumab
10 mg/kg+
trametinib
(concurrent)
(n= 20)

Cohort C:
Durvalumab
10mg/kg+
trametinib
(sequential)
(n= 22)

Age, median
(range), years

49.0 (23–71) 68.0 (31–85) 63.0 (34–84)

Male sex, n (%) 14 (53.8) 13 (65.0) 11 (50.0)
LDH levela, n (%)

Normal 15 (57.7%) 14 (70.0%) 12 (54.5%)
High 9 (34.6%) 6 (30.0%) 7 (31.8%)
Missing 2 (7.7%) 0 3 (13.6%)

Race
Black or African
American

0 0 1 (4.5)

White 20 (76.9) 15 (75.0) 13 (59.1)
Not collected 6 (23.1) 5 (25.0) 6 (27.3)

Mutation status, n (%)
BRAF-wild type 0 19 (95.0) 22 (100.0)
NRAS mutant 0 4 (20.0) 7 (31.8)
Other mutation 0 1 (5.0)b 0
BRAFV600E 19 (73.1) 0 0
BRAFV600E/K 7 (26.9) 0 0

Stage at study entry, n (%)
III 5 (19.2) 2 (10.0) 4 (18.2)
IV 21 (80.8) 18 (90.0) 18 (81.8)

Metastasis stage at initial diagnosis, n (%)
M0 14 (53.8) 10 (50) 14 (63.6)
M1 0 1 (5) 0
M1A 2 (7.7) 0 1 (4.5)
M1B 0 1 (5) 0
M1C 3 11.5) 1 (5) 1 (4.5)
MX 0 2 (10) 1 (4.5)
Unknown 7 (26.9) 5 (25) 5 (22.7)

Baseline ECOG performance status, n (%)
0 19 (73.1) 13 (65.0) 12 (54.5)
1 5 (19.2) 7 (35.0) 9 (40.9)
Missing 2 (7.7) 0 1 (4.5)

Number of prior systemic regimens, n (%)
0 15 (57.7) 6 (30.0) 7 (31.8)
1 5 (19.2) 2 (10.0) 8 (36.4)
2 5 (19.2) 4 (20.0) 1 (4.5)
3 0 3 (15.0) 4 (18.2)
≥4 0 4 (20.0) 2 (9.1)
Unknown 1 (3.8) 1 (5.0) 0

Patients with prior immunotherapy in adjuvant or metastatic setting, n (%)
Any 10 (38.5) 12 (60.0) 11 (50.0)
Anti-CTLA-4
inhibitor

6 (23.1) 10 (50.0) 7 (31.8)

Anti-PD-1 or
anti-PD-L1

0 6 (30.0) 5 (22.7)

Cytokine-based
therapy

7 (26.9) 6 (30.0) 6 (27.3)

aNormal LDH levels range from 140 to 280 U/L)37.
bPatient was positive for BRAF Q456H & G464A.
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4, ECOG Eastern Cooperative Oncology
Group, LDH lactic acid dehydrogenase, PD-1 programmed cell death protein-1, PD-L1
programmed cell death-ligand 1.
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were pyrexia (4% of all patients, n= 3), blood creatinine
phosphokinase increase (3%, n= 2), and ejection fraction
decrease (3%, n= 2). No deaths related to the study drugs and
no on-treatment deaths occurred.

No clinically meaningful trends in laboratory parameters or
electrocardiogram (ECG) findings were observed.

Efficacy. In cohort A, the median duration of follow-up was
20.8 months (range: 3.4–38.7). The overall response rate (ORR)
was 69.2% (95% CI: 48.2–85.7), corresponding to 18 patients
(Table 3). The median best percentage change from baseline in
target lesion diameter was −70.6% (range: −100.0 to +10.1)
(Fig. 1). Of the 18 patients who had an objective response, 9
(50.0%) had ongoing responses as of the data cutoff, with a
median duration of response of 15.5 months (Fig. 2). The median
PFS was 11.2 months (95% CI: 8.9–NA), and the median overall
survival (OS) was 31.4 months (95% CI: 14.3–NA) (Table 3;
Supplementary Fig. 2). The OS rate at 12 months was 76% (95%
CI: 54–88).

