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Poincaré maps for analyzing complex hierarchies in
single-cell data
Anna Klimovskaia 1✉, David Lopez-Paz1, Léon Bottou 2 & Maximilian Nickel2✉

The need to understand cell developmental processes spawned a plethora of computational

methods for discovering hierarchies from scRNAseq data. However, existing techniques are

based on Euclidean geometry, a suboptimal choice for modeling complex cell trajectories with

multiple branches. To overcome this fundamental representation issue we propose Poincaré

maps, a method that harness the power of hyperbolic geometry into the realm of single-cell

data analysis. Often understood as a continuous extension of trees, hyperbolic geometry

enables the embedding of complex hierarchical data in only two dimensions while preserving

the pairwise distances between points in the hierarchy. This enables the use of our

embeddings in a wide variety of downstream data analysis tasks, such as visualization,

clustering, lineage detection and pseudotime inference. When compared to existing methods

— unable to address all these important tasks using a single embedding — Poincaré maps

produce state-of-the-art two-dimensional representations of cell trajectories on multiple

scRNAseq datasets.
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Understanding cellular differentiation, e.g., the transition of
immature cells into specialized types, is a central task in
modern developmental biology. Recent advances in

single-cell technologies, such as single-cell RNA sequencing and
mass cytometry, enabled important insights into these processes
based on high-throughput cell measurements1–4. Computational
methods to accurately discover and represent cell development
processes from large datasets and noisy measurements are
therefore in great demand. This is a challenging task since
methods are required to reveal the progression of cells along
continuous trajectories with tree-like structures and multiple
branches (e.g., as in Waddington’s classic epigenetic landscape5).
Multiple advances have been made towards this goal of dis-
covering and analyzing hierarchical structures from single-cell
measurements6. In particular, methods leveraging assumptions
about the hierarchical structure for visualization7–12,
clustering13,14, and pseudotime inference15,16, have fueled suc-
cessful applications of data analysis in developmental biology. To
visualize hierarchical relationships in cell development, many
state-of-the-art methods embed cell measurements in low-
dimensional Euclidean spaces7,8,17,18. However, this approach is
limited when modeling complex hierarchies, as low-dimensional
Euclidean embeddings distort pairwise distances between mea-
surements substantially. The resulting embeddings are proble-
matic not only for visualization but also for other downstream
tasks such as clustering and lineage identification.

To overcome the issues of data dimensionality reduction in
Euclidean spaces, we propose Poincaré maps, a method to com-
pute embeddings in hyperbolic spaces. These enable multiple
advantages. First, hyperbolic spaces can be thought of as a con-
tinuous analog to trees and enable low-distortion embeddings of
hierarchical structures in as few as two dimensions19. Second, the
metric structure of hyperbolic spaces retains the ability to model
continuous trajectories using pairwise distances of measurements,
and allows us to employ the obtained embeddings in downstream
tasks such as clustering, lineage detection, and pseudotime
inference. Third, the Riemannian structure of hyperbolic

manifolds enables the use of gradient-based optimization meth-
ods what is essential to compute embeddings of large-scale
measurements. Fourth, while we follow Nickel and Kiela20 to
leverage the Poincaré disk as an embedding space, we are first to
employ pairwise distances obtained from a nearest-neighbor
graph as a learning signal to construct hyperbolic embeddings for
the discovery of complex hierarchies in data.

