
ARTICLE

Advancing theoretical understanding and practical
performance of signal processing for nonlinear
optical communications through machine learning
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In long-haul optical communication systems, compensating nonlinear effects through digital

signal processing (DSP) is difficult due to intractable interactions between Kerr nonlinearity,

chromatic dispersion (CD) and amplified spontaneous emission (ASE) noise from inline

amplifiers. Optimizing the standard digital back propagation (DBP) as a deep neural net-

work (DNN) with interleaving linear and nonlinear operations for fiber nonlinearity com-

pensation was shown to improve transmission performance in idealized simulation

environments. Here, we extend such concepts to practical single-channel and polarization

division multiplexed wavelength division multiplexed experiments. We show improved per-

formance compared to state-of-the-art DSP algorithms and additionally, the optimized DNN-

based DBP parameters exhibit a mathematical structure which guides us to further analyze

the noise statistics of fiber nonlinearity compensation. This machine learning-inspired ana-

lysis reveals that ASE noise and incomplete CD compensation of the Kerr nonlinear term

produce extra distortions that accumulates along the DBP stages. Therefore, the best DSP

should balance between suppressing these distortions and inverting the fiber propagation

effects, and such trade-off shifts across different DBP stages in a quantifiable manner. Instead

of the common ‘black-box’ approach to intractable problems, our work shows how machine

learning can be a complementary tool to human analytical thinking and help advance theo-

retical understandings in disciplines such as optics.
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Optical communications are the backbone of all forms of
information technology infrastructure in our modern
society. As global Internet traffic grows by 60% per year1,

research breakthroughs in optical communication speeds are
much needed to meet the connectivity demands in the future.
Fiber Kerr nonlinearity has long been the fundamental bottleneck
for long-haul optical communications. While signal propagation
dynamics in nonlinear optical fibers is well-known and governed
by the nonlinear Schrödinger equation (NLSE), the interactions
between fiber nonlinearity-induced self-phase modulation (SPM),
CD, and inline optical amplifier noise prove to be very difficult to
statistically characterize and compensate. The best and most
common DSP to date for fiber nonlinearity compensation is the
class of digital back-propagation (DBP)2 algorithm and its var-
iants3–5 that provide reasonable performance gain (measured in
terms of the improvement in bit error ratio (BER) or the corre-
sponding quality (Q) factor in comparison with the case without
nonlinearity compensation) in single-channel single-polarization
systems. In practical polarization-division-multiplexed (PDM)
wavelength-division-multiplexed (WDM) environments, how-
ever, single-channel DBP algorithms show negligible improve-
ments due to interchannel cross-phase modulation (XPM)
effects6,7. In addition, as different wavelength channels might
have traveled through different links in a mesh network before
arriving at the same receiver, interchannel nonlinear effects
cannot be fully extracted from the received signals that sig-
nificantly reduce the effectiveness of any joint-channel DBP that
includes all the signals from neighboring channels, and attempts
to compensate both SPM and XPM effects. Consequently, DBP is
not widely deployed in commercial transceivers at present. Fun-
damentally, the interplay between CD, SPM, and amplified
spontaneous emission (ASE) noise from inline amplifiers renders
the system intractable and makes it difficult to derive optimal
DSP algorithms.

ML has recently gained a lot of attention as a powerful tool in
science and engineering problems that are virtually impossible to
explicitly formulate. In optics, ML has been applied to enhance
resolution of microscopy8, identify anthrax spores through quasi-
phase imaging (QPI)9, and predict Internet network traffic10. ML
is also applied to fiber nonlinearity compensation in optical
communications. Various ML techniques, such as expectation
maximization (EM)11, support vector machine (SVM)12,13, and
message-passing algorithms5, were studied, but they show
meaningful gains only for dispersion-managed links or OFDM
signals, both of which are not default choices of technology in
current long-haul digital coherent systems. For single-carrier
systems, Kamalov et al.14 conducted a field-trial demonstration
using neural networks with information symbol triplets as inputs,
but the performance is inferior to standard DBP. On the other
hand, Häger and Pfister15–17 considered the linear and nonlinear
steps of DBP as a deep neural network (DNN) where preliminary
simulation studies for single-channel single-polarization systems
are presented. However, practical transmission impairments, such
as laser-phase noise, laser-frequency offsets, polarization, and
WDM effects, have not been studied. In addition, many ML
applications in optical communications are impressive “black-
box” data-driven models with unparalleled performance, but they
contribute little additional insights into the problem concerned.

