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Programmable terahertz chip-scale sensing
interface with direct digital reconfiguration
at sub-wavelength scales
Xue Wu1, Huaixi Lu 1 & Kaushik Sengupta1

The ability to sense terahertz waves in a chip-scale technology operable at room temperature

has potential for transformative applications in chemical sensing, biomedical imaging,

spectroscopy and security. However, terahertz sensors are typically limited in their respon-

sivity to a narrow slice of the incident field properties including frequency, angle of incidence

and polarization. Sensor fusions across these field properties can revolutionize THz sensing

allowing robustness, versatility and real-time imaging. Here, we present an approach that

incorporates frequency, pattern and polarization programmability into a miniaturized chip-

scale THz sensor. Through direct programming of a continuous electromagnetic interface at

deep subwavelength scales, we demonstrate the ability to program the sensor across the

spectrum (0.1–1.0 THz), angle of incidence and polarization simultaneously in a single chip

implemented in an industry standard 65-nm CMOS process. The methodology is compatible

with other technology substrates that can allow extension of such programmability into other

spectral regions.

https://doi.org/10.1038/s41467-019-09868-6 OPEN

1 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA. Correspondence and requests for materials should be addressed to
K.S. (email: kaushiks@princeton.edu)

NATURE COMMUNICATIONS |         (2019) 10:2722 | https://doi.org/10.1038/s41467-019-09868-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3875-1761
http://orcid.org/0000-0002-3875-1761
http://orcid.org/0000-0002-3875-1761
http://orcid.org/0000-0002-3875-1761
http://orcid.org/0000-0002-3875-1761
mailto:kaushiks@princeton.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The terahertz spectrum, occupying the frequency range
between 0.3 and 3 THz, has potential for transformative
applications in communication, sensing, spectroscopy, and

imaging due to its desirable properties such as non-ionizing
photon energy, penetration capability through optically opaque
materials, unique spectral signatures for large bio-molecules and
chemicals1–9. To enable this diverse set of applications, there has
been a concerted effort in the research community to miniaturize
complex THz systems into chip-scale form that are operable at
room temperature. Wedged between the microwave band and the
infrared spectrum, this effort has spanned across a large array of
substrates ranging from solid-state to photonic devices10–14, 2D
nano-materials15,16, quantum-cascade lasers (QCLs)17–19,
microbolometers20,21, nanowires22, metamaterials23, and ultrafast
photoconductive materials24,25. In recent years, even silicon,
particularly complementary-metal-oxide-semiconductor (CMOS)
based integrated circuits and chips have been demonstrated in the
frequency range with power generation capability in the range of
100s of μW26–29 and detection capability with sensitivities (noise-
equivalent-power) in the sub-100 pW/

ffiffiffiffiffiffi

Hz
p

region30–37. The
field-effect-based devices can detect THz waves at frequencies
beyond their cutoff frequencies by exploiting nonlinearities in the
operation regime through a non quasistatic plasma-wave excita-
tion by the incident THz waves38. They also exhibit orders of
magnitude much faster response times and higher pixel integra-
tion capability compared with microbolometers32. This has been
a significant advancement, as it not only makes possible THz
systems (below 1 THz) compact and battery operable at room
temperature, but also exploits the economics of scale of semi-
conductor fabrication to enable complex THz systems in a cost-
effective fashion.

A limiting factor in all of these classes of THz sensors is that
they are typically sensitive to a narrow set of the incident field
properties, i.e., including a limited spectral range, angle of inci-
dence, and polarization. This has hindered deployment of THz
sensors in practical applications where single modality sensing
across any field property is not robust enough. Due to the spec-
trally sensitive nature of scattering and penetration through
optically opaque objects in these frequency ranges, sensor fusions
exploiting frequency, pattern and polarization diversity, will
become increasingly important for high-performance sensing
applications. Prior works have demonstrated merging imaging
with spectroscopic sensing, exploiting the unique advantages in
the THz regime, to clearly differentiate the advantages against
other spectral regions39–41. We are seeing a similar evolution in
the neighboring frequencies, where sensor fusions particularly
combining millimeter-wave, infra-red and optical frequencies is
becoming critical to enable effective and robust understanding of
the environment for autonomous vehicles and systems. In a
similar fashion, the ability to extract information across the
incident THz field properties can allow a much richer sensing
interface42,43.

