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Resistance to targeted therapies as a multifactorial,
gradual adaptation to inhibitor specific selective
pressures
Robert Vander Velde 1,2, Nara Yoon3, Viktoriya Marusyk1, Arda Durmaz3,4, Andrew Dhawan 3,
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Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors

develop resistance and relapse. In contrast to the substantial body of research on the

molecular mechanisms of resistance, understanding of how resistance evolves remains

limited. Using an experimental model of ALK positive NSCLC, we explored the evolution of

resistance to different clinical ALK inhibitors. We found that resistance can originate from

heterogeneous, weakly resistant subpopulations with variable sensitivity to different ALK

inhibitors. Instead of the commonly assumed stochastic single hit (epi) mutational transition,

or drug-induced reprogramming, we found evidence for a hybrid scenario involving the

gradual, multifactorial adaptation to the inhibitors through acquisition of multiple cooperating

genetic and epigenetic adaptive changes. Additionally, we found that during this adaptation

tumor cells might present unique, temporally restricted collateral sensitivities, absent in

therapy naïve or fully resistant cells, suggesting the potential for new therapeutic interven-

tions, directed against evolving resistance.
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Despite inducing strong clinical responses, inhibitors that
target abnormal activities of oncogenic tyrosine kinases
(TKIs), including those directed against oncogenic ALK

signaling in non-small cell lung cancers (NSCLCs), are rarely
curative in advanced disease1. As ALK-TKIs typically fail to
eradicate all of the tumor cells, residual tumors eventually acquire
resistance and relapse.

In contrast to the large body of work on deciphering the
molecular mechanisms of resistance, understanding of its evolu-
tionary mechanisms is more limited. Based on quantitative ana-
lyses and the detection of resistance-associated mutations,
resistance is often assumed to arise due to selective expansion of
pre-existent rare, fully resistant subpopulations2–5. On the other
hand, a growing body of experimental studies suggest that resis-
tance can emerge de novo from drug-tolerant persister (DTP)
cells, which can maintain residual disease and serve as a substrate
for mutational or epigenetic conversions to fully resistant phe-
notypes6. Finally, as therapies can induce adaptive phenotypic
changes on shorter time scales, acquired resistance has also been
viewed from a differentiation/reprograming paradigm7–9.

Motivated by interest in evolutionary-informed therapy sche-
duling, we investigated the origin and dynamics that underlie the
development of therapy resistance of an in vitro model of ALK+
NSCLC, the patient-derived NCI-H3122 cell line. Upon exposure
to different ALK-TKIs, these cells rapidly and predictably develop
strong drug resistance. Resistance originates de novo, from
weakly resistant heterogeneous subpopulations, which differ in
fitness when exposed to different ALK-TKIs. Levels of resistance
gradually increase under therapy, through acquisition of multiple
cooperating genetic and epigenetic mechanisms, through TKI-
specific phenotypic evolutionary trajectories. In contrast to
therapy-naive or fully resistant cells, these evolving populations
show strong collateral sensitivity to the dual epidermal growth
factor receptor EGFR/HER2 inhibitor lapatinib, suggesting a
temporally restricted opportunity to interfere with the develop-
ment of resistance.

Results
Different ALK-TKIs select for distinct resistant phenotypes. To
understand the evolution of resistance to different TKIs, we
focused on the ALK+NSCLC cell line, NCI-H3122, which has
been well-characterized in multiple mechanistic studies. Starting
from resistant cell lines derived through a dose-escalation pro-
tocol in our previous study10, we continued dose escalation,
eventually selecting for cells capable of growing in high, clinically
relevant concentrations of the drugs (up to 1 µM crizotinib, 4 µM
lorlatinib, 2 µM alectinib, and 200 nM ceritinib). Cells with
evolved resistance to ALK-TKI (erALK-TKI) displayed strong
collateral resistance toward other ALK-TKIs, with IC50’s 5–100×
higher than therapy naïve controls (Fig. 1a and Supplementary
Table 1). Despite the similar shift in IC50, erALK-TKI cells
selected by different inhibitors displayed divergent responses to
higher drug concentrations. Consistent with the clinical efficacy
of alectinib and lorlatinib as a second-line therapy after failure of
crizotinib11,12, high concentrations of alectinib and lorlatinib
strongly inhibited cells with evolved resistance to crizotinib
(erCriz) and ceritinib (erCer). The resistance was partially or
completely maintained after drug holiday both in vitro (Supple-
mentary Fig. 1a) and in vivo (Fig. 1b, c). Resistance was not an
artifact of the dose-escalation protocols, as H3122 cells developed
compatible resistance levels after 2–4 months of acute exposure to
clinically relevant concentrations of the ALK-TKIs (Fig. 1d).
Similar to the resistant cell lines derived by gradual exposure,
resistant phenotypes in cell lines derived by acute exposure to
ALK-TKIs were largely heritable (Supplementary Fig. 1b). Next,

we asked whether the differences in cross-sensitivities of erALK-
TKI cells towards different ALK inhibitors are attributable to the
choice of specific ALK inhibitor. To this end, we examined the
sensitivities of three independently derived (acute exposure pro-
tocol) cell lines for each of the ALK-TKIs used. Consistent with
previous findings (Fig. 1a), erLor and erAlec cells demonstrated
stronger resistance to high concentrations of different ALK-TKIs,
compared with erCriz and erCer cell lines (Fig. 1e).

Next, we asked whether the differences in ALK-TKI cross-
sensitivity of cells selected with different ALK-TKIs are associated
with specific changes in EML4-ALK-dependent signaling path-
ways. We found that, in the absence of ALK-TKI, all of the erCriz
cell lines displayed increased phosphorylation of EML4-ALK,
which was in most cases associated with elevated total EML4-
ALK protein levels, as well as increased STAT3 phosphorylation
(Fig. 1f). In contrast, all of the erLor cell lines displayed reduced
EML4-ALK and STAT3 phosphorylation. Instead, they expressed
higher levels of EGFR, HER2, or both. To assess the phenotypes
more globally, we examined mRNA expression levels of 230
cancer-related genes using the Nanostring nCounter GX human
cancer reference panel. Principal component analyses (PCAs) and
hierarchical clustering for mRNA expression were largely
consistent with the immunoblot evaluation of phosphorylation
(Supplementary Fig. 2a, b). erCer, evolved through acute
selection, as well as acutely and gradually evolved erCriz and
erLor cells formed distinct clusters; in contrast, phenotypes of
erAlec were more diverse.

To test whether the observed differences reflected different
proportions of shared phenotypic subpopulations or population-
wide phenotypic changes, we performed single-cell RNA
sequencing of erALK-TKI cell lines, focusing on two cell lines
per specific ALK-TKI, with the highest divergence in PCA
analysis of NanoString data (Supplementary Fig. 2a). Uniform
manifold approximation and projection (UMAP)13 dimension
reduction of single-cell expression data revealed relative pheno-
typic homogeneity within individual erALK-TKI lines, with a
high degree of similarity among cell lines derived with the same
inhibitor (Fig. 1g). Thus, despite a degree of stochasticity,
reflective of evolutionary contingencies14, acquired resistance to
specific ALK-TKIs is associated with phenotypes that are
convergent within the same inhibitor, but divergent between
different inhibitors.

