ARTICLE https://doi.org/10.1038/s41467-019-09662-4 OPFN # Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports Xinwei Yang¹, Qing Li¹, Erjun Lu², Zhiqiang Wang¹, Xueqing Gong¹, Zhiyang Yu², Yun Guo¹, Li Wang¹, Yanglong Guo¹, Wangcheng Zhan¹, Jinshui Zhang² & Sheng Dai ^{3,4} The design and synthesis of robust sintering-resistant nanocatalysts for high-temperature oxidation reactions is ubiquitous in many industrial catalytic processes and still a big challenge in implementing nanostructured metal catalyst systems. Herein, we demonstrate a strategy for designing robust nanocatalysts through a sintering-resistant support via compartmentalization. Ultrafine palladium active phases can be highly dispersed and thermally stabilized by nanosheet-assembled $\gamma\text{-Al}_2O_3$ (NA-Al $_2O_3$) architectures. The NA-Al $_2O_3$ architectures with unique flowerlike morphologies not only efficiently suppress the lamellar aggregation and irreversible phase transformation of $\gamma\text{-Al}_2O_3$ nanosheets at elevated temperatures to avoid the sintering and encapsulation of metal phases, but also exhibit significant structural advantages for heterogeneous reactions, such as fast mass transport and easy access to active sites. This is a facile stabilization strategy that can be further extended to improve the thermal stability of other Al $_2O_3$ -supported nanocatalysts for industrial catalytic applications, in particular for those involving high-temperature reactions. 1 ¹ Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China. ² State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, 350116 Fuzhou, China. ³ Chemical Sciences Division Oak Ridge National Laboratory, University of Tennessee, Knoxville, TN 37996, USA. ⁴ Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA. Correspondence and requests for materials should be addressed to W.Z. (email: zhanwc@ecust.edu.cn) or to J.Z. (email: jinshui.zhang@fzu.edu.cn) or to S.D. (email: dais@ornl.gov) he development of thermally robust supported metal nanocatalysts that can undergo high-temperature oxidative or reductive processes is of great interest for industrial catalytic reactions, such as catalytic combustion of hydrocarbons at elevated temperatures and water-gas shift reactions under high temperatures and pressures¹⁻¹². However, owing to their low Tammann temperatures and high surface energies, catalytically active metal nanoparticles are thermodynamically unstable and tend to sinter or coalescence into larger particles during reactions, especially at high reaction temperatures 13-16. In addition, phase transformations or the structural collapse of supports at elevated temperatures may exacerbate the sintering or encapsulation of metal nanoparticles^{17–19}. Unfortunately, both such thermal behaviours will result in fast deactivation of the catalysts and thus hamper their practical applications in industry. To obtain a sintering-resistant supported nanocatalyst, it is essential to address these issues by employing a suitable host support that can strengthens the metal-support interaction to stabilize metal nanoparticles and provides good mechanical stability to maintain the structural integrity at elevated temperatures $^{20-30}$. Gamma phase alumina (y-Al₂O₃) is one of the most popular industrial catalysts and catalyst supports because of its compact crystal structure, excellent mechanical strength, high thermal stability, and robust chemical inertness^{31–33}. Recently, it has been proved by high-resolution ²⁷Al nuclear magnetic resonance (²⁷Al NMR) that the coordinatively unsaturated pentacoordinate Al3+ (Al³⁺_{penta}) centers present in γ-Al₂O₃ can act as binding sites for anchoring metals³⁴. This finding is important in which it provides a facile approach to preparing thermally robust supported metal nanocatalysts^{35,36}. To better utilize these Al³⁺_{penta} centers to stabilize metals, two-dimensional (2D) γ -Al₂O₃ nanosheets with open surface structures were synthesized^{37–39}. However, because of their huge surface energies, these free-standing γ-Al₂O₃ nanosheets (N-Al₂O₃) tended to stack or agglomerate as