An important property of Poincaré maps is that it allows us
to approach all these different tasks using a single embedding,
by combining the identification of clusters, trajectories, and
hierarchies in an unsupervised manner. To the best of our
knowledge, this is not possible with existing methods, which we
review in the following. t-SNE17 is a state-of-the-art visualiza-
tion method that exploits local similarities to achieve visual
separation of the clusters in the data. However, t-SNE does not
preserve global similarities between clusters and therefore does
not guarantee that the global hierarchical structure will be
preserved. UMAP18 computes a low-dimensional Euclidean
representation of data that preserves the topological structure.
However, there are no guarantees that there exists a low-
dimensional representation of complex tree topologies in a two-
dimensional Euclidean space. Diffusion maps7 specifically
tackles the problem of capturing diffusion-like dynamics and
continuous branching in the data. However, it allows us to
visualize only simple branching structures in two dimensions.
Graph abstractions8 (PAGA) and Monocle 215 are another class
of methods to capture and visualize hierarchical relationships in
the data. PAGA produces an "abstracted graph” with nodes
corresponding to partitions of the data, and edges representing
relationships between these nodes. PAGA does not represent
the relationships within partitions. However, PAGA can be
used to initialize UMAP and ForceAtlas2, as done by the
authors. Despite the fact that ForceAtlas221 produces a good
visual layout of tree topology, it does not preserve hierarchical
distances. PHATE22, a method that has been demonstrated able
to recover hierarchies with multiple branches, is also affected by
the distortion artifacts of Euclidean spaces. Monocle 215 forces
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Fig. 1 Poincaré maps discover hierarchies and branching processes. a Our goal is to recover cell developmental processes, depicted here on the
Waddington's epigenetic landscape. b Poincaré disks provide a natural geometry to preserve hierarchical structures and pairwise similarities in two
dimensions. Poincaré disks grow as we approach their boundary: all the triangles depicted in the figure are of equal size. c Poincaré maps first estimate
geodesic distances, computed from a connected k-nearest-neighbor graph. Second, they compute two-dimensional hyperbolic embeddings that preserve
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global proximities on the dataset. By means of Riemanninan optimization of KL divergence, global proximities are aimed to be preserved through global
distances in Poincaré disk.
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a tree-like topology on the data using "reversed graph embed-
ding” in a low-dimensional Euclidean space. However, similar
to UMAP, such a representation might not exist for complex
trees. SIMLR10 is multi-kernel learning designed to perform
well on datasets with multiple clusters, making it a poor choice
to model data with continuous trajectories. Finally, SAUCIE10

is an autoencoder model, which is optimized through recon-
struction error, therefore its properties for preserving local and
global similarities are theoretically less understood.

Recently, Ding and Regev23 proposed an interesting follow-up
on our work with a focus on eliminating the batch-correction and
addressing visual crowding issues of conventional generative
modeling approaches via hyperbolic embeddings. This further
illustrates the benefits of hyperbolic geometry for analyzing
single-cell data as proposed in this work.

Results
Our method, Poincaré maps, is inspired by ideas from manifold
learning and pseudotemporal ordering24,25. Given feature repre-
sentations of cells such as their gene expressions, we aim to estimate
the structure of the underlying tree-like manifold in three main
steps (Fig. 1 and Methods): First, we compute a connected k-
nearest-neighbor graph (kNNG)26 where each node corresponds to
an individual cell and each edge has a weight proportional to the
Euclidean distance between the features of the two connected cells.
In general, kNNG for a given k is not necessarily connected. We
need to enforce connectivity to reconstruct the hierarchy. If one
component were disconnected from other components, it would be
impossible to reconstruct its position relative to other components.
To enforce connectivity we propose a simple procedure, described
in Methods. The purpose of this first step is to estimate the local
geometries of the underlying manifold, around which Euclidean
distances remain a good approximation. Second, we compute global
geodesic distances from the kNN graph, by traveling between all
pairs of points along the weighted edges. This step can be computed
efficiently using all pairs of shortest paths, or related measures such
as the Relative Forest Accessibilities (RFA) index27. The purpose of
this second step is to estimate the intrinsic geometry of the
underlying manifold. These two first steps are commonly used in
manifold learning to approximate the structure of an unknown
manifold from similarities in the feature space16,26,28,29. As a third
step, we compute a two-dimensional embedding per cell in the
Poincaré disk, such that their hyperbolic distances reflect the
inferred geodesic distances. The geometry of the Poincaré disk
allows us to model continuous hierarchies efficiently. More speci-
fically, embeddings that are close to the origin of the disk have a
relatively small distance to all other points, representing the root of
the hierarchy, or the beginning of a developmental process. On the
other hand, embeddings that are close to the boundary of the disk,
have a relatively large distance to all other points and are well-suited
to represent leaf nodes. Thus, in Poincaré embeddings, we expect
that nodes with small distances to many other nodes will be placed
close to the origin of the disk. While such cells are likely from an
early developmental stage, they do not necessarily belong to the root
of the hierarchy (Supplementary Figs. 3–5). When a cell belonging
to the root is known, we perform a translation on the Poincaré disk
to place this cell in the center of the disk, easing the visualization of
the hierarchy (see “Methods”).