Resistance originates from diverse tolerant subpopulations.
Acquired resistance is often assumed to reflect a simple expansion
of therapy-resistant subpopulations15,16. Whereas the observed
predictable distinctions between resistant phenotypes, selected in
different ALK-TKIs contradicts this notion, we decided to
interrogate the pre-existence of fully resistant phenotypes more
directly. To this end, we seeded treatment-naive NCI-H3122 cells
at clonogenic densities in the presence of ALK-TKIs or vehicle
control (dimethylsulfoxide (DMSO)). At 10 days post seeding, the
majority of treatment-naive cells plated in DMSO and erALK-
TKI cells plated in DMSO or ALK-TKIs formed macroscopic
colonies. In contrast, in the presence of ALK-TKIs, treatment-
naive cells formed only microscopic colonies, consistent with
tolerance, even upon plating as many as 10,000 cells (Fig. 2a). At
the same time, limiting dilution experiments revealed that
1:338–1:660 of treatment-naive NCI-H3122 cells can give rise to
robustly growing drug-resistant colonies within 10 weeks of drug
exposure (Fig. 2b–d). Whereas these observations cannot exclude
pre-existence of rare (<0.01%) fully resistant subpopulations,
together with the observed inhibitor-specific divergence of resis-
tance phenotypes, they indicate that acquisition of resistance de
novo via tolerant intermediates must be more common in our
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experimental system. This inference is consistent with time-lapse
microscopy examination of the dynamics of drug resistance
emergence, where robust growth in the presence of ALK-TKIs
was observed after significant delay (Supplementary Video 1).

The existence of a distinct weakly resistant phenotypic state,
which is a precursor to bona fide resistance, termed tolerance or
persistence, has been widely studied in microbiology17,18. Based
on the observation of a similar phenomenon in the context of
response to TKIs, the term DTPs has been introduced to describe
a weakly resistant subpopulation in EGFR+NSCLC6 and later in
other cancers9,19,20. Potentially, DTP cells can reflect a distinct
pre-existing subpopulation or arise, either stochastically or
deterministically, in response to drug-induced stress. To dis-
criminate between these scenarios, we used tracing with
selectively neutral DNA barcodes, an approach that has been
previously used to demonstrate the pre-existence of EGFR-TKI
resistance in EGFR+NSCLC21. Following the transduction of
H3122 cells with a high-complexity lentiviral ClonTracer library
at a low multiplicity of infection (MOI) (so that most of the
transduced cells are labeled with a unique barcode) and
elimination of non-transduced cells with puromycin selection,
we achieved ~100× expansion of the barcoded cells. After taking a

baseline aliquot, cells were split into parallel quadruplicate
cultures and then exposed to 0.5 µM alectinib, lorlatinib,
crizotinib, or DMSO control. After 4 weeks of incubation,
barcode frequencies were enumerated by sequencing and were
compared with the baseline frequencies (Fig. 2e). Evidence of
both negative and positive selection was observed in all treatment
groups (including DMSO controls), as barcode diversity, captured
with Shannon diversity index, decreased (Supplementary Fig. 3a),
whereas several subpopulations expanded (Supplementary
Fig. 3b). Spearman’s ranking of positively selected barcodes
revealed a strikingly high degree of correlation between replicates,
indicating pre-existence of stable weakly resistant subpopulations
(Fig. 2f). However, correlation between samples treated with
different ALK-TKIs was either absent or much less pronounced,
indicating that distinct selective pressures exerted by different
ALK-TKIs might amplify distinct pre-existing tolerant subpopu-
lations. Unsupervised hierarchical clustering analysis revealed a
partial overlap between positively selected subpopulations across
multiple ALK-TKIs, indicating that some of the pre-existent
phenotypes were fit under multiple ALK-TKIs (Fig. 2g). In
contrast to the fitness cost of classical persistence under baseline
growth conditions, considered to be a form of bet hedging18,
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subpopulations enriched in ALK-TKIs, on average, were also
slightly enriched under the DMSO control, indicating the lack of
a baseline fitness penalty (Supplementary Fig. 3c). Thus, taken
together, this reveals that resistance to an ALK-TKI in H3122
cells originates from pre-existent, heterogeneous subpopulations
with ALK-TKI-specific pan-TKI tolerance.

Gradual development of ALK-TKI resistance. Next, we asked
how tumor cells progress from tolerance toward full resistance.
The prevalent assumption in the modeling, experimental, and
clinical communities is that resistance results from a single-hit
transition via acquisition of a resistance-conferring mutation or
an epigenetic switch2,22. Should this be the case, a binary dis-
tribution of growth rates, corresponding to tolerant and resistant
cells, would be expected in clonogenic assays after ALK-TKI
exposure, with longer exposure times leading to a higher pro-
portion of large resistant colonies (Fig. 3a). As expected from the
predicted elimination of sensitive subpopulations, clonogenic
proportion in 0.5 µM crizotinib progressively increased from the
initial 2.6% to 26% at week 3, whereas the clonogenic proportion
in 0.5 µM lorlatinib increased from 1% to 17% (Fig. 3b). However,
although longer ALK-TKI exposure lead to an increase in the
average colony size, this increase was apparently homogeneous,
suggesting a gradual development of resistance (Fig. 3c). Analysis
of the colony size distributions at the intermediate (2 and
3 weeks) time points using Kolmogorov–Smirnov (KS) statistics
revealed that the observed colony sizes cannot be explained by
mixed sampling from distributions of tolerant and erALK-TKI

cells (Supplementary Fig. 4a, b). Consistent with the lack of
tolerance-associated proliferation penalty in the barcoding
experiment inferences, we did not observe substantial differences
in the size of colonies formed by cells pre-treated by crizotinib or
lorlatinib for varying durations of time in the absence of the drugs
(Supplementary Fig. 4c, d).

KS analyses consider transitions from tolerance to resistance
within the 1–3 weeks of growth under ALK-TKI prior to the
clonogenic assay. However, the transition could also occur during
colony growth. Therefore, to test compatibility of the experi-
mental data with a single-step transition more rigorously, we
developed an agent-based mathematical model of the experi-
mental assay, which simulated growth both prior and during the
clonogenic assay across a range of (epi)mutational probabilities
and numbers of (epi)mutational steps (Fig. 3d, e and Supple-
mentary Methods). To account for the variability in observed
colony sizes, the maximal proliferation probability was set for
each simulated colony individually, based on random sampling of
sizes of colonies produced by resistant cells. We calibrated the
initial proliferation probability using just the median colony size,
assuming minor variability in the proliferation rates of such cells.
At each cell division, a cell can increase in division rate, reflecting
adaptive (epi-)mutations. Cells can transition from the initial to
maximal division probability by either a single (epi)mutational
step (n= 1) or multiple (n > 1) steps, representing fractional
increments of the single transition (Fig. 3d and Supplementary
Methods).

Whereas the initial and maximal growth rates are fixed based
on the experimental data, the intermediate rates within in silico
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can differ based on two parameters: (epi)mutational probability
and the number of mutational steps required to reach maximum
proliferation rate. We explored outcomes with the full range of
possible (epi)mutational probabilities (0–1) and the numbers of
mutational steps ranging from 1 to 300. With each choice of
parameters, we generated 100,000 in-silico stochastic simulations
(Fig. 3f and Supplementary Video 2). We found that a single
mutational step provided the poorest fit to the data for all
mutation probabilities. The best fit was achieved with a number
of mutational steps in the range of 3–100 (Fig. 3g, h).
Considerations of cell death, bi-directionality of (epi)mutational
changes in cell fitness and variability in fitness effects of (epi)
mutations did not change the poor fit of a single-step transition
(Supplementary Fig. 4e, f and Supplementary Methods). There-
fore, our analyses are inconsistent with the prevalent assumption
of resistance achieved through a single (epi)mutational change,
which converts tolerance to resistance, and instead support a
gradual improvement of cell fitness under therapy.