Enabling such programmability in the THz spectrum, parti-
culary in chip-scale form, is very challenging. Limited reconfi-
gurability in THz systems have been demonstrated in
mechanically and optically controlled metamaterials43,44, micro-
electromechanically actuated slits for THz modulation45, ther-
mally tunable THz filters46 and phase-change material47,
graphene-based switchable high-impedance surface (HIS)48,49,
and graphene-based multi-input–multi-output antenna array50.
The key to realize such a rich sensing interface is to allow
simultaneous programmability across all the three incident field
properties and across such a wide variation range. In addition,
integration in a substrate compatible with semiconductor fabri-
cation processes is also important to allow for low-cost and wide-

scale deployments of such sensors. This is particularly challen-
ging, since the THz frequencies can far exceed the cutoff fre-
quencies of such devices making any form of reconfigurability
very limited and inefficient.

In this paper, we present our approach toward a universal THz
sensing surface which can reconfigure its responsivity to spec-
trum (0.1–1.0 THz), incidence direction and polarization. We
demonstrate the approach in a single chip implemented in an
industry standard 65-nm CMOS process with fmax ≈ 0.25 THz.
The metric fmax designates the frequency where the unilateral gain
of the device falls to one1. Therefore, this distributed approach,
realized with devices operating up to four times their cutoff fre-
quencies, can be translated to other semiconductor platforms for
programmability in other spectral ranges. While preliminary
results on the sensor response at THz were presented in ref. 51,
this paper focuses on the design methodology of mapping sub-
wavelength reconfiguration states to the set of incident field
parameters including spectrum, angle of incidence and polariza-
tion. We also present measurement results in the implemented
chip to demonstrate the tri-modal reconfigurability across
0.1–1.0 THz.

Results
Direct digital programming of THz surface. The ability to
reconfigure against incident field properties opens up new
dimensions to information that can be extracted from the sensor
interface. Hyperspectral operation can enable simultaneously
higher resolution acquisition with higher penetration depth for
3D imaging39 due to the spectrally dependent resolution and
penetration depth of electromagnetic waves. The ability to elec-
tronically scan the beam pattern to various angles of incidence
(pattern reconfigurability) can reduce image acquisition time by
orders of magnitude circumventing slow mechanical raster
scanning. In addition, such pattern diversity can also introduce
new orthogonal measurements allowing computational-based
techniques for real-time imaging51–53. A sensor that can program
to orient its reception beam to different angles of incidence is
tantamount to phased array operation. While phased arrays have
been demonstrated at radio54 and optical frequencies55, terahertz
operation of such arrays have been severely limited due to the
unavailability of efficient active components such as amplifiers,
phase shifters, and coherent sources which are the critical com-
ponents of such a system1. Further, phased array operation is
typically limited to a narrow range of frequencies where the
discrete antenna spacings is ~λ/2 to avoid aliasing and grating
lobes in unwanted directions. At the lower frequency end, spa-
cings with <λ/2 spacing reduces aperture area and typically suf-
fers from inter-element mutual coupling that typically limits the
array performance. Therefore, achieving simultaneous spectral
and pattern reconfigurability has been very challenging, much
more so at THz frequencies. In addition, the ability to reconfigure
its polarization sensitivity is also important, since polarization
rotation typically happens during transmission or reflection-
based imaging and in spectroscopy.

Fundamentally, the limitations of a THz sensor to these three
THz field properties are dependent on the electromagnetic
resonant nature of the interface, its scattering properties and the
coupling to the detector, in whichever substrate the latter is
realized. First, sensitivity to spectrum arises due to the resonant
electromagnetic modes sustained on the antenna surface and the
resonant nature of the antenna-detector interface37. The latter is
designed to ensure optimal power transfer and impedance
matching, that is typically guaranteed within a narrow range of
frequencies. Broadband detection without frequency selectivity
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can be achieved in optical domain with photoconductive
substrates7, but the reception patterns are static and image
acquisition requires bulky and complex optical assemblies,
including femtosecond lasers. In addition to frequency selectivity,
sensitivity to the other field properties namely angle of incidence
and polarization also arises out of the antenna structure and the
boundary conditions. Since a single-port antenna-detector system
is reciprocal, its reception properties can be understood from its
transmission properties. When excited, the antenna surface
sustains a 2D THz current distribution, that determines all its

electromagnetic properties, including its frequency response,
beam pattern, and polarization.