Here, we show a unique example of how ML can not only
produce readily implementable algorithms advancing system
performance, but also complement analytical thinking to develop
deeper mathematical insights into fiber nonlinearity compensa-
tion. We first demonstrate performance gain in realistic experi-
mental settings using the deep neural network-based digital back-
propagation (DNN-based DBP) architecture15–17. To do so, we
take into account the time series and dispersive nature of the

received signals, and appropriately integrate the DNN with other
essential non-ML DSP blocks. We show that a low-complexity
implementation of such DNN-based DBP demonstrates a 0.9-dB
Q-factor gain compared with optimal DBP performance with
arbitrary complexity for single-channel 28-GBaud 16-QAM sys-
tems. We further extended DNN-based DBP to PDM and WDM
systems with dynamic polarization-state estimation. Low-
complexity DNN-based DBP demonstrates a Q-factor gain of
0.6 dB and 0.25 dB over arbitrarily complex DBP for single-
channel PDM and WDM PDM 28-GBaud 16-QAM systems,
respectively. It should be emphasized that the DNN-based DBP is
a single-channel DSP algorithm that provides performance gain
in WDM environments, which serves as a key stepping stone
toward practically implementable nonlinear compensation algo-
rithms in a WDM environment. In addition, the optimized DNN-
based DBP configurations reveal subtle mathematical structures
that guide us to analyze the interplay between CD, nonlinearity,
and noise. Such machine-learning-inspired analysis leads to a
deeper insight that the optimal DSP should balance between
compensating transmission impairments and additional distor-
tions generated by the DBP itself. This is in contrast with typical
ML applications in optical communications, which propose high-
performance algorithms and bypass the need to further analyze
the system at hand. The work is an example of the emerging area
of interpretable machine learning18 in the ML community where
qualitative and human-understandable insights are gained from
examining optimized ML configurations, which in turn help
advance the theoretical understandings of the field concerned.

Results
Digital back propagation. Let E(z, t) at z= 0 be the electric field
of a signal at the transmitter. In the simplest form, signal pro-
pagation in optical fibers is described by the stochastic scalar
nonlinear Schrodinger equation (NLSE)

∂E z; tð Þ
∂z

¼ � 1
2
α� jβ2

1
2
∂2

∂t2

� �
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where n(z, t) are distributed ASE noise from inline amplifiers,
which can be modeled as additive white Gaussian noise (AWGN)
with zero mean and autocorrelation E n z; tð Þn*ðz0; t0Þ� � ¼
σ2δ t � t0ð Þδðz � z0Þ, where δ is the Kronecker delta function. In this
formulation, D and N are the linear and nonlinear operators,
respectively, and α, β2, and γ denote attenuation, group velocity
dispersion, and fiber nonlinearity coefficient.

Signal propagations in optical fibers can be numerically
simulated using the split-step Fourier method (SSFM) that
interleaves the effect of CD/loss and nonlinear-phase rotation
over a small length Δz of fiber. By separately applying the effect of
CD/loss and nonlinearity to the signal, each step is analytically
tractable. With digital coherent receivers, DBP is the standard
technique to compensate fiber nonlinearity and is shown in Fig. 1.
The DBP algorithm is a cascade of CD compensation filters D−1

with transfer function H ωð Þ ¼ e�jω2β2Ls=2, where Ls is the step size
of the DBP. The nonlinear-phase derotation operation N−1 is
defined by σk xð Þ ¼ xe�jγLeff ξk xj j2 , where Leff ¼ 1� e�αLsð Þ=α is the
effective length and ξk is a scaling factor. The operators D−1 and
N−1 attempt to undo the linear and nonlinear effects of NLSE
during fiber transmission.

In standard DBP implementations, ξk is the same for each stage
of the DBP and is empirically optimized using brute-force
approaches. The optimal value ξopt depends on the noise level,
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dispersion map among other factors. The choice of the step size
Ls is a trade-off between complexity and performance, and is
well-documented in the literature2. DBP has since been extended
to the case of polarization-multiplexed transmissions19, stochastic
DBP5, and joint-channel DBP20 for WDM transmissions, and
numerous simplification techniques have been proposed. Unfor-
tunately, as of today, DBP is still relatively complex3,4,21,22, and
for WDM systems, single-channel DBP provides marginal
performance improvements.

With the advent of machine learning and especially deep
learning in recent years, one can put the familiar DBP algorithm
in the lens of deep learning. Specifically, the interleaving linear
and nonlinear steps of DBP can be seen as the linear and
nonlinear operations of a multilayer neural network as shown in
Fig. 2, in which the input is the received signal sample and the
output is the estimated symbol sequence15. In this case, the
nonlinear operation is basically the nonlinear-phase derotation.
For a communication channel with linear effects, such as loss and
chromatic dispersion, the linear operators resemble the effect of
linear filters, which essentially implies that Wk are Toeplitz
matrices. In this case, all the filter taps sk ¼ ½sk1 sk2 sk3 � � �� and ξk
become parameters that can be optimized by machine-learning
techniques.