Poincaré maps have several hyperparameters to tune, such as
the number of nearest neighbors (k), the bandwidth of the local
kernel to convert distances into similarities (σ), and the scaling
parameter to compute similarities in the Poincaré disk (γ). Sup-
plementary Figs. 1–2 demonstrates the performance of Poincaré
maps with respect to the choice of these hyperparameters and
across different random seeds.

Poincaré maps for single-cell analysis. In the following, we
compare Poincaré maps to prior state-of-the-art methods on
various single-cell analysis tasks: visualization and lineage
detection (PCA, Monocle 215, PAGA8, diffusion maps7, t-SNE17,
UMAP18, ForceAtlas221, SAUCIE12, PHATE22 and SIMLR10),
clustering (Louvain30, agglomerative, k-means) and pseudotime
inference (diffusion pseudotime16).

For this purpose, we employ multiple synthetic datasets
generated from known dynamical systems and four single-cell
RNA sequencing datasets varying in size, complexity (number of
cell types and branches), and single-cell technology to acquire the
data2,3,31,32. We compare Poincaré maps with the canonical
hematopoietic cell lineage tree33, and various state-of-the-art
embeddings (Supplementary Note 2).

First, we evaluate the capabilities of Poincaré maps for data
visualization and dimensionality reduction. It is not possible for
humans to comprehend visualizations in more than three
dimensions, and a third dimension already adds additional
challenges for interpretation. However, for existing methods, even
three-dimensional embeddings are not sufficient to capture the
underlying manifold structure on many complex hierarchies.
Here, we demonstrate that as few as two dimensions of Poincaré
maps are enough to reconstruct the hierarchy and preserve global
similarities on the datasets with a very high complexity. A
common way to evaluate the quality of an embedding in labeled
datasets is to use classification scores. However, this evaluation
approach has limitations in the context of single-cell data, and
specifically for recovering hierarchies and continuous develop-
mental trajectories. First, quite often labels are assigned using
some unsupervised learning approach, such as clustering. This
could promote the dimensionality reduction method that better
agrees with the label assignment method, rather than with the
objective ground-truth. Second, discrete labels do not easily apply
to datasets with continuous trajectories, where a clear-cut cutoff
between cell types does not exist. Third, it contains no
information about the quality of preservation of global simila-
rities, e.g. positions of clusters relative to each other in the
hierarchy. Instead, we use a scale-independent quality criteria34

(see Methods and Supplementary Note 2), which was demon-
strated to be a good metric to compare embeddings in an
unbiased way. The criteria consist of estimating two scalar values
Qlocal and Qglobal reflecting local and global properties of the
dataset. We follow the assumption of Lee and Verleysen34 that a
single-cell dataset comprises a smooth manifold and a good
dimensionality reduction method would preserve local and global
distances on this manifold.