Next, we decided to characterize the mechanistic underpinning
of the evolution of resistance. Extensive prior studies of
mechanisms of resistance to ALK-TKIs, including studies using
the H3122 model enabled us to ask whether the previously
identified ALK-TKI resistance mechanisms are consistent with a
single-hit acquisition of resistance. Clinical resistance to ALK
inhibitors is frequently associated with point mutations in the
kinase domain of ALK, which reduce drug binding23. However,
targeted Sanger sequencing of PCR-amplified cDNA revealed
lack of hotspot ALK mutations in erALK-TKI cell lines

(Supplementary Fig. 5). Given the frequent association of clinical
ALK-TKI resistance with EML4-ALK amplification24 and the
observed increase in the expression of EML4-ALK in some of the
erALK-TKI-resistant cell lines (Fig. 1f), we interrogated EML4-
ALK amplification status in the treatment-naive and erALK-TKI-
resistant cells (lines “0” from Fig. 1f), using the mutational break-
apart fluorescence in-situ hybridization assay. The majority of
treatment-naive H3122 cells displayed four copies of the wild-
type allele and one copy of the fusion allele, with a minor
subpopulation where the fusion gene signal could not be detected.
Some of the erALK-TKI cells displayed amplification of the
mutant allele (Fig. 4a). Extrachromosomal amplification of
oncogene-containing DNA has been recently implicated in the
rapid evolution of TKI resistance25; however, examination of
metaphase spreads revealed that the amplified alleles were
localized within the same chromosome. Notably, we observed
substantial heterogeneity in the amplification status of EML4-
ALK, both between and within erALK-TKI cell lines (Fig. 4b).
The majority of erCriz cells and a fraction of erAlec and erCer
contained amplified EML4-ALK. In contrast, erLor cells not only
lacked EML4-ALK amplification but also contained a significantly
higher proportion of cells with undetectable mutant allele (p <
0.0001 in a χ2-test) compared with the treatment-naive cells,
suggesting that genomic loss of EML4-ALK might be selectively
advantageous under the more potent ALK-TKI.

To investigate the functional importance of the observed
changes in EML4-ALK copy numbers, we transfected treatment-
naive erCriz and erLor cells with constructs co-expressing Cas9

s

a

C
lo

no
ge

ni
c 

fr
ac

tio
n

C
lo

no
ge

ni
c 

fr
ac

tio
n

ALK TKI

3 week

2 weeks

1 week

Clonogenic assays: numbers & size

C
ol

on
y 

si
ze

, c
el

ls

C
ol

on
y 

si
ze

, c
el

ls

Crizotinib 0.5 µM Lorlatinib 0.5 µM
b

d

Expectation

0.01

0.1

1

10

0.001
erCriz

c

Weeks in Lor

erLor1 2 3Naïve

****

Lorlatinib 0.5 µM

****

****
****

****

****

****

****

****

f

Experimentally observed 
In silico predicted

5

50

500

erCriz3w Criz

n 
= 

1,
30

n 
= 

1,
30

n 
= 

30n 
= 

1

C
ol

on
y 

si
ze

, c
el

ls

Naïve

Weeks in Criz

1 2 3Naïve

Weeks in Lor

erLor1 2 3Naïve

0.01

0.1

1

10

0.001
erCriz

weeks in Criz

1 2 3Naïve

e
Seed a cell

Grow a colony
in ALK-TKI

Randomly pick
and seed a cell

Grow a colony
in ALK-TKI

Record
colony size

1–3 weeks

1 week

g

Naive

1 week 2 weeks 3 weeks

d

d

d

d

D D Dd

d

d

P DD

DDD

d,

d, n 
=

 1
n 

=
 3

0

KL divergence

0.
50

0.
45

0.
40

0.
35

0.
30

0.
25

0.
20 2.
0

1.
8

1.
6

1.
4

1.
2

1.
0

0.
8

0.
6

0.
4

0.
2

LorlatinibCrizotinib

1 3 10 30 10
0

20
0

30
01 3 10 30 10
0

20
0

30
0

Number of mutational steps

0.3

0.1

0.01

0.03

0.001

0.003

0.0001

1

0

0.0003

M
ut

at
io

n 
pr

ob
ab

ili
ty

Crizotinib pre-exposure time

KL divergence

h

Naïve erCriz

1

10

100

1000

****

****

*

1

10

100

1000Crizotinib 0.5 µM

n = 70 n = 152 n = 324 n = 134 n = 386 n = 25 n = 78 n = 246 n = 267 n = 618

*

Fig. 3 Graduality of evolution of ALK-TKI resistance. a Experiment schemata. Therapy-naive cells were pre-cultured in the presence of crizotinib or lorlatinib
for 0–3 weeks, then seeded at clonogenic densities in the presence of ALK-TKIs or DMSO control. After 7 days, numbers and sizes of colonies are determined.
b Clonogenic survival in the presence of the indicated ALK-TKIs after pre-incubation for indicated times; data are normalized to clonogenic survival in DMSO
control. Mean ± SD of 15 replicates (separate wells) is shown. c Distributions of colony sizes in the indicated ALK-TKI. *p < 0.05 and **p < 0.0001 of a
Mann–Whitney test. Mean ± SD of individual colonies are shown. d Logical flow diagram for the agent-based model, simulating growth during both pre-
incubation and the clonogenic assay. e Proliferation space check scheme. Cells are seeded into a 2d lattice that simulates the surface of a culture dish. If space
is available (no more than one cell separating the cell from an empty space), a cell can proliferate with a given probability inferred from the experimental data.
Blue and gray cells denote occupied and empty spaces respectively. “P” stands for the parent cell, “D” for daughter cell, “d” for displaced cell. Black arrows
indicate options for placement of daughter cells, yellow arrows indicate options for displaced cells. Proliferation can occur if a nearby space is either
immediately available or separated by a single cell, in which case this cell is pushed into an empty space, with an extra copy of the proliferating cell displacing
it. f Example of colony growth simulations, initiated from cells pre-incubated in crizotinib for the indicated time, during the clonogenic growth phase off the
assay, contrasting n= 1 vs. n= 30. g Comparing divergence between in silico and experimental data, with n= 1 and n= 30 (epi)mutational steps. Mean ± SD
of individual experimental and simulated colonies are shown. h Kullback–Leibler divergence-based comparison of the experimental data with the outcomes of
simulations, covering parameter space for the indicated mutation probabilities and numbers of mutational steps.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16212-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2393 | https://doi.org/10.1038/s41467-020-16212-w | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and one of two different ALK-targeting guide RNAs, and selected
for puromycin-resistant colonies. No colonies could be observed
for erCriz cells, suggesting a critical dependency on EML4-ALK
(Fig. 4c). Naive H3122 cells formed few small colonies,
resembling tolerant colonies formed upon exposure to an ALK-
TKI (Fig. 2a). Puromycin-resistant naive cells, transfected with
guide RNA directed against ALK expressed EML4-ALK protein,
displayed normal ALK expression (Fig. 4d), indicating a strong
selective disadvantage of losing EML4-ALK expression and
selection of variants that uncouple antibiotic resistance from
guide RNA expression. In contrast, erLor cells formed multiple
large colonies consistent with a lack of growth inhibition (Fig. 4c),
despite complete ablation of the protein expression of the EML4-
ALK gene (Fig. 4d). This observation is consistent with reduced
baseline EML4-ALK expression in erLor cells (Fig. 1f) and
suggests that erLor cells completely lose EML4-ALK addiction.