Training of DNN-based DBP. While the concept of DNN-based
DBP has been studied in the literature15,16, we propose several
necessary modifications to enable performance gain in practical
transmission experiments using DNN-based DBP. The input to
the DNN-based DBP is derived from the coherently detected
signal with sampling rate of 2 samples/symbol. As our random
symbols are generated by 25 repetitions of pseudo random bit
sequence (PRBS) with a period of 65,536 symbols, we use the first

32,768 symbols (65,536 samples) for training and 25 copies of the
other 32,768 symbols for testing to avoid repeating of training
data in the testing set. The testing set contains a total of
819,200 symbols (3,276,800 bits for 16-QAM signals) for BER
and Q-factor calculation. We apply a DNN model to our appli-
cation by taking into account the time series and dispersive
nature of the received signals, and use adjacent input vectors and
training mini batches with overlapping signals, and use overlap-
and-save23 in the linear step of our implementation. In particular,
we divide the 65,536 training samples into blocks of neural net-
work inputs and jointly tuned the input vector size, linear filter
length, and the initial- and final learning rates of AdaBound
optimizer (to be described in more detail below). The results
show that 121 taps and 128 samples per input, i.e., 512 total input
vectors are optimal settings across most experimental setups
studied in our work. With the amount of CD-induced pulse
broadening in the transmission link, we append 60 neighboring
samples to the two ends of each input to appropriately incor-
porate pulse-broadening effects in the overlap-and-save method,
thus resulting in 512 input vectors of length 248 samples into the
neural network as shown in Fig. 3. The number of layers in the
deep neural network is equivalent to the number of DBP steps.
The loss function, or objective function, we chose to optimize is
the error vector magnitude (EVM) defined as the mean of
Ê t;0ð Þ�E t;0ð Þj j2

E t;0ð Þj j2 that is closely related to mean-squared error (MSE).

It should be noted that the signal-to-noise ratio (SNR) is essen-
tially proportional to 1/EVM or 1/MSE and can be used as loss
function in principle. We use EVM/MSE as the cost function as
they are common in both optical communications and machine-
learning community24,25. Typically, optimization of neural net-
works uses real-valued parameters, while communication signals
are complex-valued. Therefore, we first convert all computations
into real multiplications and additions so that the optimization
task is supported by common deep-learning frameworks like
Tensorflow26. Standard DBP configurations are used as the
initializations of the deep neural network, i.e., CD compensation
filter as the linear step with ξk= ξopt for all k. The batch size is
optimized to 16. Since the correct overlapping waveform is nee-
ded for overlap-and-save in each linear step, we append 6
neighboring inputs before and after each batch of 16, so that the
overlapping parts outside the batch are updated along with each
batch at each step. This arrangement is similar to having over-
lapping data in neighboring mini batches. The whole batch of 6
+ 16+ 6= 28 inputs are processed together, while the output of
the middle 16 vectors is used to calculate the cost function and
update the parameters of the neural network as shown in Fig. 3.

We will first pass the input into standard DSP blocks, such as
CD compensation or DBP, followed by the laser-frequency-offset
compensation (FOE) by using the periodogram of the 4th power

Fiber propagation

E (t, 0)
E (t, Δz )

n(t, Δz ) n(t, 2Δz )

E (t, 2Δz ) E (t, L – Δz )

E (t, L)

E (t, L)

B (t, L – Ls)

Ê (t, L – Ls) Ê (t, L – 2Ls) Ê (t, 0)
Ê (t, 0)

B (t, L – 2Ls)

N

N–1

D + +

D–1 N–1D–1 N–1D–1 N–1D–1

N D N D N D

Digital back propagation

Fig. 1 Fiber propagation model and DBP structure. The DBPs are interleaving operations of CD compensation and nonlinear-phase derotation. The choice
of step size Ls is a trade-off between transmission performance and computational complexity.
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Fig. 2 DBP as DNN. The digital back-propagation algorithm can be viewed
as a deep neural network with interleaving linear and nonlinear operations
Wk and σk, respectively. The parameters can be optimized by machine
learning.
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of the received QAM signal27, polarization demultiplexing (for
polarization-multiplexed signals), and carrier- phase estimation
(CPE) using blind-phase search (BPS) technique28 as shown in
Fig. 4. At the testing phase, DBP is replaced by the trained DNN-
based DBP and the CPE output is used for BER calculation. For
training the neural network, the Adam29 optimizer is a popular
choice, thanks to its rapid converging speed compared with
stochastic gradient descent (SGD) and is adopted by Häger and
Pfister15. However, we observed in our work that the optimized
parameter settings using Adam are highly specific to each training
dataset and generalized poorly for different experimental setups.
In this connection, we chose the recently proposed AdaBound30