The median duration of follow-up was 22.1 months (range:
1.7–34.0) months in cohort B and 20.8 months (range: 1.1–36.1)
in cohort C. The ORRs were 20.0% (95% CI: 5.7–43.7) in cohort B
and 31.8% (95% CI: 13.9–54.9) in cohort C, corresponding to 4
and 7 patients respectively (Table 3). Among the 11 patients with
NRAS-mutant disease across cohorts B and C, 3 (27.2%) had PRs.
The median best percentage change from baseline in target lesion
diameter was −13.4% (range: −100 to +32.0) in cohort B and
−33.5% (range: −100 to +46.6) in cohort C (Fig. 1). Of the 4
patients in cohort B and 7 patients in cohort C who had a
response, 3 from each cohort (75.0% and 42.9%, respectively),
continued to respond at the data cutoff; the median duration of
response could not be calculated in cohort B (response ongoing
for most patients), and was 8.7 months in cohort C. The median
PFS was 4.9 months (95% CI: 3.0–5.5) in cohort B and 5.9 months
(95% CI: 2.4–11.1) in cohort C. The median OS was not reached
in cohort B and was 21.7 months (95% CI: 12.0–NA) in cohort C
(Table 3; Supplementary Fig. 2). The OS rate at 12 months was
63% (95% CI: 38–80) in cohort B and 70% (95% CI: 46–85) in
cohort C.

Pharmacokinetic analyses. Pharmacokinetic (PK) data were
available for all 68 patients. PK exposure of durvalumab was
comparable across the different combination arms with 10mg/kg
Q2W durvalumab (Supplementary Table 3), suggesting combi-
nation with dabrafenib and/or trametinib did not impact dur-
valumab exposure in patients.

In general, PK exposure of dabrafenib and dabrafenib
metabolites were maintained over the time course of dabrafenib
treatment, with comparable geometric means of pre-dose

concentrations of dabrafenib observed across study days and
treatment combinations (Supplementary Table 4).

PK exposure of trametinib was maintained over the time
course of trametinib treatment and comparable in each cohort.
Across all cohorts, geometric means of pre-dose concentrations of
trametinib were comparable on the same study day (Supplemen-
tary Table 5), suggesting that combining with different durvalu-
mab doses and dabrafenib did not impact PK exposure of
trametinib.

As a whole, PK concentrations of durvalumab, dabrafenib, and
trametinib were consistent with PK observations from previous
studies using similar dosing regimens18–22.

Immunogenicity. Immunogenicity data were available for a total
of 66 of 68 patients. Of the 66 patients tested, all were negative for
ADAs to durvalumab at baseline. Five (7.6%) patients tested
positive for treatment-emergent durvalumab ADAs; all 5 patients
were transiently positive for durvalumab ADAs. Overall, PK
exposure of durvalumab was similar between ADA treatment-
emergent positive and negative patients, indicating that the effect
of immunogenicity on PK exposure of durvalumab was minimal.
No clear evidence of any potential impact of ADAs on safety were
observed, with the AEs reported in ADA-positive patients similar
to those reported in patients who were ADA-negative.

Pharmacodynamic analyses. Biopsies for analysis of changes in
CD8+ T-cell infiltration by immunohistochemistry were avail-
able from 13 patients in cohort A, 12 in cohort B, and 5 in cohort
C (Fig. 3). Baseline CD8+ cell infiltration was higher in cohort A
(median density 432.0 cells/mm2) than in cohort C (388.2 cells/
mm2), and highest in cohort B (median 835.5 cells/mm2); the
difference may have been influenced by patients in cohort A
being less likely to be pretreated for metastatic melanoma.
Changes in immune infiltration were common in cohort A:
CD8+ cell density increased in 9 of 13 biopsies at day 15.
Changes in CD8+ cell density were not as consistent in biopsies
of patients from cohorts B and C. Because patients in cohort C
received sequential therapy with trametinib and durvalumab,
with a partial overlap over 2 weeks, we analyzed CD8+ cell
infiltration on day 15 when they were on trametinib alone and on
day 43 when they were receiving the combination. However, there
was no evidence of change in CD8+ cell density in the 3 patients
that had sequential biopsies for analyses at all 3 time points
(baseline, day 15, and day 43). Although the study was not
powered to make a direct comparison, these data may suggest a
more frequent increase in CD8+ cell infiltration in patients with
BRAF-mutated melanoma receiving BRAF plus MEK inhibitors
with anti-PD-L1 therapy than in patients with BRAF-wild type
melanoma receiving the MEK inhibitor with anti-PD-L1 therapy.