Given that EML4-ALK amplification resulting in overexpres-
sion is considered to provide a bona fide resistance mechanism to
ALK inhibition26, we asked whether the observed increase in
EML4-ALK expression is sufficient to account for ALK-TKI
resistance. To this end, we retrovirally overexpressed EML4-ALK
protein in H3122 cells, resulting in levels of total and
phosphorylated EML4-ALK, which closely resemble those
observed in EML4-ALK-amplified erALK-TKI cells (Fig. 4e).
After exposure to crizotinib, these cells retained residual levels of
ALK phosphorylation similar to those observed in the erALK-
TKI cells (Supplementary Fig. 6a). However, cells with EML4-
ALK overexpression displayed only a marginal increase in
crizotinib resistance (Fig. 4f), suggesting that although ALK
amplification contributes to resistance, it is insufficient to fully
account for it.

Given the insufficiency of EML4-ALK overexpression to confer
full resistance, we interrogated the functional impact of the most
common resistance-associated point mutation, L1196M, which is
considered to be a clear case of a single hit resistance mechanism to
crizotinib26. Surprisingly, at low expression levels, achieved with <1
retroviral MOI, L1196M expression only moderately decreased
crizotinib sensitivity (Fig. 4f). Higher overexpression levels of the
mutant protein blocked crizotinib from downregulating phosphor-
ylation of EML4-ALK, as well as its main downstream effector ERK
(Fig. 4e and Supplementary Fig. 6a, b), and provided crizotinib
resistance at a level that is similar or higher to that observed in
erCriz cells (Fig. 4f). Whereas the results with L1196M over-
expression are consistent with previously reported sufficiency to
confer resistance in NIH-H3122 cells27,28, and ALK mutations were
reported co-occur with EML4-ALK amplification in some
patients29,30, these observations suggest that two mutational hits
(mutation and overexpression) might be required to achieve full
resistance. Thus, common resistance-associated mutational changes,
assumed to provide single hit resistance, reduce drug sensitivity but
do not provide for a full adaptation to the ALK-TKI induced
selective pressures.

Examination of resistant cell lines with Oncomine Focus
Assay31 failed to detect additional common mutations. However,
CytoScanHD single-nucleotide polymorphism (SNP) array
revealed additional genetic changes, including recurrent chromo-
somal amplifications in chromosomes 2, 3, 12, and 17.
Interestingly, two out of three examined erLor lines displayed
Chr12 p12.1-p11.1 amplification containing KRAS, whereas a
third one contained Chr1 p13.2-p12 amplification containing
NRAS (Supplementary Fig. 7a). Notably, chromosomal amplifica-
tion of genomic regions containing KRAS and NRAS were
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associated with elevated transcript levels of these proto-oncogenes
(Supplementary Fig. 7b).

Given the growing evidence for the importance of non-genetic
mechanisms in therapy resistance, we used RNA sequencing
(RNA-seq) analysis to examine changes in gene expression,
accompanying erALK-TKI phenotypes. After a 48 h drug holiday
(to reduce the direct impact of ALK-TKI on gene expression),
erALK-TKI cells displayed multiple gene expression changes,
previously implicated in TKI and chemotherapy resistance,
including increased expression of multiple receptor tyrosine
kinases (EGFR, HER2, FGFR, AXL, EPHA2, etc.), cytokines,
extracellular matrix (ECM) and ECM receptors, and other types
of molecules, suggesting a complex, multifactorial nature of
resistant phenotypes (Fig. 5a). Co-expression analysis of cell lines

in the CCLE database revealed that the resistance-associated
genes, upregulated in erALK-TKI cells, belonged to distinct gene
co-expression clusters, suggesting that the resistant phenotypes
cannot be explained by a single coordinated transcriptional
switch (Supplementary Fig. 8a, b), whereas gene set enrichment
analysis revealed several shared enriched gene sets (Supplemen-
tary Fig. 8c). Interestingly, all of the examined resistant cell lines
displayed an epithelial to mesenchymal transition (EMT)
signature. Whereas EMT has been described as one ALK-TKI
resistance mechanism32,33, our results suggest a need for a more
nuanced interpretation, given the predictably distinct phenotypic
characteristics of erALK-TKI cell lines, evolved under different
ALK-TKIs, as these differences would be missed under the
umbrella of the EMT/stemness explanation.
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To gain further insights into the dynamics of phenotypic
changes during the evolution of resistance, we analyzed single-cell
transcriptomes after different exposure times to ALK-TKIs.
UMAP analysis revealed gradual phenotypic progression from
naive to resistant phenotypes (Fig. 5b and Supplementary Fig. 9).
Even a brief (4 h) alectinib exposure substantially impacted cell
phenotypes, suggesting that acquisition of resistance might reflect
not only the action of drug-imposed selection but also direct
drug-induced cell adaptation. To gain further insight into the
temporal dynamics of the acquisition of resistance-conferring
expression changes, we analyzed the expression of ALK and
HER2 at single-cell levels, at different time points, after exposure
to an ALK-TKI. Consistent with high levels of ALK expression
and genetic amplification of EML4-ALK in erCriz cell lines, the
expression of ALK increased upon exposure to crizotinib, but not
alectinib. In contrast, expression of HER2 became elevated within
48 h of exposure to both drugs, suggesting a direct adaptive
response, then decreased upon prolonged incubation with
crizotinib, while staying upregulated or increasing further under
alectinib (Fig. 5c).

To explore possible epigenetic mechanisms underlying the
observed stable changes in gene expression in erALK-TKIs cell
lines, we analyzed the global repatterning of Histone 3.3 lysine 27
acetylation (H3K27ac), a posttranslational histone modification
associated with strong enhancer elements using chromatin
immunoprecipitation sequencing (ChIP-Seq) analysis. We found
distinct global patterns of H3K27 acetylation at gene regulatory
elements between naive and ALK-TKI-resistant lines (Supple-
mentary Fig. 10a). Notably, statistically significant changes in
H3K27 acetylation were observed in regulatory elements of genes
with resistance-associated gene expression changes (Supplemen-
tary Fig. 10b), including genes previously implicated in therapy
resistance. For example, consistent with observed differences in
protein expression (Fig. 1f), we found new H3K27ac peaks in the
vicinity of the ERBB2/HER2 gene in erAlec and erLor lines, but
not in the erCriz lines (Supplementary Fig. 10c). New peaks were
also observed near genes with increased genomic copy numbers
(EML4, K-RAS, and N-RAS) (Supplementary Fig. 10d), suggesting
that that stable upregulation of resistance-associated genes might
result from a combined input of genetic and epigenetic changes.