optimizer that outperforms Adam in convergence stability, neural
network performance, and generalizability to different datasets.
This is achieved by specifying the desired initial and final learning
rate so that the actual learning rate is bounded and smoothly
transitioned between these two values in the AdaBound
optimizer. In addition, we extended the neural network model
in Häger and Pfister15 to PDM systems, conduct PDM and WDM
experiments, appropriately integrate the neural network with
non-ML laser and polarization impairment compensation algo-
rithms, and highlight how the optimized neural network
configurations in turn help advance theoretical understandings
of nonlinear signal–noise interactions during propagation and
receiver signal processing, as will be shown next.

DNN-based DBP for single-channel transmissions. Experi-
ments are conducted to determine the effectiveness of DNN-
based DBP in practice. The experimental setup is shown in Fig. 5.
At the transmitter side, a 92GSa/s arbitrary waveform generator
(AWG) is used to generate 28-GBaud 16-QAM symbols shaped
by squared raised cosine filter with roll-off factor of 0.2. The

electrical waveforms first go through SHF-807 high-bandwidth
electrical amplifiers followed by I/Q modulator to modulate the
optical signals. The modulated optical waveform was amplified
and launched into the fiber link. A flat-top optical filter with 3-dB
bandwidth of 4 nm is used in each span to suppress the out-of-
band amplified spontaneous emission (ASE) noise to maximize
the optical signal-to-noise ratio (OSNR). NKT Koheras ADJUS-
TIK fiber laser with linewidth around 100 Hz is used at both
transmitter and receiver side. Since each span length is different,
and our erbium-doped fiber amplifiers (EDFAs) have minimal
gain of 20 dB (to compensate the loss of approximately 100 km of
fiber), we fixed all EDFA gains to be 20 dB and use tunable
attenuator integrated in each EDFA to ensure the proper equal-
ization of the fiber loss incurred over all the spans. After 815-km
transmission and polarization alignment between the signal and
LO using a polarization controller, the optical waveform was
coherently detected and sampled by an 80 GSa/s digital oscillo-
scope with 33-GHz electrical bandwidth. The sampled signals are
then processed by offline DSP whose structure is shown in Fig. 5.
The received signal is first resampled to two samples/symbol and
digitally filtered to remove out-of-band noise before DBP/DNN-
based DBP is applied. The Constant Modulus Algorithm (CMA)
is used to compensate the residual linear distortion followed by
downsampling to one sample/symbol and CPE for laser-phase
noise compensation.

Figure 6a plots the comparison of Q factors (calculated from bit
error ratio (BER) through Q ¼ 20log10

ffiffiffi
2

p
erfc�1 2BERð Þ� 	

as a
function of signal-launched power using DNN-based DBP and
DBP with different step sizes together with CD compensation
(CDC) only. We consider 50 steps-per-span (StPS)–DBP as
the benchmark for optimal DBP performance with arbitrary
complexity as no further improvements are obtained beyond
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50 steps-per-span. It can be seen that 1-StPS DNN-based DBP
already outperforms 1-StPS and 50-StPS DBP by 1.6 dB and
0.9 dB, respectively. The gain over 50-StPS DBP is further
improved to about 1.3 dB when 2-StPS is used. Note that the
performance improvements of DNN-based DBP originate from
optimizing the parameters in DBP and it incurs no additional
computational complexity i.e., 1-StPS DNN-based DBP has the
same complexity as 1-StPS DBP, which is 50 times simpler than
50-StPS DBP. Note also that such comparisons do not take into
account the complexity of training the DNN-based DBP since the

training is typically performed offline. In addition, as DNN-based
DBP implicitly learns the best DSP parameters for a given link, it
can readily be applied to links with heterogeneous spans, and
hence DNN-based DBP is a link-agnostic learning algorithm
particularly suitable for practical deployed systems. The DNN-
based DBP is optimized by using 200 epochs with step size 0.01,
and the converged linear filter spectra Sk(f) and phase derotation
coefficients ξk are shown in Fig. 6b–d at 2.2-dBm signal-launched
power. It can be seen that the phase responses largely resemble
qudratic phase for CD compensation. However, the converged
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amplitude responses exhibit an “M”-shaped feature and become
more apparent at later stages of the DNN-based DBP.
Furthermore, the optimal ξk learnt by machine learning are not
constant across k and not equal to ξopt in general. Rather, ξk have
a “U”-shaped structure so that the nonlinear-phase derotation is
larger in the middle stages. Finally, it should be noted that similar
performance gains and features are obtained when using external
cavity lasers (ECL) with linewidth ~100 kHz at the transmitter
and receiver by modifying the cost function to that of radius-
directed equalization (RDE)31.