bulk ones at elevated temperatures, or even under reaction⁴⁰. This behavior not only induced the loss of the unique structural benefits of nanosheets for heterogeneous catalysis but also, more seriously, resulted in the sintering and/or encapsulation of metal nanoparticles, which rapidly deactivated the catalysts (Fig. 1). Therefore, finding a way to prevent the lamellar aggregation of nanosheets to preserve their unique electronic and structural advantages for stabilizing metals is of significant importance for the fabrication of thermally stable γ -Al₂O₃ nanosheet-supported catalysts. The hierarchical assembly of 2D nanosheets into threedimensional (3D) configurations can efficiently overcome the huge surface energies to prevent lamellar stacking, which is clearly demonstrated by the development of 3D graphene, flowerlike TiO₂ flakes and nanospherical carbon nitride nanosheet frameworks. and other structures 41-48. Inspired by this kind of structural arrangement, v-Al₂O₃ nanosheets dominated by (110) facets are cross-linked as a hierarchical architecture with a unique flowerlike morphology (Fig. 1). For nanosheet-assembled Al₂O₃ (NA-Al₂O₃), the interconnected topology of the nanosheets provides enough structural rigidity against the surface energies to perfectly stabilize γ-Al₂O₃ nanosheets against lamellar aggregation and maintain the (110) facets at elevated temperatures. In addition, the thermally induced irreversible γ-to-α phase transformation is efficiently inhibited by spatially separating the nanosheets from each other to block the surface-controlled phase reactions (Supplementary Fig. 1). As a result, the NA-Al₂O₃ architecture serves as a robust host material with unique structural benefits to support metal nanoparticles, and the resultant nanocatalyst exhibits excellent thermal stability and hierarchical structural benefits for heterogeneous catalysis. For example, the ${\rm Al^{3+}_{penta}}$ centers can serve as anchor sites to immobilize ultrafine metal nanoparticles on nanosheets with a strong metal-support interaction³⁴⁻³⁶. And the robust structural interconnectivities of the 3D architecture afford enough mechanical stability to protect the structural integrity against deformation and phase transformation at elevated temperatures, thus efficiently avoiding the sintering and encapsulation of metal nanoparticles caused by support material deformation⁴⁹⁻⁵². Furthermore, the flowerlike morphology, with its multifaceted open surfaces, is favorable for mass transfer and made the active metal phases more easily accessible to the reacting molecules. Experimentally, both characteristics are beneficial for heterogeneous catalysis. Hence, it is significant that the ultrafine metals supported on the NA-Al₂O₃ architecture are thermally robust for high-temperature oxidative or reductive reactions. Herein, NA-Al₂O₃ hierarchical architectures are fabricated and employed as the host materials to disperse and stabilize ultrafine palladium (Pd) active phases (Pd/NA-Al₂O₃) for high-temperature oxidative reactions. As a result of its robust thermal stability, Pd/NA-Al₂O₃ exhibits an excellent catalytic performance toward combustion of hydrocarbons (e.g. methane and propane) at elevated temperatures. Furthermore, this facile stabilization strategy can be further extended to improve the thermal stability of other Fig. 1 Illustration of stabilization of Pd active phases. a Pd active phases stabilized by N-Al₂O₃ in air at 1000 °C. b Pd active phases stabilized by NA-Al₂O₃ in air at 1000 °C **Fig. 2** Thermal characterization of NA-Al $_2$ O $_3$ host materials. **a** SEM images of NA-Al $_2$ O $_3$. **b** SEM images of NA-Al $_2$ O $_3$ -1000. **c** XRD patterns of NA-Al $_2$ O $_3$ and NA-Al $_2$ O $_3$ -1000. **d** HRTEM image of a typical nanosheet of NA-Al $_2$ O $_3$ -1000. Upper panel: It was aligned to an edge-on condition, namely, a condition that the basal surfaces ($2\overline{2}$ 0) of nanosheets were in parallel with the electron beam. The inset is the FFT pattern recorded from the nanosheet. Lower panel: A schematic diagram showing the geometry of the nanosheets. The