An important result from our experiments is that Poincaré
maps is the only method that demonstrated the ability to visualize
the correct branching structure of developmental processes for all
datasets in terms of this quality metric (Fig. 2, Supplementary
Fig. 1). Separate visual comparison of various embeddings
(Supplementary Figs. 3–10) demonstrates the superior readability
advantages of Poincaré maps. For example, on the dataset Paul
et al.2 only Poincaré maps and t-SNE identify the lymphoid
cluster, while this important population remained invisible
during exploratory data analysis when using UMAP or
ForceAtlas2. Although t-SNE visualizes separate clusters well
for Paul et al.2 dataset, it disregards the hierarchical structure
between clusters (see also the example in Supplementary Fig. 7).
Knowledge of the position of a newly identified cluster in the
developmental hierarchy could be further exploited for assigning
labels (e.g. "lymphoid population”) or, when the population was
not known, for designing experiments to test morphological
properties. Finally, Poincaré maps place the 16Neu cluster
downstream of 15Mo in the hierarchy—in contrast to the
canonical hierarchy, where neutrophils and monocytes are

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16822-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2966 | https://doi.org/10.1038/s41467-020-16822-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


located at the same level. This result is in line with the analysis of
Wolf et al.8, indicating that the inconsistency is due to a faulty
labeling of the clusters.

A back-to-back comparison of a quality metric with visual
inspection gives a good intuition about the meaning of the metric
quality scores and embedding properties. In particular, on
datasets with simple trajectories (e.g., ToggleSwitch, MyeloidPro-
genitors), methods such as PCA or SAUCIE show strong
performance since they preserve local similarities well. However,
the performance of these methods drops significantly for the
datasets with many different cell types and branches, such as
Planaria and C. elegans. Poincaré maps in their turn, do not suffer
from this limitation (Fig. 2) and significantly outperforms other
methods in terms of both local and global metrics. This allows us
to summarize the whole C. elegans cell atlas in a single Poincaré
maps embedding (Fig. 3). This was not possible with UMAP with
any choice of parameters, as reported by the authors in their
original study. This makes Poincaré maps a strong candidate for
visualization of single-cell atlases. Additional analysis of the age of
the embryo on Poincaré maps revealed two distinct populations
of germlines. One of these subpopulations is placed close to the
border of the disc and closer to mature cell types, which
potentially reflects transcription diversity of this subpopulation
from other cells at the early stages. The second subpopulation is
close to other cells at the early stage. We randomly picked up a
cell from the second subpopulation and assigned it as a root.
Fig. 3c demonstrates the relative positioning of the cell types in
the hierarchy and comparison of the Poincaré pseudotime to the
age of the embryo. We can see that it agrees with the age of
embryo quite well, except for very early stages (<130). However,
lineages are not perfectly synchronized, therefore we see
significant variability on the plot.

In addition to these results, we demonstrate in Supplementary
Tables 1–2 that Poincaré maps could be directly applied to
achieve state-of-the-art results on clustering and pseudotime
inference. Notably, for pseudotime inference the results are

comparable with diffusion pseudotime, but in Poincaré maps
these clusters are directly accessible as distances from the root
node. Therefore they are not only fast to compute given the
embedding, but also allow us to intuitively interpret a Poincaré
maps plot with the root node in the center of the Poincaré disk.