Mathematical insights into fiber nonlinearity compensation as
interpretable ML. Why are the amplitude responses of the linear
filter “M”-shaped and why is the optimal ξk “U”-shaped? In most
applications, ML are “black-box” models with excellent predictive
power, but it is difficult to inquire how they work exactly and why
they produce such good results. However, in our case, the “M”-
shape and “U”-shape features are clear mathematical structures
that strongly suggest certain hidden dynamics of DBP yet to be
better understood. Specifically, the “M”-shaped filter indicates
that the optimal linear filter exhibits some high-pass feature that
becomes more pronounced at later stages of the DNN-based
DBP. A plausible explanation for this phenomenon is that there
exists an additional undesired term with a “∩”-shaped spectrum
that grows with the DNN-based DBP stages such that the “M”-
shaped filter tries to compensate. On the other hand, the “U”-
shaped ξk suggests that the nonlinear-phase derotation is small at
the beginning and toward the end of the DBP, but can be larger in
the middle stages. This can imply that the beginning and end
stages of DBP are more prone to noise and distortions, and hence
phase derotation based on instantaneous signal power may not be
effective. The overall optimized DNN-based DBP configuration
from ML seems to suggest that noise and distortion accumula-
tions play a hidden yet pivotal role in the nature of nonlinear DSP
and effectiveness of DNN-based DBP.

We proceed to analyze noise and distortion accumulations in
DBP to try to explain the optimal DNN-based DBP configura-
tions discovered by machine learning. For simplicity, we will
remove the variable t and abbreviate E(z, t) as Ez and let the step
size Ls= Δz in the following analysis. Referring to Fig. 1, the
received signal is given by

EL ¼CDΔz EL�Δze
jγΔz EL�Δzj j2


 �
þ nL

BL�Δz ¼EL�Δze
jγΔz EL�Δzj j2 þ n0L;

ð2Þ

where CDΔz(·) denotes the effect of CD on a signal over a distance
Δz and n0L ¼ CD�Δz nLð Þ. This is followed by a phase derotation
proportional to ξL�Δz BL�Δzj j2. Note that as supposed to ξk
that refers to the kth-step DNN-based DBP in the previous
section, ξL−Δz here relates to the phase derotation to estimate the
transmitted signal at z= L− Δz, which is given by

ÊL�Δz ¼BL�Δze
�jγΔzξL�Δz BL�Δzj j2

¼ EL�Δze
jγΔz EL�Δzj j2 þ n0L


 �
ejγΔzξL�Δz EL�Δze

jγΔz EL�Δzj j2þn0L

�� ��2
¼EL�Δze

jγΔz EL�Δzj j2�ξL�Δz EL�Δzþn00Lj j2
� �

þ n000L ;

ð3Þ

where n00L ¼ n0Le
�jγΔz EL�Δzj j2 and n000L ¼ n0Le

jγΔzξL�Δz jEL�Δze
jγΔz EL�Δzj j2þn0Lj2 .

Since we are interested in the statistical properties of the estimated
transmitted signal only and nL; n

0
L, n

00
L, and n000L are all AWGN

processes with the same statistical distributions, we will denote all of

them as nL for simplicity so that

ÊL�Δz ¼EL�Δze
jγΔz EL�Δzj j2�ξL�Δz EL�ΔzþnLj j2½ � þ nL

�EL�Δz þ jγΔz
h
1� ξL�Δzð Þ EL�Δzj j2EL�Δz

� 2ξL�Δz< EL�Δzn
*
L

n o
EL�Δz

i
þ nL:

ð4Þ

In this case, the extra distortions arising from fiber nonlinearity
and its compensation are EL�Δzj j2EL�Δz and < EL�Δzn

*
L


 �
EL�Δz .