two basal planes of the nanosheet are colored blue. The scale bar in (**a** and **b** corresponds to 2 μ m, and in **d** corresponds to 5 nm Al₂O₃-supported nanocatalysts for industrial catalytic applications, in particular for those involving high-temperature reactions. ### Results Thermal behavior of NA-Al₂O₃ architectures. Fig. 2 illustrates the thermal stability of NA-Al₂O₃. To evaluate the thermal behavior, the as-prepared NA-Al₂O₃ architectures were subjected to an annealing treatment at 1000 °C in air for 3 h (the resultant sample was denoted as NA-Al₂O₃-1000) and then were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), N₂-sorption analysis, and X-ray diffraction (XRD). In Fig. 2a and Supplementary Fig. 2, the as-prepared NA-Al₂O₃ architectures were assembled from ~5-nm-thick flat nanosheets in a highly interconnected fashion to form a hollow spherical morphology; their diameters and shell thicknesses were determined to be 3-6 µm and 500-900 nm, respectively. Benefiting from the structural and mechanical advantages of such crosslinked nanosheet networks, which protected against lamellar aggregation, the hierarchical hollow architecture of NA-Al₂O₃ was quite robust and sustained 1000 °C annealing in air for 3 h without deformation (Fig. 2b and Supplementary Fig. 3). The specific surface area (S_{BET}) of NA-Al₂O₃ and NA-Al₂O₃-1000 was determined to be 219 and 148 m² g⁻¹ (Supplementary Fig. 4), indicating that NA-Al₂O₃ has an excellent thermal stability comparable to commercial La-doped γ-Al₂O₃ (La-Al₂O₃, S_{BET} = $152 \text{ m}^2 \text{ g}^{-1}$ for La-Al₂O₃, $S_{BET} = 107 \text{ m}^2 \text{ g}^{-1}$ for La-Al₂O₃-1000, Supplementary Fig. 5). In addition, the surface structure of the NA-Al₂O₃ also became much more open after the 1000 °Cannealing, which should be kinetically favorable for heterogeneous reactions. On the contrary, obvious structural deformation, particularly layer restacking/agglomeration occurred in the free-standing N-Al₂O₃ (Supplementary Fig. 6). It resulted in the evident decrease of S_{BET} from 198 to 78 m² g⁻¹, seriously counteracting the structural advantages of the nanosheet morphology for heterogeneous catalysis. The crystallinity of NA-Al₂O₃ was greatly improved by 1000 °C-annealing treatment, as indicated by the appearance of high-resolution XRD reflections at 32.8, 37.1, and 39.5, respectively, for (220), (311), and (222) y-Al₂O₃ (Fig. 2c, JCPDS 10-0425). As a result of the spatial separation of the nanosheets from each other to block the surfacecontrolled phase reactions, the thermally induced phase transformation was well suppressed on the NA-Al₂O₃ architecture; whereas for N-Al₂O₃, an irreversible γ -to- θ phase transformation was observed after calcination in air at 1000 °C for 3 h (Fig. 2c vs. Supplementary Fig. 7). To further investigate the thermal stability of NA-Al₂O₃, its hierarchical architectures were deformed by mechanical grinding (denoted as NA-Al₂O₃-deformed) and then subjected to 1000 °C-annealing. Similar to the results obtained from N-Al₂O₃-1000, irreversible γ -to- θ phase transformation and significant decrease of S_{BET} were observed for NA-Al $_2O_3$ -deformed-1000 ($S_{BET}=195~\text{m}^2~\text{g}^{-1}$ for NA-Al $_2O_3$ -deformed, $S_{BET} = 72 \text{ m}^2 \text{ g}^{-1}$ for NA-Al₂O₃-deformed-1000, Supplementary Fig. 8), further demonstrating the important role of compartmentalization strategy in stabilizing 2D nanosheets from sintering and collapse. In Fig. 2d, the nanosheet was aligned to edge-on conditions, e.g. [112] zone axis of γ- Al₂O₃ to study the terminal surfaces of NA-Al₂O₃^{53,54}. As indicated by the clearly resolved lattice fringes of $(2\overline{2}0)$ and $(11\overline{1})$ planes, the preferred surfaces of NA-Al₂O₃ were (110) facets. A schematic diagram was also given to show the geometry of the nanosheet structure. Thus, we conclude that the NA-Al₂O₃ architecture with primarily exposed (110) facets is a thermally robust host material and can be used to prepare sintering-resistant supported nanocatalysts. **Thermal behavior of Pd/NA-Al₂O₃ nanocatalysts.