Analysis of mice hematopoiesis with Poincaré maps. As a
deeper case study, we analyze the dataset of early blood devel-
opment in mice, previously studied by Moignard et al.1, using
Poincaré maps. This dataset contains measurements of cells
captured in vivo with qRT-PCR at different development stages:
primitive streak (PS), neural plate (NP), head fold (HF), four
somite GFP (Runx1) negative (4SG-) and four somite GFP
positive (4SG+) (Fig. 4a). The stages correspond to different
physical times of the experiment between embryonic day 7 and
day 8.25. We compare our results obtained with Poincaré maps to
Moignard’s diffusion maps study1, and to Haghverdi’s recon-
struction of diffusion pseudotime16. Poincaré maps provide a
qualitatively different visualization of the developmental process,
where we are able to visualize the whole spectrum of the het-
erogeneity arising from the onset of the process. Neither PCA nor
diffusion maps are able to provide a visualization of this process.
While Moignard’s and Haghverdi’s analyses suspected an asyn-
chrony in the developmental process, neither their application of
PCA or diffusion maps were able to reveal this. In particular,
previous studies suggest that the split into endothelial and ery-
throid sub-populations happens in the head fold. Our analysis
using Poincaré maps indicates that the subpopulation fate of the
cells is already predefined at primitive strike. Additionally,
Poincaré maps reveal a separate cluster consisting of a mixture of
cells at different developmental stages (Supplementary Fig. 11).
This cluster is referred to as "mesodermal” cells by Moignard
et al.1, while by Haghverdi et al.16 considers it as the root of the
developmental process. However, as we demonstrate in Supple-
mentary Figs. 12–13, assigning this cluster as the root of the
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Fig. 2 Comparison of embedding quality metric (best case) for various datasets. Poincaré maps perform consistently well on all synthetic and real-world
datasets in our evaluation. Planaria and C. elegans datasets—which exhibit the highest complexity in terms of number of branching trajectories—are
datasets where Poincaré maps perform significantly better than other methods.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16822-4

4 NATURE COMMUNICATIONS |         (2020) 11:2966 | https://doi.org/10.1038/s41467-020-16822-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


hierarchy would lead to a contradiction with the physical direc-
tion of time. By virtue of the Poincaré visualization, we reassigned
the root of the developmental process to the furthest PS cell not
belonging to the "mesodermal” cluster. We picked up a root cell
from PS as to ease clustering by angle for lineage detection. More
specifically, we chose the most ”exterior" cell from the PS cluster,
by visual inspection. Given our reassigned root, we separate the
dataset into five potential lineages (see “Methods”), to find the
asynchrony in the developmental process in terms of marker
expressions (Fig. 4b). Analysis of the composition of cells
belonging to each lineage (Fig. 4c) indicates that erythroid cells
belong only to lineage 0 and this lineage contains no endothelial
cells. Fig. 4d shows a substantially improved agreement of
Poincaré pseudotime (with the newly reassigned root) with the
experimental time (stages) compared to the pseudotime ordering
proposed by Haghverdi et al.16. The analysis of gene expressions
of main endothelial and hemogenic markers agrees with the
known pattern of gene activation for endothelial and erythroid
branches (Supplementary Fig. 14). Fig. 4e also demonstrates that
the main hemogenic genes for the erythroid population are
already expressed at the PS stage (details in Supplementary Note
3) and that the differences in gene expression apparent at all the
stages between the lineages. Our analysis using Poincaré maps

suggests therefore that the fate of erythroid and endothelial cells
could already be defined at primitive streak.

Discussion
The rapid onset of popularity and accessibility of single-cell RNA
sequencing technologies fueled the development of new compu-
tational approaches to analyze these data. While many compu-
tational methods exist, their results often disagree between each
other. The choice of the right computational tool, done at a early
stage of exploratory data analysis, will dictate the generated
hypotheses about the underlying biology. Here we demonstrated
that Poincaré maps reveal complex cell developmental processes
that would remain undiscovered by prior methods. Poincaré
maps is able to do so by leveraging hyperbolic geometry and
placing minimal assumptions about the data. While any
hypothesis generated via computational analysis should be vali-
dated in the lab before being converted into strong statements, a
properly chosen computational tool will facilitate the selection of
appropriate experiments.

For this purpose, Poincaré maps aids the discovery of complex
hierarchies from single-cell data by embedding large-scale cell
measurements in a two-dimensional Poincaré disk. The resulting
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embeddings are easy to interpret during exploratory analysis and
provide a faithful representation of similarities in hierarchies due
to the underlying geometry. This property makes Poincaré maps
stand out among other embeddings as it allows us to simulta-
neously handle visualization, clustering, lineage detection, and
pseudotime inference. Poincaré maps do not need to be con-
strained to two dimensions, and would have the same imple-
mentation for three dimensions. However, for the datasets used in
this study two dimensions were sufficient; using more dimensions
would reduce readability and harden interpretation.