Table 3 Clinical activity (as-treated population).

Response Cohort A: Durvalumab 3 or 10mg/kg+
dabrafenib+ trametinib (n= 26)

Cohort B: Durvalumab 10mg/kg+
trametinib (concurrent) (n= 20)

Cohort C: Durvalumab 10mg/kg+
trametinib (sequential) (n= 22)

ORR (CR+ PR), n (%) 18 (69.2) 4 (20.0) 7 (31.8)
DCR (CR+ PR+ SD), n (%) 25 (96.2) 16 (80.0) 14 (63.6)
CR, n (%) 3 (11.5) 1 (5.0) 0
PR, n (%) 15 (57.7) 3 (15.0) 7 (31.8)
SD, n (%) 7 (26.9) 12 (60.0) 7 (31.8)
DCR12, n (%) 23 (88.5) 14 (70.0) 13 (59.1)
Median DoR, months 15.5 NA 8.7
Median PFS (95% CI), months 11.2 (8.9–NA) 4.9 (3.0–5.5) 5.9 (2.4–11.1)
6-month PFS rate (95% CI), % 78.3 (55.4–90.3) 28.2 (10.3–49.4) 41.3 (18.3–63.1)
12-month PFS rate (95% CI), % 49.1 (27.0–68.0) 22.6 (7.0–43.4) 15.5 (1.2–45.4)
Median OS (95% CI), months 31.4 (14.3–NA) NA (6.9–NA) 21.7 (12.0–NA)
12-month OS rate (95% CI), % 76 (54–88) 63 (38–80) 70 (46–85)

CR complete response, DCR disease control rate, DCR12 disease control rate at 12 weeks, DoR duration of response, NA not available, ORR overall response rate, OS overall survival, PFS progression-free
survival, PR partial response, SD stable disease.
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RNA-sequenced gene expression profiling was performed on
95 biopsies from 65 patients; of these, 84 samples had adequate
quality for analysis (Supplementary Fig. 3, Supplementary
Table 2). The analyzed biopsies were from 20 patients in cohort A
(including 13 with CRs or PRs, 6 with stable disease [SD],

and 1 not evaluated), 16 patients in cohort B (including 3 with
PRs, 11 with SD, and 2 with disease progression), and 14
patients in cohort C (including 4 with PRs, 4 with SD, 3 with
disease progression, and 3 not evaluated) (Fig. 3, Supplementary
Fig. 4).
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Fig. 1 Best percentage change from baseline in tumor diameter (as-treated population). Longitudinal tumor size was analyzed using a non-linear mixed-
effects model to determine tumor growth rate constants and time to growth. Cohort A, n= 26; Cohort B, n= 20; Cohort C, n= 22. CR/PR, complete
response/partial response.
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In cohort A, objective responses were observed regardless of
baseline immune gene expression, suggesting that response to this
triple therapy combination is not limited to patients with a pre-
existing immune infiltrate, as is the case with single-agent PD-1/
L1 blockade therapy23. Biopsies on day 15 from patients in cohort
A who had a response to therapy had higher levels of immune
gene expression than those from patients with SD, but there was
wide variability among the biopsies. Similar variability in immune
gene expression was noted in biopsies from cohorts B and C, with
an evident decrease from baseline in expression in the on-therapy
biopsies of cohort C, which were taken at the time that patients
received trametinib alone and were the only group of on-therapy
biopsies while patients were not receiving durvalumab. These

data suggest that single-agent therapy with trametinib in cohort C
resulted in an apparent decrease in immune gene expression in
biopsies compared with combination therapy including durvalu-
mab in the two other cohorts.