** The asprepared NA-Al₂O₃ architectures were directly used to support Pd active phases through an incipient wet impregnation method **Fig. 3** Thermal characterization of Pd/NA-Al₂O₃ nanocatalysts. **a** SEM images of Pd/NA-Al₂O₃. **b** SEM images of Pd/NA-Al₂O₃-1000. **c** TEM images of Pd/NA-Al₂O₃. **d** TEM images of Pd/NA-Al₂O₃-1000. **e** XRD patterns of Pd/NA-Al₂O₃-1000 and Pd/NA-Al₂O₃. **f** Raman spectra of Pd/NA-Al₂O₃-1000 and Pd/NA-Al₂O₃. The scale bar in **a** and **b** corresponds to $2 \mu m$, and in **c** and **d** corresponds to $5 0 \mu m$ to load Pd species. To better demonstrate the outstanding ability of NA-Al₂O₃ to stabilize metals, the metal loading was increased to 5 wt%, and the resultant sample was then subjected to annealing at 1000 °C in air for 3 h (the samples before and after 1000 °C-annealing are denoted Pd/NA-Al₂O₃ and Pd/NA-Al₂O₃-1000, respectively). Owing to the excellent stability of the NA-Al₂O₃ architecture (Fig. 2), Pd/NA-Al₂O₃ nanocatalysts were sufficiently robust to maintain their structural integrity under 1000 °C-annealing, thus efficiently avoiding the sintering and encapsulation of Pd nanoparticles caused by nanostructural deformation (Fig. 3a vs. 3b). The S_{BET} of Pd/NA-Al₂O₃ and Pd/ NA-Al₂O₃-1000 was determined to be 152 and $145 \text{ m}^2 \text{ g}^{-1}$, respectively (Supplementary Fig. 9). Such flowerlike hierarchical structure with well-preserved surface area was beneficial for Pdcatalyzed reactions because it facilitated the transport of reacting molecules to the surface of the catalyst to participate in the reaction^{55,56}. The particle sizes of the Pd active phase were determined to be 2.6 ± 0.2 nm and 2.8 ± 0.2 nm for Pd/NA-Al₂O₃ and Pd/NA-Al₂O₃-1000, respectively (Fig. 3c, d and Supplementary Fig. 9). This result clearly confirms that the Pd active phase can be well stabilized by NA-Al₂O₃ against sintering at elevated temperatures. In sharp contrast, serious sintering of the Pd active phase with increasing the particle size from 2.5 ± 0.3 nm to 75.9 ± 17.7 nm and collapse of the Al_2O_3 nanosheets with decreasing the S_{BET} from 139 to 70 m² g⁻¹ occurred in Pd/ N-Al₂O₃, owing to the poor thermal stability of the free-standing nanosheet structure (Supplementary Fig. 10). In addition, NA-Al₂O₃ with deformed nanostructure (Supplementary Fig. 8) was also used to support Pd species. In Supplementary Fig. 11, evident sintering of Pd active phases also happened to Pd/NA-Al₂O₃deformed-1000, further demonstrating that the compartmentalization of nanosheets plays a critical role in stabilizing Pd active phases. To better study the influence of phase change of alumina on stabilizing Pd species, La-Al₂O₃ with an excellent thermal stability (Supplementary Fig. 5) was also employed for Pd loading. Similar to the results obtained from Pd/N-Al₂O₃-1000 and Pd/NA-Al₂O₃-deformed-1000, an obvious sintering behavior still happened to Pd/La-Al₂O₃-1000 (Supplementary Fig. 12). These three control experiments underline the structural advantages of nanosheet-assembly hierarchical architectures in stabilizing metals under elevated temperatures. In Supplementary Fig. 13, Pd/NA-Al₂O₃, Pd/N-Al₂O₃, and Pd/La-Al₂O₃ nanocatalysts were also subjected to an annealing treatment in wet air condition (10 vol% H₂O) to evaluate their hydrothermal stability for practical catalytic applications. As expected, the ultrafine Pd active phases can be well still stabilized by NA-Al₂O₃ even after calcinated in wet air, whereas significant sintering of Pd phases occurred to N-Al₂O₃ and La-Al₂O₃ supported samples. This finding demonstrated that Pd/NA-Al₂O₃ is a promising nanocatalyst that can work under wet air conditions. Figure 3e shows the crystal structure of Pd/NA-Al $_2O_3$ before and after thermal annealing. Using the unique structural benefits of the hierarchical architecture to suppress the thermally induced phase conversion confirmed that the γ phase was the predominant phase for the host NA-Al $_2O_3$ in both samples. The new diffraction peaks arising at 33.8 and 54.7° were identified as the characteristic (101) and (112) reflections of palladium oxide (PdO), and no other peak assigned