To evaluate the functional significance of these transcriptional
changes, we tested the impact of overexpression of selected genes
previously implicated in TKI resistance. Lentiviral overexpression
of HER2, FGFR, AXL, and SLUG significantly increased
resistance to multiple ALK-TKIs (Fig. 5d). However, resistance
levels observed in these engineered cell lines fell short of the levels
observed in the erALK-TKI lines, suggesting insufficiency of
individual mechanisms to fully account for resistance. On the
other hand, combined overexpression of EML4-ALK and HER2
led to significantly higher resistance levels, compared with cells
overexpressing either EML4-ALK or HER2 separately, although
still failing to recapitulate resistance levels observed in erALK-
TKI cells (Fig. 5e). These results support the notion that ALK-
TKI resistance reflects a combined output of multiple genetic and
epigenetic changes, which contribute to increased fitness in an
additive or synergistic manner.

Temporal collateral sensitivities of resistance-evolving cells. It
is frequently assumed that, according to the principle of an evo-
lutionary fitness tradeoff34, resistance-conferring phenotypes are
associated with strong fitness penalties outside of the drug35–38.
This fitness penalty could enable evolutionary-informed adaptive
therapy, by creating a tug of war between therapy sensitive and
therapy-resistant populations with strategic treatment breaks37.
Thus, we examined growth rates of erALK-TKI cell lines in the

presence and absence of the drugs. Whereas in some cases cells
taken off the drugs indeed proliferated slower than drug-naive
control, some of the resistant cell lines proliferated at similar or
even higher rates (Supplementary Fig. 11a). Interestingly, all of the
examined erCriz and one out of three of the examined erAlec cell
lines displayed higher rates of proliferation in the presence of the
inhibitors, consistent with previously reported observations in
melanoma39,40. The remaining cell lines were either modestly
inhibited, or unaffected by the ALK-TKI used for their selection
(Supplementary Fig. 11a).

Fitness of tumor cells is context dependent41,42 and in vitro
two-dimensional cultures do not capture death/proliferation
dynamics within tumors in vivo. Further, non-cell autonomous
interactions between phenotypically distinct subpopulations
could significantly alter fitness in competitive settings43,44.
Therefore, we compared baseline fitness of differentially labeled
(green fluorescent protein (GFP) and mCherry) naive and
erALK-TKIs cells in a competitive in-vivo context by implanting
their mixtures either subcutaneously or into the lungs (via tail
vein injections). Only erCriz cells in the lungs displayed signs
of reduced fitness compared with therapy-naive cells (Supple-
mentary Fig. 11b). In contrast, erLor cells had a significant
selective advantage over naive cells both in subcutaneous and
lung tumors. Therefore, resistance is not necessarily associated
with a fitness penalty and might be linked to higher fitness
outside of the drugs.

On the other hand, growth out of the primary therapy is just
one of many potential contexts where an evolutionary tradeoff
might be manifested. Application of a different drug, to which
ALK-TKI-resistant phenotypes are collaterally sensitive, could
provide an alternative strategy to create a fitness tradeoff45,46.
Given the frequent upregulation of EGFR and HER2 in cells,
resistant to the front-line ALK-TKI alectinib, we tested whether
the dual EGFR/HER2 inhibitor lapatinib could create a collateral
fitness tradeoff. Whereas H3122 cells failed to develop resistance
to alectinib in the presence of lapatinib (Supplementary Fig. 12a),
erAlec cells were not sensitized to lapatinib as a single agent and
only some of the independently derived erAlec cell lines were
inhibited by the combination of alectinib and lapatinib
(Supplementary Fig. 12b). At the same time, evolving cells were
remarkably sensitive to lapatinib, even as a single agent, although
this sensitivity gradually diminished as cells became more
resistant to alectinib (Fig. 6a, b). This collateral sensitivity cannot
be explained by the pre-existence of lapatinib-sensitive, alectinib-
tolerant subpopulations, as pretreatment with lapatinib for up to
3 weeks did not substantially impact sensitivity of H3122 to
alectinib (Supplementary Fig. 12c). Consistently, administration
of lapatinib as a single agent, after 3 weeks in alectinib, or as a
combination therapy, led to complete elimination of H3122 cells
in vitro (Fig. 6c).

Encouraged by this observation, we asked whether alectinib/
lapatinib cycling or a combination treatment with the two drugs
could outperform alectinib monotherapy in vivo. We found that
lapatinib was completely ineffective in adaptive cycling with
alectinib, as tumor regrowth during lapatinib cycles was
indistinguishable from the regrowth observed with a drug holiday
(Fig. 6d). Most likely, this lack of efficiency in vivo reflects its
inability to reach the high concentrations required to achieve
collateral sensitivity in vitro. Still, lapatinib significantly increased
tumor sensitivity to alectinib in a combination therapy setting
(Fig. 6d). Whereas, at this point, the clinical utility of our
observations remains unclear, they provide a proof of principle
that temporally restricted collateral vulnerabilities of evolutionary
intermediates might be exploited therapeutically to improve
responses, and potentially, to forestall the emergence of resistance
in targetable lung cancers.
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Discussion
Despite substantial advances in deciphering the molecular
mechanisms of resistance to TKI-based targeted therapies and the
development of more effective drugs, advanced targetable lung
cancers remain incurable, as tumors eventually acquire resistance
and relapse. Developing strategies to interfere with evolving
resistance has the potential to substantially improve long-term
survival outcomes. However, this is contingent on a correct
understanding of the underlying evolutionary dynamics. In
contrast to the large body of experimentally derived knowledge
on individual molecular mechanisms of resistance, our under-
standing of its evolutionary causes and dynamics remains less
developed. The subject of evolutionary-informed therapies has
received significant attention from mathematical
modelers5,16,47,48. However, given the paucity of experimental
data acquired to derive solid assumptions for building models,
these modeling studies often have to rely on conjectures from
reductionist, mechanism-centered studies, thus limiting their
potential.

Acquired resistance is commonly viewed through two major
conceptual frameworks. According to the first, currently domi-
nant gene-centric framework, resistance arises from a selective

expansion of genetically or epigenetically distinct (meta)stable
subpopulations. The subpopulation(s) could either pre-exist
therapy or arise de novo from mutational conversion of sensi-
tive or tolerant cells. In both cases, clinical and experimental
studies operating within this paradigm typically reduce acquired
resistance to a single cause, such as a point mutation (e.g., the
L1196M gatekeeper mutation)30, gene amplification (e.g., EML4-
ALK30, cMET49, etc.), or a non-mutational stable change in the
expression of a resistance-conferring gene (e.g., IGFR)50. Con-
sequently, the assumption of a single hit resistance mechanism is
highly prevalent in the mathematical modeling community5,16,22.

The second framework views resistance as the result of drug-
induced reprogramming, where phenotypic plasticity enables
tumor cells to directionally rewire their signaling, metabolic, and
gene-expression networks to cope with inhibitor-induced
perturbations9,51,52. In this system-biology-based framework,
resistance can be gradual and multifactorial; however, the causal
role of selection is sometimes rejected due to its link with
mutation-centric paradigms9.