We also analyzed interferon-gamma (IFNγ) levels in circulat-
ing blood from patients in all 3 cohorts (Fig. 3). The triple therapy
used in cohort A resulted in a rapid increase that peaked on day
15 and remained high in subsequent blood samples up to day 57.
In contrast, cohorts B and C had slower increases in circulating
blood IFNγ levels, which also peaked at day 15 but were lower in
subsequent blood samples. These data suggest that systemic
immune activation occurred in all cohorts, but was more
pronounced in cohort A.
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0 12 36 72 108 1506 18 54 9048 84 120 14430 66 102 13242 78 114 13824 60 96 126

Continued response off treatment

Time to response

Discontinuation of treatment
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Fig. 2 Duration of response (as-treated population). Vertical lines indicate planned 12 months of treatment with durvalumab. Cohort A, n= 26; Cohort B,
n= 20; Cohort C, n= 22.
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Discussion
This multicohort phase 1 clinical trial provides confirmation of
the combinatorial effects between BRAF plus MEK inhibitor
therapy and anti-PD-L1 blockade in BRAF-mutated melanoma,
including patients who had previously progressed on anti-CTLA-
4 therapy, with supporting data on the immune-stimulatory
effects of the triple therapy combination provided by RNA
sequencing. We also tested the combination of a MEK inhibitor
with anti-PD-L1 antibody therapy, both concomitant and
sequentially.

The immune monitoring data for the triplet combination of
dabrafenib, trametinib, and durvalumab provide continued

support for the concept of a favorable immunologic interaction
between MAPK inhibitors and anti-PD-1 antibodies. As reported
in previous studies14,16, the triplet combination was associated
with increases in CD8+ T-cell density, which is associated with
productive antitumor immune responses. Furthermore, objective
responses were seen even in patients without substantial baseline
CD8+ T-cell infiltrate, a population that might be unresponsive
to anti-PD-1 antibody monotherapy; increased circulating IFNγ
levels were observed in cohort A overall. Previous work supports
an independent role of BRAF and MEK inhibitor combination
therapy in increasing tumor-infiltrating lymphocyte populations
and inflammatory cytokine levels, suggesting that this effect
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Fig. 3 RNA-sequenced gene expression profiling, CD8+ T-cell infiltration by IHC, and IFNγ levels in circulating blood. Cohort A, n= 13; Cohort B,
n= 12; Cohort C, n= 5. CR complete response, IHC immunohistochemistry, IFN-γ interferon-gamma, PR partial response, PD progressive disease, SD
stable disease, TIL tumor-infiltrating lymphocyte.
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cannot be attributed solely to exposure to the anti-PD-L1 anti-
body, durvalumab10,14. Although our sample size was small, half
of the patients receiving triplet therapy remained in remission at a
median follow-up of 20.8 months, which compares favorably to
historical controls for combined BRAF plus MEK inhibitors24–26.
However, in the absence of a durvalumab monotherapy lead-in
and paired biopsies, the immunologic contribution of the PD-L1
inhibitor to long-term patient benefits could not be isolated.

In cohort C of the current study, in which trametinib was
initially given alone, there was no increase in tumor-infiltrating
CD8+ T cells in three patients with available paired tumor
biopsies. In addition, inflammatory gene expression actually
decreased in patients treated with trametinib alone, while this
effect was not seen in patients treated with concurrent trametinib
and durvalumab. Although these data are preliminary given the
small sample size, they suggest that trametinib could have an
immune inhibitory effect that is offset by the addition of durva-
lumab. In addition, circulating IFNγ levels appeared to increase
more gradually and in a less sustained manner in patients in
cohorts B and C, compared with patients in cohort A with
increased MAPK inhibitor-sensitive BRAF-mutant melanoma,
even though the BRAF plus MEK inhibitor combination is
expected to have less impact on wild type cells than the MEK
inhibitor alone; a recognized paradoxical effect27.