to metallic Pd was observed 57,58 . This finding indicates that the Pd active phase was stabilized mainly as PdO nanoparticles on NA-Al $_2O_3$, even after harsh high-temperature treatment, rather than Pd nanoparticles. It was further confirmed by Raman spectra. In Fig. 3f, the formation of PdO on NA-Al $_2O_3$ is clearly identified by the appearance of a characteristic peak assigned to the B $_{1g}$ mode of Pd-O at a Raman shift of 648 cm $^{-159,60}$. This finding is **Fig. 4** Structural characterization of NA-Al $_2$ O $_3$ and Pd/NA-Al $_2$ O $_3$. **a** Two-dimensional 27 Al MQ MAS NMR spectra of NA-Al $_2$ O $_3$. **b** Two-dimensional 27 Al MQ MAS NMR spectra of Pd/NA-Al $_2$ O $_3$. **c** TEM image of Pd/NA-Al $_2$ O $_3$ -1000. **d** Calculated structure of Pd/NA-Al $_2$ O $_3$. The scale bar in **c** corresponds to 5 nm apparently inconsistent with the fact that PdO will transform into metallic Pd when being subjected to 1000 °C-annealing in air^{61,62}. To better solve this issue, a control experiment that cooling down the Pd/NA-Al₂O₃ nanocatalyst in N₂ was carried out after annealing the sample at 1000 °C in air. As demonstrated in Supplementary Fig. 14, the high-temperature induced decomposition of PdO indeed happened to Pd/NA-Al2O3 nanocatalyst, and the PdO was partially transformed into metallic Pd when cooled down in N2. But why is only PdO phase determined in Pd/NA-Al₂O₃-1000? The reason should be mainly attributed to that Pd active phases can be well stabilized in ultrasmall size by NA-Al₂O₃ (Supplementary Fig. 9), which facilitates the completely reoxidization of metallic Pd back to PdO phase by air during the cooling process. This finding was further confirmed by the results obtained from N-Al₂O₃, La-Al₂O₃, and NA-Al₂O₃-deformed supported samples. In Supplementary Fig. 15, owing to the evident sintering of Pd active phases, the arising of metallic Pd reflection at 40.1° was observed on Pd/N-Al₂O₃-1000, Pd/La-Al₂O₃-1000 and Pd/NA-Al₂O₃-deformed-1000 samples, indicating that PdO had been partially transformed into metallic Pd, even when they were cooled down in air. The Pd dispersion of Pd/NA-Al₂O₃, Pd/N-Al₂O₃ and Pd/La-Al₂O₃ before and after the 1000 °C-annealing treatment was summarized in Supplementary Table 1. Hence, it is clear that the Pd active phase was highly dispersed and stabilized as ultrasmall PdO nanoparticles by NA-Al₂O₃ at elevated temperatures in air, so supported Pd species in the oxidation state were favorable for high-temperature oxidation reactions. It should be noted that if PdO active phases had been previously reduced by H₂, the resultant metallic Pd nanoparticles can be also well stabilized by NA-Al₂O₃ from sintering, even after 1000 °C-annealing in N2 (Supplementary Fig. 16a). In sharp comparison, sintering of metallic Pd was observed on N-Al₂O₃ and La-Al₂O₃ supported nanocatalysts (Supplementary Fig. 16b, c). Hence, by taking advantage of the unique nanostructure of NA-Al₂O₃, in particular compartmentalized 2D nanosheets with enlarged surface structure, Pd active species, either in oxidative or metallic phases can be well stabilized by NA-Al₂O₃ at elevated temperatures. Strong interaction between PdO and NA-Al₂O₃. In Fig. 4, the interaction between PdO and NA-Al₂O₃ is investigated by 2D ²⁷Al NMR spectra, high-resolution (HR)-TEM imaging, and theoretical calculation. In the NMR spectra, three distinct peaks centered at 7, 32, and 65 ppm chemical shifts are observed on the as-prepared NA-Al₂O₃ host materials (Fig. 4a), which were assigned to the Al³⁺ ions in octahedral (Al^{3+}_{octa}), pentahedral (Al^{3+}_{penta}) and tetrahedral (Al^{3+}_{tetra}) coordination, respectively^{63–65}. Among them, the Al³⁺_{penta} sites are considered as the primary anchoring sites for active catalytic phases and should play an essential role in the dispersion and stabilization of Pd oxide species^{34–36}. Upon loading of the PdO on NA-Al₂O₃, the intensity of the peak Al³⁺_{penta} decreased significantly, indicating that most of the Al³⁺_{penta} sites had been used to immobilize Pd oxides on Al₂O₃ nanosheets (Fig. 4b)³⁷. In Fig. 4c, the growth