The two frameworks are not strictly mutually exclusive, as they
can be bridged in a two-step process involving reprogramming-
mediated formation of tolerant subpopulations followed by an
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Fig. 6 Collateral sensitivities of evolutionary intermediates. a Impact of pre-exposure to 0.5 µM alectinib for the indicated periods on sensitivity to
alectinib and lapatinib, measured by Cell Titer Glo assay. One-way ANOVA was used for both drugs (p < 0.0001). Adjacent time points were compared
using Sidak’s multiple comparison tests (***p < 0.001 and ****p < 0.0001). Mean ± SD of experimental replicates are shown. n= 3, representing separate
wells, for naive control and erAlec H3122 cells. n= 6 wells (3 wells each of 2 biological replicates) for cells pre-exposed to alectinib. Data for one of the
biological replicates is missing in week 6. b Illustration of association of evolving resistance to alectinib with collateral sensitivity to lapatinib. c Lapatinib
can prevent the development of resistance to alectinib in vitro, both as a combination treatment, or in drug cycling. Green shading indicates switching from
alectinib to lapatinib monotherapy. Residual signal in the combination therapy and cycling groups reflects autofluorescence, as visual examination revealed
lack of surviving tumor cells. Mean ± SD of experimental replicates (n= 3 representing separate wells for DMSO and lapatinib monotherapy, n= 6 for the
remaining groups) are shown. d Change in volume of H3122 xenograft tumors treated with indicated therapies; treatment was initiated 3 weeks post tumor
implantation. Green shading indicates switching from alectinib to lapatinib monotherapy or vehicle control. Mean values ± SE are shown; n= 6 for lapatinib
monotherapy, n= 10 for alectinib monotherapy, switching between alectinib and lapatinib, and alectinib/lapatinib combination, n= 9 for vehicle control,
replicates represent separate tumors. e Evolving resistance interpreted through a fitness landscape metaphor. Naive cells occupy a local fitness peak. Drug
exposure reshapes the landscape, turning this fitness peak into a fitness trough. Different ALK inhibitors act on partially distinct outliers, directing their
evolution toward distinct fitness peaks.
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(epi)mutational switch to full resistance. Our results, however,
suggest an alternative scenario of gradual, multifactorial resis-
tance, which integrates features of the two paradigms described
above. We speculate that selective pressures imposed by therapies
act on phenotypic heterogeneity, stemming from both stochastic
and drug-induced changes, leading to a gradual increase in
population fitness through acquisition of additional genetic and
epigenetic changes until a local fitness peak is reached (Fig. 6e).
Different evolutionary trajectories under distinct ALK-TKIs
reflect inhibitor-specific differences in both selective pressures
and direct drug-induced adaptive responses, which can become
hardwired if selectively advantageous. This model is closer to
Darwin’s original thesis “As natural selection acts solely by
accumulating slight, successive, favorable variations, it can pro-
duce no great or sudden modifications”53 rather than the cur-
rently prevalent mutation-centric re-interpretation of Darwinian
selection within the clinical and basic science cancer research
community54.

Gradual, multifactorial acquisition of resistance has been
recently observed in an elegant experimental study of acquired
BRAFi resistance in melanoma9. The authors rejected the Dar-
winian explanation based on the lack of pre-existent resistance
and thus interpreted their observations strictly within a repro-
gramming paradigm. We argue that their data are highly con-
sistent with our model, which does not reduce Darwinian
selection to genetically distinct pre-existing variants. Likewise, a
recent single-cell sequencing study in triple-negative breast can-
cer demonstrated that although resistance to chemotherapy can
be traced to pre-existent genetically distinct subpopulations,
resistant cells acquire new phenotypic changes, indicating epi-
genetic modlifications55. Similarly, a recent study in hormone
positive breast cancers demonstrated a multi-step underpinning
of resistance, involving both genetic and non-genetic changes51.
Therefore, our inferences with a model of ALK mutant NSCLC
might be generalizable to a broader range of scenarios of acquired
therapy resistance.

Finally, our data suggests that evolutionary intermediates of
acquired resistance may present temporally restricted opportu-
nities for therapeutic interventions, which is consistent with the
previously reported existence of collateral sensitivities in muta-
tional intermediates in the evolution of resistance in Ph+ ALL56.
These findings support the notion that explicit interrogation and
nuanced understanding of the evolutionary mechanisms of
acquired drug resistance could open the way to designing
evolutionary-informed therapy approaches, focused on staying a
step ahead of resistance, rather than just reacting to it when it
(inevitably) arises.

Methods
Derivation of resistant cell lines. Parental and ALK-TKI-resistant H3122 cells
were grown in RPMI (Gibco, ThermoFisher) supplemented with 10% fetal bovine
serum (FBS) (Serum Source), penicillin/streptomycin, insulin (Gibco), and anti-
clumping agent (Gibco). ALK-TKI-resistant cell lines were generated by further
evolving lines used in ref. 10, derived through a progressive increase in ALK-TKI
concentrations; eventually, they were maintained in 0.5 µM crizotinib, 0.2 µM
ceritinib, 2.0 µM alectinib, and 2.0 µM lorlatinib. Alternatively, for the acute
derivation, resistant lines were derived by exposing treatment-naive H3122 cells
directly to the high ALK-TKI concentrations (0.5 µM crizotinib, 2 µM alectinib and
lorlatinib, or 100 nM ceritinib), re-plating every 2–4 weeks to relieve spatial growth
constraints over the course of 2–4 months.

Short-term viability assays. Short-term cell viability was measured using Cell
Titer Glo reagent (Promega). Typically, 2000 cells per well were plated in a 96-well
plate (Costar). Drugs were added 24 h later and the assays were performed using
manufacturer-recommended protocol 3–4 days after drug addition. Viability was
calculated first by subtracting the luminescence of empty wells then by division by
average DMSO luminescence. Dose–response curves were generated by fitting the
following equation to the data: y¼ bþ 100� b

1þ x
IC50ð Þk , where y is luminescence, x is drug

concentration, IC50 is the half maximal inhibitory concentration, k is the hill slope,
and b is the luminescence as the drug concentration approaches ∞.

Clonogenic assays. Cells were plated in the presence of ALK-TKIs or DMSO
vehicle control at varying densities into 6 cm dishes or multi-well plates in
duplicates or triplicates, and were grown for 10 days, at which point they were fixed
and stained with crystal violet, following protocols described in ref. 57. To measure
the evolution of gradually increasing resistance, nuclear mCherry expressing H3122
cells were plated at ~400,000 cells per 6 cm dish, allowed to attach overnight, and
exposed to DMSO vehicle control, 0.5 μM crizotinib, or 0.5 μM lorlatinib the fol-
lowing day. After culturing for 1–3 weeks, cells were collected and seeded in 96-
well plates (Costar) at 50 cells/well for DMSO control, or between 50 and 500 cells
for crizotinib and lorlatinib. Number of colonies and colony sizes were measured
1 week later for colonies larger than 1000 pixels (~5 cells), based on fluorescent
area. To minimize the impact of variability in seeding numbers, clonogenic survival
in the presence of ALK inhibitors was normalized to clonogenic data in the DMSO
controls.

Determining frequency of resistance-initiating cells. Cells were plated with
initial seeding densities of 400, 400, 800, 1400, and 400 cells/well in DMSO (0.1%),
crizotinib (0.5 µM), ceritinib (0.1 µM), alectinib (0.5 µM), and lorlatinib (0.5 µM)
treated plates, respectively, in a 96-well plate (Falcon). Five additional 2× dilutions
were generated from these wells, each with 10 separate wells. ALK inhibitors were
added after 24 h. After 7 weeks of treatment, wells containing no colonies larger
than ~50 cells were counted. The natural log of the proportion of wells without
colonies was fitted linearly against the initial cell number in each well. The number
of cells per resistance-initiating cell was calculated as 1

1�eslope and the error of this

value as
Errorslopee

slope

1�eslopeð Þ2 .