Traditional methods of reconfigurability that focus on the
system by partitioning into its functional elements such as the
antenna, the coupling network and the detectors are limited in
their ability to efficiently achieve the desired parameters
particularly at THz frequencies. Typically, such architectures
focus on one aspect of reconfigurability against the incident
field. While prototypical method of partitioning the design
space and applying intuition-based approaches allow us to create
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Fig. 1 Programmable terahertz chip-scale interface. a Concept of an universal terahertz sensing surface that maps a large discerte digital reconfiguration
space to incident field properties including spectrum, angle of incidence and polarization. This is acheived by directly programming the surface currents
induced on the interface at subwavelength scales. The incident power is absorbed in a distributed fashion at the sites of reconfiguration. b The system
overview of the implemented terahertz sensor with a log-periodic tooth interface with 16 detectors distributed over the surface. Each site is reconfigurable
with a coded capacitor bank that locally changes the boundary condition to redistribute the surface current distribution. This collectively programs the
sensor response to allow for optimal reception against incident spectrum, polarization and angle of incidence
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a step-by-step design methodology, it also limits the space of
possible architectures due to the complex interactions of several
inter-dependent variables and properties. This is particularly true
at THz frequencies where the individual device performance and
variability itself is limited.

Since the electromagnetic properties of the THz interface is
dependent on the THz surface current distribution it supports,
the key concept in this work is to directly program the 2D
distribution under THz field incidence. This is achieved with
active devices placed at subwavelength scales that can simulta-
neously program and absorb the incident fields at the sites of
reconfiguration. Figure 1 shows the concept where we move from
a single-antenna-detector interface to a continuous aperture and
distributed reconfiguration and absorption. The boundary
conditions at each detector site is reconfigurable independently.
This changes the local fields, reprograms the impressed current
over the surface and redistributes the power distribution across
the detector array. Through the complex interactions of the
multiport distributed detector array, the 2D amplitude and phase
distribution on the surface is changed. By independently
programming the distributed detector array, a large set of THz
sensor reception properties can be engineered. The goal of the
reconfigurable THz sensor design is to map a subset of these large
configuration states against optimal reception across frequency,
pattern, and polarization.

Figure 1b illustrates the architecture of the implemented
reconfigurable THz surface. Each detector is realized with field-
effect-transistors that rectifies the local THz field to produce a
signal proportional to the local flux. Each detection site is
programmable with a switched capacitor bank and a 4-bit
thermometer code. With 16 detectors distributed over the surface,
this results in 516 possible reconfigurations of the surface. The
locations of the 16 detectors are shown in Fig. 1b. Multiport
matching is taken into consideration to enable optimal power
absorption into the distributed detector array33. The output
signals from the 16 detectors are processed on-chip with a chain
of integrated analog amplifiers and filters with variable gain. The
collective outputs of the detectors that represent the total power
absorbed by the sensing surface can be read in a time-multiplexed

fashion. The chip is realized in a 65-nm industry standard digital
CMOS process and measures 2 mm × 1mm in dimension. The
entire chip dissipates less than 10 mW of DC power.

Mapping of reconfigurable properties to digital states. A log-
periodic tooth antenna is used as the sensing surface (see Fig. 1).
By moving from a single-port-single-detector system to dis-
tributed system, we address three of these reconfigurable prop-
erties simultaneously. First, the multiport approach allows us to
overcome the bandwidth limitations of the classical 2-port, i.e.,
single-detector and single-antenna interface. By exploiting mutual
interactions of the detectors through the scattering surface,
optimal impedances can be synthesized over an order of mag-
nitude higher spectral range. This allows us to increase the Bode-
Fano bandwidth limit by a factor of N, where N is the number of
detection sites56,57 compared with the classical 2-port case.
Intuitively, the antenna surface that accepts the incident field and
distributes it across the detector sites simultaneously performs the
function of the impedance matching across the distributed
detector array. In addition to spectral reconfigurability, since
the port reconfiguration and power absorption happens at the
same place, it allows the surface current to be programmed to
shape the reception beam and polarization. The design goal is to
translate these digital states to optimal reception against these
incident field properties.