Note that for typical pulse shapes, EL�Δzj j2EL�Δz will have a
“∩”-shaped spectrum due to the triple convolution of the
original pulse’s spectrum. Also, the amplifier noise nL at z= L is
brought backward to the signal estimate ÊL�Δz at z= L−Δz
through < EL�Δzn

*
L


 �
EL�Δz . Next, we denote EL�Δz ¼

CDΔz
�
EL�2Δze

jγΔz EL�2Δzj j2	þ nL�Δz so that

BL�2Δz ¼CD�Δz ÊL�Δz

� 	
¼EL�2Δze

jγΔz EL�2Δzj j2

þ jγΔz
h
ð1� ξL�ΔzÞCD�Δz EL�Δzj j2EL�Δz

� 	
� 2CD�Δz < EL�Δzn

*
L

n o
EL�Δz


 �i
þ vΔz;

ð5Þ

where vΔz ¼ CD�ΔzðnL þ nL�ΔzÞ. Note that the statistics of vΔz does
not depend on the CD operation, and we will also denote v0= nL for
notational convenience. The signal estimate at z= L− 2Δz is given
by

ÊL�2Δz ¼BL�2Δze
�jγΔzξL�2Δz BL�2Δzj j2

� EL�2Δz þ jγΔz

�
1� ξL�2Δzð Þ EL�2Δzj j2EL�2Δz

� 2ξL�2Δz<fEL�2Δzv
*
ΔzgEL�2Δz þ 1� ξL�Δzð ÞCD�Δz

EL�Δzj j2EL�Δz

� 	� 2ξL�ΔzCD
�Δz <fEL�Δzv

*
0gEL�Δz


 ��
þ vΔz:

ð6Þ
A mathematical pattern is emerging from Eq. (6). Continuing with
the above derivation, the estimate of the transmitted signal using
DBP is

Ê0 ¼ E0 þ jγΔz

�XK
k¼1

1� ξL�kΔzð ÞCD� L�kΔzð Þ EL�kΔzj j2EL�kΔz

� 	

� 2ξL�kΔzCD
� L�kΔzð Þ <fEL�kΔzv

*
kΔzgEL�kΔz


 ��
þ vKΔz;

ð7Þ
where K is the total number of DBP steps. As K→∞ and Δz→ 0 for
distributed amplification system with arbitrarily complex DBP,

Ê0 ¼ E0 þ jγ
Z L

0
1� ξzð ÞCD�z Ezj j2Ez

� 	
�2ξzCD

�z <fEzv*L�zgEz

 �

dz þ vL:

ð8Þ

In Eq. (8), vL corresponds to the total ASE noise in the system
and the term jγ

R L
0CD

�z Ezj j2Ez
� 	

dz actually corresponds to the
nonlinear-phase shift due to the signal, and is largely compensated
by carrier-phase estimation in practical systems. The other terms
jγ
R L
0ξzCD

�z Ezj j2Ez
� 	

dz and jγ
R L
02ξzCD

�z <fEzv*L�zgEz
� 	

dz are
the major nonlinear impairments that degrade transmission
performance. As the variances of the noises and distortions
are typically used to characterize overall system performance,
Fig. 7 shows the simulated variances of CD�z Ezj j2Ez

� 	
and

2CD�z <fEzv*L�zgEz
� 	

as a function of z, and it can be seen that
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one of them increases with z, while the other decreases with z.
As ξz control the relative strengths of CD�z Ezj j2Ez

� 	
and

2CD�z <fEzv*L�zgEz
� 	

in the overall nonlinear distortions in Ê0,
we can now appreciate why ξzj j is smaller at the beginning and
end of the DNN-based DBP stages and larger in the middle as
shown in Fig. 6d. This can be intuitively interpreted by noting that

1. The nonlinear-phase derotation at each DBP stage is not
perfect due to ASE noise, and such imperfections accumu-
late throughout the whole DBP chain. Imperfections at the
early DBP stages (corresponding to ξz for z ~ L) accumulate
the most in the final signal estimate Ê0 and therefore ξz
should be small for z ~ L to minimize such accumulation.

2. Toward the end of the DBP, the signal amplitude is already
heavily distorted and quite different from the original signal
due to noise and accumulation of imperfect compensation
from preceding DBP stages. Therefore, the phase derotation
at the end of the DBP stages (corresponding to ξz for z ~ 0)
will not be accurate, and hence ξz should be small for z ~ 0
to prevent overcompensation and in turn produce addi-
tional distortions.

In addition, since the imperfect-phase derotations cannot
completely eliminate the nonlinear distortion term Ezj j2Ez , they
continue to grow within the DBP stages and accumulate at the end
of the algorithm. As Ezj j2Ez has a “∩”-shaped spectrum, an
inverted-shaped spectrum to partially equalize the distortions will be
more beneficial than a pure CD compensation operation in Eq. (8).
Furthermore, since Ezj j2Ez has three times the bandwidth of Ez, one
should simply filter out the out-of-band distortions at each DBP
stage. This explains why the overall linear filter of DNN-based DBP
exhibits the “M”-shaped features depicted in Fig. 6b, and how the
shape is more apparent toward the later stages of DNN-based DBP.