Clone-tracing assay. H3122 cells were transduced at 10% efficiency (as defined by
fluorescence-activated cell sorting analysis of dsRed expression) with ClonTracer
neutral DNA barcode library21, kindly provided by Frank Stegmeier (Addgene
#67267). Barcode containing cells were selected with puromycin and expanded for
23 days. Cells were expanded from 105 cells (after puromycin selection) to 3.4 × 107

cells. Quadruplicate cultures of 1.5 × 106 cells each were plated into 10 cm dishes in
the presence of 0.1% DMSO, 0.5 µM crizotinib, 0.5 µM alectinib, and 0.5 µM lorla-
tinib. Two aliquots of 1.5 × 106 cells were frozen to serve as an initial mixture. Cells
were collected following 4 weeks of cell culture. Genomic DNA was extracted using
proteinase K digest, followed by phenol–chloroform purification. Barcodes were
amplified, sequenced, and analyzed following protocols described in ref. 21 and an
updated procedure provided on the Addgene website https://www.addgene.org/
pooled-library/clontracer. A first round of amplifications was performed for 35 cycles
using the primers 5′-TCG ATT AGT GAA CGG ATC TCG ACG-3′ and 5′-AAG
TGG ATC TCT GCT GTC CCT G-3′ for 35 cycles. A second round was performed
for 15 cycles using second-generation clonTracer primers with the following
sequence: 5′-CAA GCA GAA GAC GGC ATA CGA GAT-Variable Sequence-GTG
ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TCT AGC ACT AGC ATA
GAG TGC GTA GCT-3′. Barcode enrichment analyses focused on barcodes that
were enriched above the most frequent barcode within the average of the two
baseline samples (0.0077). Heatmap.2 in R (using default parameters) was used for
heatmap clustering. Corrplot58 in R (using spearman correlation coefficients) was
used to visualize correlations.

Fluorescent in-situ hybridization analyses. Cells were cultured in 10 cm dishes
in 10 ml of 1640 medium supplemented with 10% FBS. After 24 h, 100 µl of col-
cemid (10 µg/ml, Life Technologies, Carlsbad, CA) was added to each culture and
culture replaced to incubator for another 1 h before collecting. Cell suspension was
transferred to 15 ml cortical tubes. Culture medium was removed by centrifuge.
Cell pellets were subjected to hypotonic treatment with 0.075M KCl and then fixed
with Methanol and acidic acid at 3:1 v/v. Cell suspensions were dropped to slides
and treated with 0.005% (wt/vol) pepsin solution for 10 min, followed by dehy-
dration with 70%, 85%, and 100% (vol/vol) ethanol for 2 min each. Hybridization
was performed by adding 10 µl of ALK dual-color break-apart probe on each slide
(Cytocell, Cambridge UK), a coverslip was placed, and the slides were sealed with
rubber cement. The specimens were subjected to denaturation at 75 °C for 3 min
and hybridized at 37 °C for 16 h. The slides were washed in 0.4× saline-sodium
citrate at pH 7.2 and then counterstained with 4′,6-diamidino-2-phenylindole
(DAPI). Results were analyzed on a Leica DM 5500B fluorescent microscope. Cell
images were captured in both interphase and metaphase cells.

RNA-seq analysis. Following 48 h of culturing in the absence of inhibitors (to
minimize the impact of directly induced gene expression changes), RNA was
isolated for erALK-TKI and parental H3122 cells using an RNAEasy Minikit
(Qiagen). Reads were generated using a MiSeq instrument. Alignment was
achieved using HiSat2 and the human hg19 reference genome. Normalized reads
were obtained from DeSeq2. Analysis was performed with gene with more than 25
reads in at least one sample and more than two-fold change from ALK-TKI-naive
cells in at least one resistant line.
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Nanostring assay. Following 48 h of culturing in the absence of inhibitors (to
minimize the impact of directly induced gene expression changes), RNA was
isolated for erALK-TKI and parental H3122 cells using an RNAEasy Minikit
(Qiagen). The nCounter GX Human Cancer Reference Kit was used to
determine gene reads. Genes >1 SD from and >2-fold different from the
mean parental value in any sample were retained for further analysis. The

log2
Reads

Median Reads across all samplesð Þ
� �

was used for all visualizations of the data. ClustVis59

was used to generate PCA plots. Heatmap and corresponding dendograms were
generated with heatmap.2 in R, using default parameters.

SNP array. DNA was extracted from parental and several biological replicates of
ALKi-resistant H3122 cells using DNeasy Blood and Tissue Kit (Qiagen). DNA
SNP sequencing was performed using CytoScanHD (ThermoFisher). Reads were
processed using Normal Diploid Analysis in Chromosome Analysis Suite 3.2
(ChAS, ThermoFisher).

Single-cell transcriptome analysis. Single-cell expression was performed using
10× Genomics platform. Approximately 1000 cells were analyzed per each sample
and ~40,000 reads per cell were generated using an Illumina NextSeq 500 instru-
ment. Demultiplexing, barcode processing, alignment, gene counting was performed
using the 10X Genomics CellRanger 2.0 software. Dimension reduction was done
using UMAP13, setting number of neighbors to 15. Cells were clustered using
HDBSCAN on dimension reduced space60, with the minimum number of cells set
to 30. All other parameters were set to default values.

Gene set enrichment analysis. GSEA version 4.0 (ref. 61) was used to determine
the gene sets enriched in acquired resistant versus parental cell line RNA-seq
profiles. We used the MSigDB Hallmark [PMID: 26771021] as the predefined gene
sets and performed 10,000 permutations by gene set to determine the p-values.
Gene sets with false discovery rate q-value ≤ 0.25 were considered as significantly
enriched.

ChIP-Seq analysis. H3122 cells were fixed with 1% formaldehyde for 15 min and
quenched with 0.125M glycine. Chromatin was isolated by the addition of lysis
buffer, followed by disruption with a Dounce homogenizer. Lysates were sonicated
and the DNA sheared to an average length of 300–500 bp. Genomic DNA (Input)
was prepared by treating aliquots of chromatin with RNase, proteinase K, and heat
for de-crosslinking, followed by ethanol precipitation. Pellets were resuspended and
the resulting DNA was quantified on a NanoDrop spectrophotometer. Extra-
polation to the original chromatin volume allowed quantification of the total
chromatin yield. An aliquot of chromatin (30 µg) was precleared with protein A
agarose beads (Invitrogen). Genomic DNA regions of interest were isolated using 4
µg of antibody against H3K27Ac (Active Motif, catalog number 39133, Lot number
01518010). Complexes were washed, eluted from the beads with SDS buffer, and
subjected to RNase and proteinase K treatment. Crosslinks were reversed by
incubation overnight at 65 °C and ChIP DNA was purified by phenol–chloroform
extraction and ethanol precipitation. Quantitative PCR (qPCR) reactions were
carried out in triplicate on specific genomic regions using SYBR Green Supermix
(BioRad). The resulting signals were normalized for primer efficiency by carrying
out qPCR for each primer pair using Input DNA. Illumina sequencing libraries
were prepared from the ChIP and Input DNAs by the standard consecutive
enzymatic steps of end polishing, dA addition, and adaptor ligation. After a final
PCR amplification step, the resulting DNA libraries were quantified and sequenced
on Illumina’s NextSeq 500 (75 nt reads, single end). Reads were aligned to the
human genome (hg38) using the BWA algorithm (default settings). Duplicate reads
were removed and only uniquely mapped reads (mapping quality ≥ 25) were used
for further analysis. Alignments were extended in silico at their 3′-ends to a length
of 200 bp, which is the average genomic fragment length in the size-selected library
and assigned to 32-nt bins along the genome.