of PdO onto Al₂O₃ is confirmed by the HRTEM images, where Pd active phases sitting on the (110) surfaces of γ-Al₂O₃ nanosheets was clearly resolved. The energetics of the interaction of PdO with the (110) facets of γ-Al₂O₃ were studied by theoretical calculations In Fig. 4d, the sitting of PdO on (110) facets of γ-Al₂O₃ is exothermic, and the corresponding adsorption energy is determined to be 3.16 eV. This finding suggested that the Pd active phase supported on the (110) facets of γ-Al₂O₃ is thermodynamically stable, and large energy would be required for Pd-O bond breaking if the Pd phase started to migrate and sinter. Hence, the (110) facets of γ-Al₂O₃ thermodynamically facilitated the stabilization of the Pd active phase against sintering. The preservation of the structural integrity of γ -Al₂O₃ nanosheets to retain their (110) facets is therefore favorable for the preparation of robust sintering-resistant catalysts. Catalytic performance in methane combustion. Owing to the unique catalytic ability of Pd species in oxidation reactions, synthesized Pd/Al₂O₃ catalysts were subjected to methane oxidation at elevated temperatures for the purpose of better evaluating their catalytic performance, particularly thermal stability and catalytic durability. In Fig. 5a, obvious size-dependent **Fig. 5** Catalytic combustion of methane on Pd/Al₂O₃ nanocatalysts. **a** CH₄ conversion vs reactor temperature. **b** Repeating ignition—extinction cycles of methane conversion on Pd/NA-Al₂O₃. **c** Light-off curves of methane conversion on Pd/NA-Al₂O₃ at temperatures between 100-850 °C. **d** Long-term combustion of methane at 300-800-300 °C on Pd/NA-Al₂O₃, Pd/N-Al₂O₃ and Pd/La-Al₂O₃ catalytic behavior toward methane oxidation was observed on Pd/Al₂O₃ nanocatalysts. For example, a significant loss of activity was determined for Pd/N-Al2O3 and Pd/La-Al2O3 after 1000 °Cannealing, which was due to the evident growth and/or encapsulation of PdO under high temperatures (Pd/N-Al₂O₃ vs. Pd/N-Al₂O₃-1000, and Pd/La-Al₂O₃ vs. Pd/La-Al₂O₃-1000). In contrast, the catalytic activity of Pd/NA-Al₂O₃ was actually slightly better after thermal annealing (Pd/NA-Al₂O₃ vs. Pd/NA-Al₂O₃-1000). According to the literature, this improved performance is attributable to the good stabilization of PdO nanoparticles without sintering and the strengthening of the metal-support interaction by high-temperature annealing⁶⁶⁻⁶⁹. In Supplementary Fig. 17, a similar size-dependent catalytic behavior toward propane combustion was also observed, further confirming the thermal-induced size evolution of PdO nanoparticles in these nanocatalysts. To evaluate their catalytic stability, several control experiments were carried out. First are the successive ignitionextinction cycles for methane oxidation. For Pd/NA-Al₂O₃, the catalytic performance was rather robust without activity loss over five runs (Fig. 5b); whereas for Pd/N-Al₂O₃ and Pd/La-Al₂O₃, a significant loss of activity toward to a higher reaction temperature occurred immediately in the second run (Supplementary Fig. 18), due to the sintering of PdO nanoparticles at the first run. To indicate the stability under hydrothermal condition, water vapor (~10 vol%) was introduced to the reaction system. In Supplementary Fig. 19, Pd/NA-Al₂O₃ still exhibited a robust catalytic durability over Pd/N-Al₂O₃ and Pd/La-Al₂O₃ nanocatalysts for the catalytic combustion of methane in the present of water (~10 vol%), because of its sintering-resistant PdO nanoparticles in wet air (Supplementary Fig. 13). To demonstrate that PdO phases are stabilized during methane combustion, the heating/cooling ramps were collected. In Fig. 5c and Supplementary Fig. 20, the typical hysteresis curve caused by PdO-Pd-PdO transformation during cooling process was absent in all Pd/Al₂O₃ nanocatalysts, indicating that Pd active phases had been well stabilized in oxidative state for methane oxidation⁷⁰. As a result of being heated to a higher temperature (850 vs. 450 °C) to induce obvious sintering, the activity loss of Pd/N-Al₂O₃ and Pd/La-Al₂O₃ became much more evidence in the light-off curves (Fig. 5a vs