Figures 2 and 3 illustrate this. We will discuss the methods of
optimization of the detector settings later in the paper, but the
figure illustrates the effect of subwavelength reconfiguration to
THz reception properties. In this setup, the chip is abutted by a
silicon lens to suppress the substrate modes. However, to avoid
beam narrowing and reducing the reconfiguration range of the
patterns in a hyper-hemispherical lens, we use a hemispherical
lens with only 0.5 mm of distance kept between the chip and the
lens. Figure 2a, b shows the amplitude and phase distribution of
the impressed current surface for a linearly polarized incidence at
0.3 THz when the detector settings are optimized for reception for
broadside and 45° incidence, respectively. The simulated recep-
tion beams in Fig. 2c for these settings (and −45° incidence)
demonstrates the ability to electronically shape the reception
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beam and scan it in space. The sensor responsivity indicates the
collective rectified response at the output of the detector array
distributed over the surface of the electromagnetic structure. This
is first electromagnetically simulated with incident field imping-
ing on the distributed antenna loaded with multiport detector
array to extract the voltage (local electric field) at each of the
detector ports. Enumerating this allows us to calculate the
rectified output response of the detector array with nonlinear
circuit simulations. Therefore, the simulation takes into account
the entire chain from THz incidence to rectification, including
losses in the electromagnetic path, the collective multiport
impedance mismatches as well as the detector sensor response
at THz frequencies. This is similar to a phased array operation,
but realized with a continuous aperture and multiport sub-
wavelength programming. This technique overcomes the sub-

sampling nature of classical phased arrays when operated across a
wide-frequency range, where the spacing at the highest end can
exceed λ/2. This can allow simultaneous reconfigurability against
frequency and angles of incidence.

Figure 3 illustrates the optimal reception of broadside
incidence at frequencies of 0.30 and 0.75 THz showing the
detector settings and frequency dependent power absorption
across the detector array. Through reprogramming the surface,
the sensor achieves up to 12 times enhancement is reception at
0.75 THz as the incident power gets optimally distributed over the
detectors. The state reconfiguration can be extended to even
polarization as shown in a 16 times increase in reception for the
orthogonal polarization with optimized detector settings.

The mapping of detector settings to the space of incident field
properties is non-convex. The power absorbed on the surface in
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such a N-port antenna-detector configuration can be derived
from the impedance matrices of the passive antenna (ZAnt ∈
RN×N), detectors (ZL ∈ RN×N), and the open circuit voltages (V ∈
RN×1) excited at the antenna interface under the particular
frequency, polarization, and angle of incidence. As a result, the
power captured by the antenna, (Prec) can be expressed as a
function of ZL as (Supplementary Notes 1–3)

Prec ¼
1
2
ReðVHðZ H

Ant þ Z H
L Þ�1Z H

L ðZAnt þ ZLÞ�1VÞ ð1Þ

Therefore, the responsivity of this multiport detector system is
simulated combining both electromagnetic and nonlinear circuit
simulations. The structure is simulated in a 3D electromagnetic
simulation tool with incident field to calculate its S-parameter

and the open circuit voltages. The absorbed power into the
individual ports is then calculated by loading the ports with
the impedances of the detectors and the capacitor banks. Once
the THz power absorbed at each port is known, the output
response of each detector can also be enumerated from the
responsivity of each detector through nonlinear circuit simula-
tions (Supplementary Note 1).