Since Poincaré maps involves several hyperparameters and
non-convex optimization, we thoroughly studied sensitivity the
method performance to these parameters. Similar to most
manifold learning methods, the number of nearest neighbors k
will have significant effect on the performance of the method. The
tuning of additional hyperparameters such as σ and γ will have
some small effect on the method’s performance in terms of local
and global structure, and are typically easy to select using visual
inspection or the scale-independent quality measure. Finally, we

observed that the choice of random seed had no significant effect
on the visualization properties.

Application of Poincaré maps is not limited to single-cell RNA
sequencing. The method could be applied to any dataset on which
it is possible to define a similarity measure, e.g. to any dataset to
which we could apply tSNE. One example is flow and mass
cytometry data35 (CyTOF). In this paper, we focused on scRNAseq
data, and leave the application of Poincaré maps to other types of
data for future work. For an interested reader, we recommend
consultin related methods applied to CyTOF data36–39 to select the
best preprocessing steps and local distance metric. With Poincaré
maps, we hope to bring interest about hyperbolic embeddings to
the biology community. Due to their advantageous properties for
modeling hierarchical data, they could provide substantial benefits
for a wide variety of problems such as studying transcriptional
heterogeneity and lineage development in cancer from single-cell
RNA and DNA sequencing data, reconstructing the developmental
hierarchy of blood development, and reconstructing embryogen-
esis branching trajectories. We also would like to stress that
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Poincaré maps could be a good candidate embedding to visualize
cell atlases of whole organisms as they are able to preserve global
similarities between measurements. Finally, we note that Poincaré
maps are not limited to the analysis of scRNAseq, but could be
applied to any type of data with a hidden hierarchical structure.

Methods
Data preprocessing. First, for raw sequencing data, we strongly recommend to
preprocess it with one of the preprocessing pipelilnes40–43. The pipeline should be
chosen according to the sequencing machine used to produce the data44,45.
Typically, preprocessing steps involve quality control, normalization, and log-
scaling. For some datasets, batch-correction could be necessary.

Poincaré maps, like any other nearest-neighbors manifold learning method (e.g.
UMAP or tSNE), can suffer from the curse of dimensionality. Therefore, when the
dimensionality of data exceeds 100 dimensions, preprocessing to its 50–100
principal components is a widely used strategy to address this problem.
Alternatively, methods such as scVI14 were demonstrated to offer effective
preprocessing for scRNAseq datasets, when used together with methods such as
UMAP. Likewise, scVI components can be used as a preprocessing step to
Poincaré maps.

For datasets with less than 100 features, PCA preprocessing is not necessary, but
mean-variance normalization of individual features could be applied instead.

Local connectivity. Let X ¼ fxigni¼1 be a high-dimensional dataset of n samples
xi 2 Rp (e.g., individual cells) with p features (e.g., gene expression measure-
ments). We first estimate local connectivity structures as typically done in manifold
learning26,28,29. In particular, let Nði; kÞ denote the k nearest neighbors of xi in
X n xi according to the Euclidean distance. We then create a symmetric k-nearest-
neighbor graph (kNNG) G = (V, E, w), where the set of vertices V ¼ vf gni¼1
represents the samples in X and the set of edges E ¼ fvi � vj : i 2 Nðj; kÞ ^ j 2
Nði; kÞg represent the nearest-neighbor relations. In order to construct a con-
nected kNNG we adopt a greedy procedure. First, we build a standard kNNG for a
given k. Then, for each pair of disconnected components (if any) we find the edge
with the minimum length that would connect these two components. Then, we
connect the two components that can be linked using the smallest edge. We repeat
this process until the kNNG has only one connected component. Furthermore,
each nearest-neighbor relation is weighted using the Gaussian kernel over distances

wði; jÞ ¼ exp � xi�xjk k22
2σ2

� �
if i � j 2 E;

0 otherwise;

8<
: ð1Þ

where σ is a hyperparameter that controls the kernel width. By enforcing con-
nectivity of G, we preserve finite distances between all measurements.