To define relevance toward transcriptional changes, RNA-seq reads were
reanalyzed using HISAT2 and hg38 for proper comparison with ChIP-seq data.
RseQC was used to check stranded information. HTSeq-count was used for reads
counting. Raw ChIP-seq files were marked duplicate using picard and MACS2
was used to call peaks (q < 0.05). Peaks from four samples were merged using
bedtools. Black list was removed. Featurecounts was used for read counting. All
genes within ±20 kb of a peak are used for comparisons. Peaks with <15 reads in all
samples with ChIP-seq and RNA-seq data (naive, erCriz0, erAlec0, and erLor0)
were excluded. Genes with <25 reads in all samples with ChIP-seq and RNA-seq
data were excluded. Gene and peak levels were normalized using the DESeq2 rlog
function. Genes with a difference in rlog values between erTKI and naive cells of ≥1
are considered upregulated. Genes with a difference in rlog values between erTKI
and naive cells of ≤−1 or less are considered downregulated. All other genes are
considered neutral. Peak values that are associated with multiple genes are used
multiple times.

Tracks: ACS2 was used to call peaks. Partek was used to visualize chromosomal
tracks.

Immunoblot analyses. Protein expression was analyzed using NuPAGE gels
(ThermoFisher), following the manufacturer’s protocols. The following antibodies,
purchased from Cell Signaling, were used: HER2 (4290), EGFR (2963), p-ALK
Y1604 (3341), ALK (3633), p-Akt S473 (4060S), Akt (9272), pERK T202/T204
(4370S), ERK (4695), p-Stat3 Y705 (9145), Stat3 (9139), p-S6 S235/S236 (4858S),
and s6 (2317) at 1:20,000 dilution. Anti-β-actin antibody was purchased from Santa
Cruz (47778) and used at a 1:20,000 concentration. Secondary antibodies with H+
L horseradish peroxidase (HRP) conjugates were purchased from BioRad (anti-
rabbit: 170-6515, anti-mouse: 170-6516). HRP chemiluminescent substrate was
purchased from Millipore (WBKLS0500). Images were taken using an Amersham
Imager 600 (GE Healthcare Life Sciences).

Xenografts studies. erALK-TKI or parental H3122 were suspended in 1 : 1 RPMI/
Matrigel (ThermoFisher) mix and subcutaneously implanted into 4–6-week-old
NSG mice, with two contralateral injections per animal, containing 106 tumor cells
each. After 3 weeks, the animals were treated with 25 mg/kg alectinib (purchased
from Astatech), 6 mg/kg lorlatinib (obtained from Pfizer), or vehicle control via
daily oral gavage. Tumor diameters were measured weekly using electronic calipers
and tumor volumes were calculated assuming spherical shaped tumors. Tumors in
the collateral sensitivity experiments were treated with 11 mg/kg alectinib for
1 week before switching to 50 mg/kg alectinib. Xenograft studies were performed in
accordance with the guidelines of the Institutional Animal Care and Use Com-
mittee of the H. Lee Moffitt Cancer Center. Animals were maintained under
AAALAC-accredited specific pathogen-free housing vivarium and care and
veterinary supervision following standard guidelines for temperature and humidity,
with 12/12 light cycle.

CRISPR-knockout experiments. gRNAs were cloned into the pSpCas9(BB)-2A-
Puro (PX459) V2.0 vector, using the protocol described in ref. 62. The following oligo
sequences were used: 5′-CAC CGT CTC TCG GAG GAA GGA CTT G-3′ with 5′-
AAA CCA AGT CCT TCC TCC GAG AGA C-3′ and 5′-CAC CGC ATC CTG CTG
GAG CTC ATG G-3′ with 5′-AAA CCC ATG AGC TCC AGC AGG ATG C-3′.
H3122 cells were transfected with the above constructs using jetPrime reagent
(polyPlus). Forty-eight hours following transduction, 105 cells were seeded per 6 cm
dish for a clonogenic assay. To account for differences in transfection efficiency
between parental and resistant cell lines, control transfections were performed using
MIG-GFP expressing plasmid and analyzed for percentage of GFP expressing cells
using flow cytometry. Normalization was performed by multiplying the number of
colonies by the transfection coefficient (ratio between fraction of GFP+ cells in the
GFP control transfection between a given cell line and parental cells). pSpCas9(BB)-
2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Addgene plasmid # 62988;
http://n2t.net/addgene:62988; RRID:Addgene_62988)63.

cDNA expression. cMET overexpression was achieved using pLenti-MetGFP
(Addgene #37560), a gift from David Rimm. The other entry cDNAs in pDO-
NOR223 or pENTR221 were obtained from human ORFeome collection v5.1 or
Life Technologies, respectively. Lentiviral expression constructs were generated by
Gateway swap into pLenti6.3/V5-Dest vector (Life Technologies). Oncogenic
fusion gene EML4-ALK variant 1 wild type or the L1196M point mutant in the
retroviral pBabe-puro backbone28 were provided by J. Heuckmann, (Universität zu
Köln, Köln, Germany). Lentiviral and retroviral particles were produced, and were
used for transduction of H3122 cells following standard protocols, as described in
https://www.addgene.org/protocols/lentivirus-production/ and https://www.
addgene.org/viral-vectors/retrovirus/retro-guide/.

Flow cytometry analysis. Tumors or lungs containing GFP/mCherry mixes were
digested in RPMI supplemented with 1 mg/ml collagenase IV (Worthington),
1 mg/ml hyaluronidase (Sigma), and 2 mg/ml bovine serum albumin (Fisher Sci-
entific) at 37 °C. Pellets were suspended in PBS and 0.1 µg/ml DAPI (Sigma). %
mCherry+ and %GFP+ were determined using an LSRII flow cytometer (Backman
Dickinson).

Statistics and reproducibility. Figures and statistical analyses of experimental
data were performed using GraphPad Prism 8.3 software, R version 3.6.1, and
Python arrays64. Statistical tests are stated in the figure legends. P-values < 0.05
were considered as statistically significant. Exact p-values are provided in Sup-
plementary Table 2. Continuous variables were expressed as the mean ± SEM or
mean ± SD as indicated in the figure legends. Unless otherwise stated, the experi-
ments were performed at least three times with similar results. Single-cell tran-
scription profiling, Nanostring, bulk sample RNA-seq, CRISPR knockout, and
clone-tracing experiment were performed for a single time with biological repli-
cates indicated in the figure legend and Methods section. Immunoblot analyses
were performed two times with similar results. The original unprocessed and
uncropped gels/blots with molecular weight marker information are shown in
Supplementary Figs. 13–15 and provided as a Source Data file.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
ChIP-seq data that support the findings of this study have been deposited in GEO with
the accession code GSE144282. All other datasets during and/or analyzed during the
current study are available from the corresponding author on reasonable request.
ORFeome and MsigDB are publicly available.

Code availability
Code is available on GitHub at nryoon12/Gradual_Development_of_ALK-
TKI_Resistance.
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