Overall, the clinical response data for the trametinib plus
durvalumab combination arms in BRAF-wild type melanoma
could not clearly demonstrate whether doublet therapy improved
the response rate in comparison with historical controls. In
cohort B, in which trametinib and durvalumab were administered
concurrently from the outset, the ORR was 20.0%, and in cohort
C, in which the agents were initiated sequentially, the ORR was
31.8%. These estimates in relatively small patient samples are
similar to, if not slightly lower, than those observed in patients
treated with anti-PD-1 antibody monotherapy2,28,29, which may
reflect that this study allowed inclusion of patients who had prior
progression to PD-1 blockade therapy. Of the patients in cohorts
B and C, 30% were previously treated and progressed on anti-PD-
1 antibodies. One of these 11 patients responded to combination
therapy and 9 patients had SD; it remains unclear whether the
addition of MEK inhibition could promote antitumor immunity
and response to anti-PD-1 and anti-PD-L1 antibodies in a
selected subset of patients.

In summary, the triplet combination of dabrafenib, trametinib,
and durvalumab is feasible in patients with BRAF-mutant
advanced melanoma and induces robust and sustained immune
modulation. The increase in toxicities observed with the combi-
nation of the three therapies needs to be evaluated within the
context of the limited benefits observed when targeted therapies
or immunotherapy treatments are given separately in those
patients with the most aggressive disease at diagnosis. Additional
studies are required to define the role of combined MAPK inhi-
bition and immune checkpoint blockade in patients with
advanced melanoma.

Methods
Study design and treatment. This was an open-label, dose-escalation, and
-expansion study in patients with BRAFV600-mutant or BRAF-wild type metastatic
or unresectable melanoma (NCT02027961). Patients were randomized to receive
either durvalumab in combination with dabrafenib and trametinib or with tra-
metinib alone. The study protocol can be found in the Supplementary Notes;
Section 4.5 of the study protocol detailing the formulation of durvalumab has been
redacted due to legal/intellectual property requirements set by the manufacturer.

Following a 28-day screening phase, patients were enrolled in one of three study
cohorts (Supplementary Fig. 5). Cohort A included patients with BRAFV600E- or
BRAFV600K-mutant disease who received dabrafenib 150 mg twice daily, trametinib
2 mg once daily, and durvalumab 3mg/kg (first dose-escalation cohort) or
10 mg/kg administered intravenously Q2W (dose-expansion phase). Dabrafenib
and trametinib were administered until confirmed progressive disease or

intolerable toxicity, and durvalumab was administered for up to 12 months. Cohort
B included patients with BRAF-wild type melanoma who received concurrent
trametinib 2 mg once daily and durvalumab 10 mg/kg intravenously Q2W for up to
12 months until confirmed disease progression or intolerable toxicity. Cohort C
included patients with BRAF-wild type melanoma who received sequential doses of
trametinib 2 mg once daily for 42 days and durvalumab 10 mg/kg Q2W starting on
day 29 for up to 12 months. In all 3 treatment cohorts, durvalumab would be
stopped at 12 months in the absence of confirmed progression, initiation of
alternative cancer therapy, unacceptable toxicity, withdrawal of consent, or other
reason to discontinue treatment.

The study protocol allowed to continue patients on therapy beyond initial
progression. In Cohorts A and B, if there was evidence of progression during the
post-durvalumab treatment period, durvalumab may be re-administered as an IV
infusion Q2W for up to an additional 12 months while continuing dabrafenib and
trametinib (Cohort A) or trametinib alone (Cohort B) provided the subject meets
the criteria for re-administration in the setting of PD. In Cohort C, durvalumab
may be re-administered as an IV infusion Q2W for up to an additional 12 months
without concurrent trametinib provided the subject meets the criteria for re-
administration in the setting of progressive disease. All subjects will be followed
indefinitely for survival, until the sponsor closes the study, or for the maximum
duration per institutional standards.

Patients. Patients with stage IIIC/IV melanoma were eligible for inclusion. To
further meet inclusion criteria, patients were required to have ≥1 measurable lesion
per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.130, an
Eastern Cooperative Oncology Group performance status of 0 or 1, and adequate
bone marrow and organ function. Prior immunotherapy with anti-CTLA-4 or anti-
PD-1/PD-L1 agent was permitted. Key exclusion criteria included another malig-
nancy within 5 years of study enrollment, active or prior autoimmune disease, prior
BRAF or MEK inhibitor therapy, prior severe or persistent immune-related AEs,
and a history of primary immunodeficiency. All patients provided written
informed consent.