Global proximities. To estimate the underlying manifold structure from distances
on the kNN graph G, we can employ all pairs shortest paths or related methods
such as the Relative Forest Accessibility (RFA) index, which is defined as follows:
Let L = D − A denote the graph Laplacian of the graph G, where Aij = w(i, j) is the
corresponding adjacency matrix and Dii = ∑jw(i, j) is the degree matrix. The RFA
matrix P is then given as27

P ¼ ðI þ LÞ�1: ð2Þ
P is a doubly stochastic matrix where each entry pij corresponds to the probability
that a spanning forest of G includes a tree rooted at i which also includes j (i.e.,
where j is accessible from i)27,46 Compared to shortest paths, the RFA index has the
advantage to increase the similarity between nodes that belong to many shortest
paths. This can provide an important signal to discover hierarchical structures as
nodes that participate in many shortest paths are likely close to the root of the
hierarchy. In all experiments, we use the RFA index to estimate global proximities.

Hyperbolic embedding. Given P, we aim at finding an embedding yi of each xi
that highlights the hierarchical relationships between the samples. For this purpose,
we embed P into two-dimensional hyperbolic space.

The Poincaré disk is the Riemannian manifold P ¼ ðB; dpÞ, where B ¼ fy 2
R2 : k y k <1g is the open 2-dimensional unit ball. The distance function on P is
then defined as

dpðyi; yjÞ ¼ arcosh 1þ 2
kyi � yjk2

ð1� kyik2Þð1� kyjk2Þ

 !
: ð3Þ

It can be seen from Eq. (3), that the Euclidean distance within B is amplified
smoothly with respect to the norm of yi and yj. This property of the distance is key
for learning continuous embeddings of hierarchies. For instance, by placing the
root node of a tree at the origin of B, it would have a relatively small distance to all
other nodes, as its norm is zero. On the other hand, leaf nodes can be placed close
to the boundary of the disk, as the distance between points grows quickly with a
norm close to one.

To compute the embedding we use an approach similar to t-SNE17 and
approximate the RFA probabilities in P via distances in the embedding space. In
particular, we define the similarity qij between the embeddings vi and vj as

qij ¼
expð�dpðyi; yjÞ=γÞP
k expð�dpðyi; ykÞ=γÞ

; ð4Þ

where yi; yj 2 P. A natural measure for the quality of the embedding is then the
symmetric Kullback–Leibler divergence between both probability distributions:

LðP;YÞ ¼
X
i

KLðPijjQiÞ þ KLðQijjPiÞ ð5Þ

Details on the optimization. To compute the embeddings, we minimize Eq. (5)
via Riemannian Stochastic Gradient Descent (RSGD)47. In particular, we update
the embedding of yi in epoch t using

ytþ1i  Ryti
ð�ηgradðL; yti ÞÞ; ð6Þ

where gradðL; yti Þ denotes the Riemannian gradient of Eq. (5) with respect to yti ,
Ryti

denotes a retraction (or the exponential map) from the tangent space of yti
onto P, and η > 0 denotes the learning rate. The optimization can be performed
directly in the Poincaré disk or, alternatively, in the Lorentz model of hyperbolic
space which provides improved the numerical properties and efficient computation
of the exponential map48.

Translation in P. Eq. (5) favors embeddings where nodes with short distances to
all other nodes are placed close to the origin of the disk. While such nodes cor-
respond often to nodes that are close to the root of the underlying tree, it is not
guaranteed that the root is the closest embedding to the origin. However, when the
root node is known, we can perform an isometric transformation of the entire
embedding that places this node at the origin and preserves all distances between
the points. In particular, to translate the disk such that the origin of the Poincaré
disk is translated to v, x is translated to

τðx; vÞ ¼ ð1þ 2hv; xi þ xk k2Þv þ ð1� vk k2Þx
1þ 2 v; xh i þ vk k2 xk k2 ð7Þ

Since the spatial resolution is amplified close to the origin of the disk, provides also
a method to zoom into different parts of the embedding by moving the area of
interest to the origin.