Supplementary Fig. 20). To better study the influence of reaction temperatures on catalytic activity, long-term operation of methane combustion at alternating reaction temperatures (e.g. 300-800-300 °C) was carried out. In Fig. 5d, each of the three catalysts exhibited a comparable catalytic stability in the first 10 h-run at 300 °C; but after being accelerated aging at 800 °C for 5 h, a significant loss of activity was observed for Pd/N-Al₂O₃ and Pd/La-Al₂O₃ when ramping the reaction temperature back to 300 °C. Interesting, Pd/NA-Al₂O₃ demonstrated a robust catalytic durability during this process. Hence, it can be concluded that the nanosheet-interconnected hierarchical architecture played an essential role in stabilizing PdO nanoparticles for catalysis, and the resultant Pd/NA-Al₂O₃ was a robust sintering-resistant catalyst suitable for high-temperature oxidation reactions (Supplementary Fig. 21). # **Discussion** In this study, we demonstrated that ultrafine Pd active phases were well stabilized by an NA-Al $_2$ O $_3$ architecture as a promising sintering-resistant nanocatalyst for high-temperature oxidation reactions. Such cross-linked γ -Al $_2$ O $_3$ nanosheets with flowerlike morphologies provided enough structural rigidity to efficiently suppress lamellar aggregation and the irreversible phase transformation of $\gamma\text{-}Al_2O_3$ nanosheets at elevated temperatures to avoid the sintering and encapsulation of Pd active phases. In addition, the flowerlike morphologies with multifaceted open surfaces demonstrated significant structural advantages for heterogeneous reactions, such as fast mass transport and easily accessible active sits. As a result, Pd/NA-Al_2O_3 nanocatalysts exhibited excellent catalytic activity and durability for methane combustion at high temperatures. We hope this facile synthetic strategy can be further extended to improve the thermal stability of other Al_2O_3-supported nanocatalysts for industrial catalytic applications, particularly those involving high-temperature reactions. ### Methods **Synthesis of nanosheet-assembled Al₂O₃ (NA-Al₂O₃).** In all, 1.51 g of Al (NO₃)₃·9H₂O, 0.70 g of K₂SO₄, and 0.50 g of CO(NH₂)₂ were dissolved in 80 mL deionized water. Then the obtained mixture was transferred into a 100 mL Teflonlined stainless steel autoclave and heated at 180 °C for 3 h. When cooled to room temperature, the white precipitate was collected by filtration, dried at 80 °C for 12 h and finally calcined at 500 °C for 2 h. **Synthesis of Al₂O₃ nanosheet (N-Al₂O₃).** The typical procedure to synthesize thin alumina nanosheet was as follows: 0.60~g of $Al(NO_3)_3\cdot 9H_2O$, 0.24~g of lysine, and 0.77~g of $CO(NH_2)_2$ were dissolved in 80~mL deionized water to form a homogeneous solution under magnetic stirring. Then the solution was transferred into a 100~mL Teflon-lined stainless autoclave and heated at $100~^{\circ}C$ for 24~h. After cooled to room temperature, the white precipitate was filtered, washed with deionized water and anhydrous alcohol several times, and then dried at $80~^{\circ}C$ for 12~h. The sample was gained after calcination of the powder in air at $500~^{\circ}C$ for 2~h with a heating rate of $1~^{\circ}C~min^{-1}$. **Preparation of Pd/NA-Al₂O₃**. 5 wt% Pd active phases were loaded on NA-Al₂O₃ by incipient wet impregnation method and dried at 80 °C for 12 h. The obtained samples were then calcined at 500 °C for 2 h. Pd/N-Al₂O₃ and Pd/La-Al₂O₃ were prepared with the same method. **Preparation of Pd/NA-Al₂O₃-1000**. The as-prepared Pd/NA-Al₂O₃, Pd/N-Al₂O₃, and Pd/La-Al₂O₃ were calcined at 1000 °C for 3 h. Pd/N-Al₂O₃-1000 and Pd/La-Al₂O₃-1000 were prepared with the same method. Characterization. The powder X-ray diffraction (XRD) patterns were collected on a Bruker D8 Focus diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å, operated at 40 kV and 40 mA). The X-ray photoelectron spectroscopy (XPS) were obtained at 25 °C on a PHI-Quantera SXM spectrometer with Al Ka (1486.6 eV) radiation as the excitation source at ultra-high vacuum (6.7 \times 10⁻⁸ Pa). All binding energies (BE) were determined with respect to the