The first patient was enrolled on 20 December 2013 and the last visit for the
final patient was on 24 April 2018. Data cutoff for this analysis was May 30, 2018,
when there was at least 3 years of follow-up in all study subjects.

Outcomes. The primary endpoints of safety assessment and determination of the
maximum tolerated dose (MTD) included evaluation of dose-limiting toxicities
(DLTs, AEs, serious AEs, laboratory evaluations, vital signs, physical examinations,
and ECG results. Secondary endpoints were objective response and disease control
per RECIST v1.1, duration of response, PFS, OS, pharmacokinetics (Cmax and
Ctrough after the first and steady-state doses), and immunogenicity (number and
percentage of subjects who develop detectable antidrug antibodies [ADAs]).

Exploratory endpoints included antitumor activity as assessed by immune-
related RECIST (irRECIST)31 during central review of scans,
immunohistochemical assessment of PD-L1 expression within the tumor
microenvironment and correlation with response to treatment, tumor growth
parameters, and pharmacogenomic analysis of blood and tumor samples to identify
a gene signature predictive of response. We focused the analysis on the change in
expression of genes involved in MHC class I or II, and immune genes related to
CD8 and interferon-gamma (IFNγ) signaling, which have been previously reported
to increase in tumors from preclinical models testing the combination of BRAF and
MEK inhibitors or MEK inhibitors together with immunotherapy31–33.

Procedures. The population for efficacy analysis and safety evaluation included all
patients who received any dose of study product (as-treated population). The PK-
evaluable population consisted of all subjects who received at least 1 dose of
investigational product and at least 1 post-dose evaluable PK result. Immuno-
genicity data were analyzed in all patients who had a non-missing baseline ADA
result and at least one non-missing post-baseline ADA result.

AEs were graded per Common Terminology Criteria for Adverse Events
version 4.03 and were assessed throughout the study and for 90 days after the end
of treatment. Tumor assessments for the secondary (RECIST v1.1) or exploratory
(irRECIST) endpoints were conducted during screening, and throughout the study
period until disease progression, death, or withdrawal from the study. In addition
to tumor assessments during screening, and throughout the study period,
assessment for patients discontinuing all study products due to confirmed disease
progression, disease evaluation was performed at the end-of-treatment visit and
30 days thereafter. For patients entering follow-up after discontinuation of all study
products due to toxicity, disease evaluation was performed at the end of treatment,
every 2 months for 1 year, and then every 6 months thereafter until confirmed
disease progression or the end of the study. The response rate was defined as the
percentage of patients with a confirmed complete response (CR) or partial response
(PR) per RECIST v1.1, as assessed by the site investigators. The best percentage
change from baseline in tumor diameter was defined as the maximum reduction
from baseline or the minimum increase from baseline in the absence of a reduction.
Measurement of durvalumab concentrations in serum and of dabrafenib,
dabrafenib metabolites (hydroxy- and desmethyl-dabrafenib), and trametinib
concentrations in plasma were performed using a validated immunoassay. Blood
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samples were collected on day 1, day 8, day 15, and day 29 (±1 day). Presence of
ADA will be assessed in samples taken on day 1 and day 29 (±1 day). Samples will
be measured for the presence of ADA by the sponsor using a validated bridging
immunoassay. For the translational analyses, tumor biopsies were collected at
baseline, and then on day 15 (±3 days) and day 43 (±3 days) of the treatment
period. For the RNA sequencing (RNAseq), total RNA from each sample was
prepared for sequencing using the Takara Bio SMART-Seq: SMART-Seq® v4 Ultra®

Low Input RNA Kit. Between 0.8 and 1.3 ng of RNA was used to prepare the RNA
libraries. Eleven cycles of PCR were performed during cDNA amplification.
Samples were then processed with the Nextera XT DNA sample preparation kits
for Illumina. The cDNA was normalized to the modified recommended input
amount of 100–150 pg and ten cycles during Nextera library prep. The purified
amplified libraries were then validated by Agilent High Sensitivity DNA chip on
Agilent 2100 Bioanalyzer and quantitated via qPCR using KAPA Library
Quantification Kit (KAPA Biosystems) according to manufacturer’s instructions.
The libraries were sequenced on Illumina HiSeq 2500 with the following run
parameters: Paired-End/Dual-Indexed 2 × 75 bp reads. RNAseq data were aligned
to the human reference genome (GRCh38) by Hisat234. Gene expression was
annotated using Ensembl (release 94) and summarized by HTSeq-counts35. Gene
expression values were normalized and compared across groups using the DESeq2
R package24. Gene expression was displayed as the z-score of the normalized gene
expression using the ggplot2 R package36.