Therefore, optimal programming of the THz surface amounts
to searching for a diagonal matrix, ZL in a discrete space to
maximize Prec. Prior works on electromagnetic optimization in
such non-convex and discrete space have utilized genetic
algorithm58, particle swarm optimization59, and alternating
direction method of multipliers (ADMM)60. Here, we combine
gradient decent optimization method with a random search
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algorithm in the 16-dimensional space (formed by the 16
reconfigurable detectors). The discreteness of the space is
generated from the digital states of the detectors. Here,
optimization is allowed to start with multiple random initial
conditions and gradient descent is utilized to obtain the locally
optimized solution. In each such iteration, we maximize the total
sensor responsivity that is collective response of all the sensors.
The process is repeated with a random initial sensor settings to
randomize the effect of initial settings.

To further understand the transformation of the THz sensor
properties as the surface is reconfigured, Fig. 4 illustrates the
gradual change of the THz reception pattern from an initial
setting to the final optimal one. As shown in Fig. 4a, when the
detector setting is optimized for receiving linearly polarized
incidence at 0.3 THz, the reception beam for 0.3 THz is
expectedly broadside. For the same setting, the sensor responsiv-
ity toward a broadside incidence at 0.75 THz is, however, poor as
shown in the corresponding pattern. The switch settings are color
coded and the sizes of the markers qualitatively represent the
magnitude of local absorption of the incident power. To
demonstrate the transformation of the reception properties as
the detectors are optimized for reception at 0.75 THz (from the
earlier setting corresponding to 0.3 THz), we pick an intermediate
setting and the corresponding pattern and detector settings are

shown. As the surface is programmed, the power distribution and
the beam shape at both the frequencies change. The shaping of
the beam continues through out the process till it assumes a
broadside pattern of 0.75 THz. In this case, the reception of the
0.3 THz beam gradually becomes poor, though that does not
necessarily have to occur in a single-objective optimization.
However, such surface reconfiguration can also be done to
assume a frequency selective character that aims to enhance
reception at one frequency and minimize that at another
frequency. Such a tunable frequency reception across 0.1–1 THz
can allow image extraction at discrete frequency slices with high
signal-to-noise ratio (SNR). In comparison, in pulse-based
broadband imaging, the incident signal is spread over the
spectrum and can lead to lower SNR. The shaping of the
reception patterns to tilt the beam to a different angle is shown in
Fig. 4b. In a manner similar to the previous case, the local field
manipulation reprograms the surface current and the spatial
distribution of the incident power, and tilts the reception pattern
to allow sensitivity alignment to a different angle, similar to a
phased array operation.

Design methodology. As shown through the simulated results,
the distributed approach allows simultaneous control of the
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incident field properties, but it also makes the design space inter-
connected where combination of intuitive design and
algorithmic-based approaches have to be relied upon. This is
particularly true since the choice of the number of detectors and
locations collectively influences the sensor response. We choose
the surface as a log-periodic tooth antenna to allow the spectrally
distributed resonance over the surface. Of course, this changes
when interfaced with the distributed detector array. We follow a
heuristic based design methodology to choose the number and
location of the detector array. This is illustrated in Fig. 5.

The effect of location of the detector array on the frequency
reconfigurability is shown in Fig. 5a. Here, the gain of the
aperture (GAnt) is defined similar to a single-port antenna as
Prec ¼ GAntPflux

λ2

4π, where Prec is the power absorbed by the
detectors and Pflux is the incident flux at wavelength λ. We
discretize the surface of the radiator into 84 locations at deep
subwavelength spacings. We then analyze the effect of the THz
sensor response across frequency, angle of incidence and
polarization as we choose a subset of 16 locations from them.
The locations of the detectors is chosen with a centro-symmetric
distribution, that allows simple rotation of the reception beam by
180° across the broadside axis by simply rotating the detector
settings. The effect of the location distribution is represented in
Fig. 5a, b as the effective gain of the aperture against frequency for
a sample set of 40 locations. For each location set, the
performance against frequency is analyzed through optimization
of the detector settings. While the effect of the locations on the
frequency response is clearly seen, there are multiple location
positions that allow similar range of frequency reconfigurability
as expected. When analyzed against angle of incidence (0°, ±45°)

and polarization (X and Y), the location sets show divergent
performances. We choose a location set that allow collectively
higher gain (and therefore responsivity) across all the three
properties, as show in Fig. 5a–d.