The new insights developed illustrate that the optimal linear
filter of DNN-based DBP does not merely equalize CD. It is in
fact a trade-off between compensating CD of the signal and
mitigating the third-order nonlinear distortion term Ezj j2Ez and
its accumulation along the DBP stages. Similarly, the optimal
nonlinear-phase derotation actually attempts to strike a balance
between reversing the nonlinear phase during propagation and
minimizing additional phase noise accumulation along the DBP
stages due to corrupted signal power levels. Overall, machine
learning reveals that the original design philosophy of DBP as an
iterative linear and nonlinear compensation of fiber propagation
effects is not complete. Rather, the optimal DSP should undo the
nonlinear channel effects, as well as manage additional distortions
accumulated within the DSP itself. In our work, it should be
emphasized that the new insights are inspired from the ML-
optimized configurations depicted in Fig. 5. In our work, ML
provided directions for theoreticians to work toward deeper
analytical insights, which in turn validate the consistency and
reliability of the DNN-based DBP as we are able to interpret the
features with concrete mathematical arguments.

DNN-based DBP for PDM and WDM transmissions. For PDM

transmissions with vector input Eðz; tÞ ¼ �
Exðz; tÞ Eyðz; tÞ

�T
,

the vector Manakov–PMD equation

∂Ψ

∂z
¼ � 1

2
α� jβ0 � β1

∂

∂t
� jβ2

1
2
∂2

∂t2

� �
Ψ

þ j
8
9
γ Ψj j2Ψþ nx z; tð Þ

ny z; tð Þ

" # ð9Þ

governs signal propagation. In this formulation, Ψ ¼ U�1ðzÞE
where U(z) models the random principle states of polarization

…

Input layer

E (t, L) Ê (t, 0)

Hidden layer Output layer Polarization rotation matrix

W1
R1 RK–1 RKR2 WK–1 WKW2

�1 �K–1 �K�2

Fig. 8 DBP-based DNN for polarization-division-multiplexed system. The DNN-based DBP contains a PSP rotation matrix Rk in each stage to partially
compensate polarization effects.
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 �
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� 	
as a function of z for a 23-GBaud 16-QAM system transmitted over 815 km obtained from simulations. The signal-launched power is

−1.4 dBm with 19-dB OSNR. It can be seen that the variance of CD�z Ezj j2Ez

 �

is an increasing function of z, while the variance of 2CD�z <fEzv*L�zgEz
� 	

is a
decreasing function of z. Source data are provided as a Source Data file.
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(PSP) rotation that evolve with z. β0, β1 are 2 × 2 matrices
modeling birefringence (difference in refractive index of signals in
the two PSPs) and polarization-mode dispersion (PMD) (differ-
ence in group refractive index induced group delay of signals in
the two PSPs). Random polarization rotations and PMD lead to
polarization-dependent nonlinear interactions. Although their
effects in nonlinear fiber propagation are well characterized
analytically, their unknown and random nature significantly
reduce the effectiveness of DBP19,32. In this connection, the
proposed DNN-based DBP framework can be extended to
roughly estimate and compensate the polarization rotations at
each DBP stage. In particular, we can express the DNN-based

DBP in a vector form and append a polarization rotation matrix

Rk ¼
cos θk cosϕk � j sin θk sin ϕk � sin θk cosϕk þ j cos θk sin ϕk
sin θk cosϕk þ j cos θk sin ϕk cos θk cosϕk þ j sin θk sin ϕk