Statistical design and analysis. The dose-escalation phase followed a standard
3+ 3 design. Where ≤2 DLTs were observed in the dose-escalation phase for each
cohort, the dose for durvalumab could be increased to 10 mg/kg (MTD) as part of
the dose-expansion phase. The dose levels for the dose escalation of durvalumab in
combination with dabrafenib and trametinib in cohort A was based on the dose-
escalation safety and pharmacokinetic information using single-agent durvalumab.
Based on the prior experience, durvalumab was started at 3 mg/kg Q2W, one dose
level below the recommended phase 2 dosing of durvalumab alone, with the next
cohort using the full dose of durvalumab at 10 mg/kg Q2W followed by a dose-
expansion cohort. The 10 mg/kg is the FDA-approved dose for durvalumab. The
primary justification of the schedule for cohort C was the anticipated increase in
toxicities with the combination of a MEK inhibitor with an anti-PD-L1 therapy. At
the time of starting this study, it was already clear that the combination of a BRAF
and MEK inhibitor was less toxic than using either agent alone, given that both
drugs offset the toxicities of each other through the phenomenon of paradoxical
MAPK activation with a BRAF inhibitor. In particular, MEK inhibitors given as
single agent had near-universal acneiform skin rash that limited continuous
therapy administration, which was felt could be worsened with the addition of anti-
PD-L1.

Approximately 69 patients were required to be enrolled for both the dose-
escalation phase and the dose-expansion phase of the study. For the dose-escalation
phase, up to 24 evaluable patients were required, with 2 dose levels in cohort A and
1 dose level each in cohorts B and C. For the dose-expansion phase, a minimum of
42 patients were required in the 3 cohorts (~14 patients in each of Cohorts A, B,
and C) to ensure ~20 patients were treated at the MTD or 10 mg/kg dose level
selected for each cohort. The sample size was mainly chosen to obtain preliminary
assessment of antitumor activity (ORR) for the BRAF-wild type and BRAF
mutation-positive cohorts.

Unless otherwise stated, patient dispositions, baseline characteristics, and
safety and efficacy analyses were based on the as-treated population, which
included all subjects who received any investigational product. Categorical
data were summarized by frequency distribution (number and percentage of
patients falling within each category). Continuous variables were summarized
by descriptive statistics, including N values, means, standard deviations,
medians, and ranges. Confidence intervals, whenever specified, were two-sided and
produced at 95%. The Kaplan–Meier method was used to estimate PFS and OS,
where PFS was defined as the time from the start of treatment with a study product
to the first documentation of disease progression or death, whichever came first,
and OS was measured from the start of treatment until death. Individual
durvalumab, dabrafenib, dabrafenib metabolites, and trametinib concentrations
were tabulated by dose cohort, visit, and time points, along with descriptive
statistics. For durvalumab, PK parameters were estimated using a non-
compartmental PK analysis approach for each dose cohort. Immunogenicity was
assessed by summarizing the number and percentage of subjects who develop
detectable ADAs.

Study oversight. The study was performed in accordance with the Declaration of
Helsinki and the principles of the International Conference on Harmonisation/
Good Clinical Practice and/or local regulatory requirements. The study protocol
was approved by the relevant institutional review board/independent ethics com-
mittee (see Supplementary Table 6), and AstraZeneca provided regulatory autho-
rities, the institutional review board/independent ethics committee, and principal
investigators with safety updates/reports. Dose-escalation and dose-expansion
decisions were made by a study-specific committee.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The clinical dataset analyzed here is available and may be obtained in accordance with
AstraZeneca’s data sharing policy, which is described at https://astrazenecagrouptrials.
pharmacm.com/ST/Submission/Disclosure. RNAseq data is available in GEO under
GSE158403.
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