Clustering. Hyperbolic space is a metric space and thus allows us to compute
distances between any pair of points. This makes Poincaré maps straightforwardly
applicable to clustering techniques that rely only on pairwise (dis)similarity mea-
surements such as spectral clustering, agglomerative clustering, and kmedoids.

Lineages. As a naive approach for lineage detection, we suggest using agglom-
erative clustering by the angle between a pair of points in the Poincaré disk after
the rotation with respect to the root node.

Poincaré pseudotime. “Pseudotime” is typically referred as “a measure of how
much progress an individual cell has made through a process such as cell differ-
entiation”25. As Poincaré pseudotime we propose to use the distance from the root
node in the Poincaré disk.

Choice of hyperparameters. In the following, we discuss the function of different
hyperparameters in Poincaré maps and propose typical value ranges. The number
of nearest neighbors k reflects the average connectivity of the clusters and is
typically set to k = 15, 20, 30. The Gaussian kernel width σ is responsible for the
weights for the k-NN graph in the original space and is typically set to σ = 1.0, 2.0.
The softmax temperature γ controls the scattering of embeddings and is typically
set to γ = 1.0, 2.0.

Scale-independent quality measure. To quantitatively compare the perfor-
mance of different embedding approaches, we use the scale-independent quality
criteria proposed by Lee and Verleysen34 The main idea of this approach is that a
good dimensionality reduction approach, will have good preservation of local
and global distances on the manifold, e.g. close neighbors should be placed close
to each other while maintaining large distances between distant points. Lee and
Verleysen34 proposed to use two scalar quality criteria Qlocal and Qglobal focusing
separately on low and high-dimensional qualities of the embedding. The
quantities of Qlocal and Qglobal range from 0 (bad) to 1 (good) and reflect
how well are local and global properties of the dataset are preserved in the
embedding (see details in Supplementary Note 2). To estimate distances in the
high-dimensional space δij, we use geodesic distances estimated as the length of a
shortest-path in a k-nearest neighbors graph. We fixed k = 20 for all the datasets
as there is no objective way to decide on a correct k and visual results looked
good for all the embeddings for this choice of k. For the distances low-
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dimensional space we use euclidean space for all the embeddings except Poincaré
maps, for which we use hyperbolic distances. As all the embeddings involve an
element of stochasticity in their output, we run every embedding three times
with a different seed. We run all the embeddings with a different set of
parameters.

Computational complexity and time. Memory complexity of Poincaré maps is O
(n2), where n is the number of samples. Time complexity consist of three parts:
estimation of kNNG – O(n2) (this part could be replaced with FAISS49 for scal-
ability), estimation of RFA – O(n2) and minimization of KL divergence – O(neb),
where e—maximum number of epochs, b—batch size. As we need to minimize KL
till convergence, we can in advance estimate the number of epochs needed. For all
the datasets used here, the number of epochs was less than 2000 and we also used
early stopping upon convergence. Typical running time on 1 GPU for all the small-
medium datasets is less than a minute, and for large datasets around 15 min
(Planaria) or 2–3 h (C. elegans).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Several public datasets were used in this study: three synthetic datasets generated
with Scanpy, Olsson et al.3 (synapse ID https://www.synapse.org/#Synapse:
syn4975060syn4975060), Paul et al.2 (accession code https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE72857GSE72857), Moignard et al.1 (accession code https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61470GSE61470), Plass et al.31 (accession
code https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103633GSE103633,
preprocessed data available at https://shiny.mdc-berlin.de/psca/), Packer et al.32

(preprocessed data available at https://github.com/qinzhu/VisCello).

Code availability
The code is available at https://github.com/facebookresearch/PoincareMaps.
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