The effect of number of detectors is investigated by
increasing the number of locations occupied by the detectors
up to 84, and analyzing their reception properties against the
incident field. A sampled variation for two frequencies at 300
and 500 GHz and for two polarizations is shown in Fig. 5e.
Evidently, lower number of detectors do not show enough
reconfigurability across both frequency and polarization.
Increasing the number of detectors will load the surface to a
large extent effectively reflecting off the incident wave. We
choose the number of detectors that allow overall higher
response against all the three incident field properties. Once the
detector configurations are optimized for a given incident field,
Fig. 5f shows the sensor response as the frequency is varied. The
optimally reconfigured sensor response traces the peak of these
individual curves. In this design, there is no explicit matching
network between the multiport scatterer and multiport detector
array, and bandwidth is compared with a single-port antenna
with second and fourth order matching networks and the
reconfigurable range for the multiport structure far exceeds that
of the single-port design (Supplementary Note 3).

There is no provable guarantee on the global optimality of the
solution, like in most such heuristic and optimization-based
design methodologies. However, in many such methods, the
approach allows us to break off from the traditional intuitive-
based design processes to incorporate reasonably high perfor-
mance across a wide range of reconfiguration, difficult to achieve
otherwise.

Measurement. The chip is implemented in a 65-nm CMOS
process. All measurements are carried out at room temperature.
During measurement, the chip is mounted vertically on a
Rogers printed circuit board with a high-resistivity silicon wafer
at the backside. A high-resistivity silicon lens abuts the wafer at
the backside of the substrate to suppress substrate modes and
the signal is irradiated from the backside (Fig. 6a). In a manner
similar to the simulations, we use a hemispherical lens with a
0.5 mm distance between the chip and the lens to avoid the
sharp narrowing of the beam in a hyper-hemispherical lens
setup. The chip occupies an area of 2 mm × 1 mm as illustrated
in Fig. 6b. More details can be found in Supplementary
Note 4.

The performance of the chip across the incidence field
properties across 0.1–1.0 THz is shown in Figs. 7 and 8. During
measurement, optimization to reconfigure against the incident
THz field properties is carried out in the following fashion. At the
beginning, the sensor surface is actuated with a random detector
array setting through a 64-bit shift register. As the optimization
process is executed, sensor outputs are automatically acquired for
each setting after they have stabilized. We apply gradient descent
optimization on the acquired data on an external computer and
the sensor is reprogrammed. The process is repeated with a
random initial sensor settings to scramble the effects of initial
settings. The entire optimization process is fully automated. In
order to reduce the space of the optimization in measurement, we
choose three states per detector (instead of five) that corresponds
to a total of more than 43 million possible configurations.

The large reconfiguration space is key toward simultaneous
optimization against spectrum, angle of incidence and polariza-
tion. The measured optimized responsivity and noise-equivalent-
power (NEP) across 0.1–1.0 THz for two incidence angles (0° and
45°) and two polarization (Eθ and Eφ) are demonstrated in Fig. 7.
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Fig. 6 The chip photo and the packaged system. a The chip is packaged on a
printed circuit board supported by a silicon wafer at the back. A high-
resistivity silicon lens abuts the back of the silicon wafer to enable reception
of the THz waves from the backside. b The chip is implemented in an
industry standard 65-nm CMOS process and measures 2mm × 1 mm in
dimension
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The figure compares the optimized performance across the
frequency range against a static configuration for broadside
incidence at 0.4 THz. The green line represents the overall sensor
performance as the detector states are optimized for each incident
frequency. The red line represents the sensor performance across
frequency for a fixed optimal configuration at 0.4 THz. As can be

seen, active reprogramming of the sensing surface allows
significant enhancement of sensitivity, including 8.9 and 4.5
times reduction in NEP at 0.86 and 1.0 THz for broadside
incidence with θ polarized waves. We can see a similar
enhancement in responsivity and reduction in NEP for 45°
incidence with ϕ polarized waves, including a 6.2 times reduction
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Fig. 7 Measurement results for optimized responsivity and corresponding NEP across 0.1–1.0 THz for two incidence angles at a 0° and b 45°, and two
polarizations (Eθ and Eφ). The figure shows 8.9 and 4.5 times reduction in NEP at 0.86 THz and at 0.99 THz for broadside incidence and 6.2 times
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incident absorbed across the detector array across the optimized states between 0.1-1.0 THz. The figure also shows four examples of optimized states for
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in NEP at 0.87 THz. The optimized sensor achieves NEP of
20:4 pW=