� �

ð10Þ

at the kth stage along with the linear and nonlinear operators in
each DNN-based DBP step as shown in Fig. 8. Note that Rk is
optimized from training data without any prior knowledge of the
link PSP. In this case, the nonlinear step σk(·) will consist of two
optimization parameters ξxx;k ¼ ξyy;k and ξxy;k ¼ ξyx;k.
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Figure 9a compares the Q factors as a function of signal-
launched power for 28-GBaud PDM 16-QAM transmissions
over 815 km using CDC-only, DNN-based DBP and DBP with
different step sizes. PDM is achieved in experimental settings
through a PDM emulator that splits the original signal into two
polarizations with equal energy, delays one of the signals to
generate delayed signal copies and recombines them. The DNN-
based DBP here is trained on the PDM data. It can be seen from
Fig. 9a that 1-StPS DBP can only provide a small gain of 0.7 dB
compared with CDC only, and 50-StPS can provide a further
gain of 0.5 dB over 1-StPS DBP. However, a mere 1-StPS DNN-
based DBP can already produce an extra 0.6-dB gain over 50-
StPS DBP, which shows that DNN-based DBP can not only save
complexity but improve transmission performance in
polarization-multiplexed systems. The 2-StPS DNN-based DBP
can further improve the performance by 0.6 dB over 1-StPS
DNN-based DBP. The amplitude spectra and optimized ξxx,k
shown in Fig. 9b, c exhibit the “M”-shaped and “U”-shaped
features as discussed previously. The phase spectra have the same
quadratic shape as CD compensation filter and are not shown
here. The optimized angles θk and ϕk shown in Fig. 9d do not
exhibit any mathematical structures or trends, and are in
agreement with theoretical expectations. It is clear that including
Rk in DNN-based DBP provides new dimensions of optimiza-
tion, and hence DNN-based DBP can overcome the limitations
of traditional DBP by compensating polarization-dependent
nonlinear effects.

Finally, we investigate DNN-based DBP performance for PDM
16-QAM WDM transmissions with different baud rates. The 5-
channel 50-GHz-spaced WDM transmission setup is shown in
Fig. 10. The low-linewidth fiber laser is combined with two
external cavity lasers (ECL) of around 100-kHz linewidth to
generate the odd-numbered channels, while two other ECLs
produce the even-numbered channels. The odd and even
channels are modulated by two IQ modulators driven by two
independent random 16-QAM sequences with baud rates of 28
GBd or 34 GBd. The roll-off factor is 0.2. The signals from the
five channels are combined into the PDM emulator to generate
delayed signal copies for polarization multiplexing. The link
configuration is the same as single-channel experiments described
previously. At the receiver, the center channel is filtered by a
wavelength-selective switch (WSS) with 3-dB bandwidth of 40
GHz, which is sampled by 80 GSa/s sampling scope samples
followed by offline processing.

The Q factor of the center channel for the five-channel system
is shown in Fig. 11a for 28-GBaud transmissions. The DNN-
based DBP here is trained on the WDM data, and 262144 bits are
used in the testing set to calculate the BER and Q factor. The
performance gain of 1-StPS DBP and 50-StPS DBP over CDC
only is around 0.3 dB and 0.6 dB, respectively. On the other hand,
1-StPS and 2-StPS DNN-based DBP provides an additional
gain of 0.25 dB and 0.45 dB over 50-StPS DBP and a total gain of
0.85 dB and 1 dB over CDC only, respectively. For 34-GBaud
transmissions, the gain of 1-StPS DNN-based DBP over 1-StPS
DBP and CDC only is around 0.2 dB and 0.4 dB, respectively. 2-
StPS DNN-based DBP further improves the optimal Q factor of
1-StPS DNN-based DBP by 0.15 dB. The amplitude spectra and
optimized ξxx,k shown in Fig. 11c–f display the same “M”-shaped
and “U”-shaped features as expected from the analytical insights
developed through machine learning. Overall, the results show
that DNN-based DBP represents a new design dimension in
single-channel DSP algorithm for nonlinearity compensation in
WDM systems without compromising computational complexity.
It serves as a crucial step forward in improving practical WDM
transmission performance.

Discussion
In this paper, we experimentally demonstrate that by relating
the configuration of well-known digital back-propagation algo-
rithm into interleaving linear and nonlinear operators of a deep
neural network, machine-learning techniques can optimize
the network parameters and lead to dramatic performance
improvements and computational savings. Applying DNN-based
DBP to PDM–WDM systems reaps sizeable performance
improvements compared with other single-channel DSP algo-
rithms, thus achieving a key step in bringing nonlinearity com-
pensation DSP into realistic WDM systems. More importantly,
the optimal parameter configurations in turn guided us to analyze
the interplay between CD, nonlinearity, and noise more closely
and led to deeper theoretical insights that the receiver DSP should
not exactly invert the linear and nonlinear steps of the fiber
propagation effects. Rather, it should balance between compen-
sating transmission impairments and suppressing the additional
distortions arising from imperfect linear and nonlinear com-
pensation steps due to inline amplifier noise. As the new analy-
tical insights are inspired by the optimized neural network model,
it shows that machine learning can actually go beyond conven-
tional thinking to develop deeper theoretical understandings in
the field of nonlinear fiber transmissions in addition to providing
algorithms exceeding state-of-the-art performance. Our work
serves as an example that machine-learning techniques can not
only provide a detour from intractable systems and arrive at
intelligent solutions or strategies, but also help elucidate the path
toward deeper physical insights and the underlying mathematical
structures.
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