ffiffiffiffiffiffi

Hz
p � 274 pW=

ffiffiffiffiffiffi

Hz
p

across 0.10–1.0 THz at broadside
incidence with θ polarized waves and 25:9 pW=

ffiffiffiffiffiffi

Hz
p �

1:32 nW=
ffiffiffiffiffiffi

Hz
p

at 45° angle of incidence with ϕ polarized
waves across 0.26–1.0 THz. The figure also shows the spectrally
dependent distribution of the absorbed power across the detector
array as the incident frequency is varied. The spectrally
dependent nature of the distribution of the incident power is
evident. The figure also shows the optimized detector settings for
the two cases at 0.26 and 0.90 THz.

To demonstrate the ability to tilt the beam and reprogram the
polarization sensitivity with subwavelength programming, we test
the chip by varying the incidence angle for two polarizations, Eθ
and Eφ across 0.10–1.0 THz as shown in Fig. 8. Figure 8a shows
the sensor responsivity across angles of incidence as the system is
reconfigured successively for incidence angles varying from −45°
to 45°. Here, we show the responsivity across incidence angles as
the beam pattern is reconfigured to tilt from −45° to 45°. We also
show the overall reconfigured response across angles that allows

the sensor to achieve a high response across wide angles of
incidence, while being directive for a given configuration. As
shown in the Fig. 8a, at ±45° incidence, the responsivity can be
enhanced by 5–12 times nearly reaching similar responsivity as
achieved with broadside incidence. The programming of the
surface effectively tilts the reception beam towards the angle of
incidence allowing electronic scanning across 0.1–1.0 THz for a
wide field of view without sacrificing directivity. It is possible to
utilize the establishment of such multiple reception beams across
the spectrum to create orthogonal measurements for
computational-based real-time imaging, though we have not
implemented this in this work53.

Such reconfiguration can be achieved if we vary the polariza-
tion keeping the spectrum and angle of incidence constant.
Figure 8b shows that the significant enhancement across the
frequency range can be observed with reprogramming as we
switch the polarization from Eθ to Eφ, reaching up to 12 times as
the subwavelength reconfiguration re-orients the beam. The
achievable performance obtained across spectrum, angle of
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Fig. 8 Measured sensor beam programming with subwavelength reconfiguration. This is measured with varying angles of incidence for two polarizations
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incidence and polarization, are comparable to a collection of
state-of-art sensors, each custom designed within a specified
range of these parameters30–32,36,37. The experiments demon-
strate the ability of such multiport electromagnetic structures
with direct programming of the sensing interface to allow for
dynamic optimization against incident field properties. Combin-
ing these ranges of reconfigurability with sensor fusions can allow
for low-cost, robust, versatile, and compact THz sensing and
imaging technology.

Discussion
The ability to allow a single chip-scale THz sensor to reconfi-
gure simultaneously against the incident field properties can
significantly advance THz sensing and imaging. The sensing
surface, described here, allows reconfiguration for reception
across 0.1–1 THz with beam-scanning ability across ±45° for
both polarizations. Being able to sense THz waves with high
sensitivity across 10:1 frequency ratio can enable hyperspectral
imaging with both high lateral and depth resolution. Sensor
fusions across multiple orthogonal domains (including fre-
quency, beams, and polarization) can allow for superior image
registration, and is steadily growing in importance in other
spectral domains. This degree of reconfigurability is critical for
practical THz sensing systems, where a single modality inter-
face typically does not suffice. By moving from a single-antenna
and single-detector interface to a multiport continuous aper-
ture, it is possible to overcome the grating lobe issues allowing
frequency and pattern diversity at the same time. This can allow
fast image acquisition, hyperspectral and multi-angle imaging,
and computational techniques in the THz regime for real-time
imaging.

The challenge to engineer such programmability is exacerbated
by the fact that chip-scale devices are limited in their cutoff fre-
quencies (fmax). In the implemented chip, the optimal device fmax

is ~0.25 THz, implying that the devices operate close to four times
their cutoff frequencies, when operating near 1 THz. Therefore,
the presented method that allows such reconfigurable proper-
ties at frequencies beyond fmax can be applied to III–V compound
semiconductor-base devices to extend operation into higher THz
frequencies (~3–5 THz).

The approach of mapping electromagnetic and sensor prop-
erties from a large reconfiguration set also opens up a new design
space. By merging multiple functionalities within a single elec-
tromagnetic structure (such as, impedance matching and radiat-
ing surface in this work), new sensor architectures can emerge.
Optimization methods in passive device design, albeit in the
photonic domain, has been shown to have yield competitive
performance against classical design approaches, but has the
potential to open up a new class of optical devices60. The com-
putational and distributed subwavelength sensing approach also
opens up previously unexplored questions on optimal antenna
shapes and detector co-design methodologies in such massively
multiport structures, and also new techniques and systems in the
optical domain61–63. Unlike a static antenna whose shape and
boundary condition determine its electromagnetic properties,
here, both the structure and the detectors, including their sizing
and locations determine the overall responsivity. While we choose
a log-periodic structure as the THz sensing surface, its use for
spectral reconfigurability is quite unlike its more traditional use as
a wideband interface with a single center port excitation. In fact,
in this work, no signal is drawn from the center port at all (see
Fig. 1). It can be noted that while in this work we investigate the
position, location, and configuration of the detector set for the
desired set of reconfigurable parameters based on the choice of

the log-periodic tooth surface, an interesting direction for future
exploration is the space of co-design of the geometry of the
surface and sensory interface.

Given the importance of reconfigurability and sensor fusion for
robust THz imaging and sensing, we expect the space of pro-
grammable designs can lead to future THz sensors with added
capabilities. While evidently, this is not as frequency selective as a
coherent system, it does overcome the frequency range limited by
the tunable nature of such sources in addition to the reconfi-
gurability against incidence angle and polarization. However, this
trade-off space is worth investigating for future work to explore
further the design parameters and their cross-dependence beyond
the ones we have addressed in this work.

The implementation of the chip in a commercial CMOS
foundry is a significant advancement in demonstrating such
programmable sensors operation up to 1 THz. Their operation at
room temperature with extremely low power is also important for
future applications where power, compactness, and program-
mability are critical considerations. Eliminating complex
optical instrumentation and integration of such programmable
functions in a chip-scale form is expected to have significant
impact in both technology and application development in the
THz spectrum.

Methods
Integrated chip implementation and measurement details. Details of the
integrated circuit design and the component designs are provided in Supplemen-
tary Notes 1, 2 and 3. The log-periodic tooth antenna is realized on a 1.4-μm thick
aluminum layer inside the CMOS chip utilizing the embedded metal interconnect
layers. The detectors are realized using 65-nm CMOS transistors and the details are
shown in Fig. 1 and Supplementary Fig. 1. The biasing voltage and resistors are
optimized for minimizing NEP across 0.1–1 THz (Supplementary Figs. 2 and 3).
The digitally controllable impedance are realized with capacitor banks with mul-
tiple digitally controlled NFETs in parallel as shown in Supplementary Fig. 4. The
control signal of the capacitor bank is a 4-bit thermometer code provided by the
64-bit shift register. The chopped rectified THz signals are processed on-chip with
integrated amplifiers (Supplementary Fig. 5). They are realized with integrated
transistors as shown in Supplementary Fig. 6. The gain is electronically controllable
with a variation of 35 dB (Supplementary Fig. 7). The multiport antenna structure,
its interface with detectors and calculations of power absorption under THz field
incidence is explained in the Supplementary (Supplementary Figs 8 and 9). The
measurement setup is shown in Supplementary Fig. 10. The signals are generated
with frequency multiplier bank across 0.1–1 THz and across various angles of
incidence with a motor-controlled stage. The signal generator is locked to an
external 10MHz signal that provides the reference for lock-in amplifier. The chip is
programmed with a Nexs 4 FPGA and the lock-in data is read in a computer
through the GPIB ports. The entre system is automated for fully autonomous
optimization against the incidence field properties.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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