C1s line (284.8 eV) originating from adventitious carbon. The morphologies of samples were investigated by the field emission scanning electron microscopy (FE-SEM) images obtained by a NOVA NanoSEM 450 instrument operated at the beam energy of 5 kV. High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images and high resolution TEM images were obtained on a JEM-ARM200F TEM/ STEM with a guaranteed resolution of 0.08 nm. Before microscopy examination, the catalyst powders were ultrasonically dispersed in ethanol and then a drop of the solution was put onto a copper grid coated with a thin lacey carbon film. Raman spectra were recorded on a Renishaw Raman spectrometer under ambient conditions, and the 514 nm line of a Spectra Physics \hat{Ar}^+ laser was used for an excitation. The laser beam intensity was 2 mW, and the spectrum slit width was 3.5 cm⁻¹. Solid state ²⁷Al MAS NMR was performed at room temperature on a Bruker AVANCE III 500 MHz solid-state NMR spectrometer, operating at a magnetic field of 11.7 T. The corresponding ²⁷Al Larmor frequency was 130.28 MHz. All spectra were recorded at a sample spinning rate of 4 kHz. Each spectrum was acquired using a total of 2000 scans with a recycle delay time of 0.5 s and an acquisition time of 0.018 s. All spectra were externally referenced (i.e., the 0 ppm position) to an 1 M Al(NO₃)₃ aqueous solution. The Pd dispersion was measured by CO chemisorption method on the Autochem 2920 II apparatus. Before the test, the sample was pretreated in a flow (40 mL min⁻¹) of 20 vol% O₂ balanced with Ar at 500 °C for 1 \hat{h} . Then the sample was first reduced in a flow (40 mL min⁻¹) of 5 vol% H₂ balanced with N₂ at 200 °C for 1 h. After cooled to room temperature in a flow of He (40 mL min-1), several pulses of CO (1 vol% CO balanced with He) were introduced into the sample until no more adsorption was observed. The stoichiometry for Pd: CO was taken be unity. **Computational method and models.** Density functional theory (DFT) calculations were carried out using the Vienna Ab-initio Simulation Package (VASP). The spin-polarized projector augmented wave (PAW) method and the Perdew-Burke-Ernzerhof (PBE) electron exchange-correlation functional of the generalized gradient approximation (GGA) were applied in our calculations. The kinetic energy cut-off for the wave function expanded in the plane-wave basis was set as 400 eV. To optimize the structures, the calculation was performed until the maximum force upon each relaxed atom was less than $0.05\,\mathrm{eV}\,\mathrm{\AA}^{-1}$. The vacuum height was set as $10\,\mathrm{Å}$ to eliminate the interaction between neighboring slabs. The adsorption energy (E_ads) was calculated as followed Eq. (1): $$E_{\rm ads} = -\left(E_{\rm substrate} + E_{\rm PdO} - E_{\rm total}\right) \tag{1}$$ where $E_{\rm total}$ is the calculated total energy of the adsorption PdO cluster, $E_{\rm substrate}$ is the energy of the clean substrate and $E_{\rm PdO}$ is the energy of optimized PdO cluster in the vacuum. In order to study the adsorption of PdO cluster on $\gamma\text{-Al}_2O_3(110)$ surfaces, we used the following model: a 1×2 surface cell was used to construct a four-atomic-layer $\text{Al}_2O_3(110)$ slab, and the top three layers of the $\text{Al}_2O_3(110)$ slab were allowed to relax. The Brillouin-zone integration was performed along with a $2\times2\times1$ Monkhorst-Pack grid for the (110) surface slabs. **Catalytic combustion of methane and propane**. The catalytic activity of the catalyst for CH₄ combustion was evaluated in a fixed-bed reactor containing 200 mg of catalyst at atmospheric pressure, and the feed gas consisted of 1 vol% CH₄, 20 vol% O₂, 10 vol% H₂O (when used) and Ar. The total gas flow rate was 50 mL min $^{-1}$, and the corresponding gas hourly space velocity (GHSV) was 15 000 mL h $^{-1}$ gcat $^{-1}$. The inlet and outlet CH₄ concentration were measured by Agilent GC 7890 A. The CH₄ conversion (X_{CH4}) was calculated using the following Eq. (2): $$X_{CH_4}\% = \frac{[CH_4]_{in} - [CH_4]_{out}}{[CH_4]_{in}} \times 100$$ (2) where $[CH_4]_{in}$ and $[CH_4]_{out}$ are the CH_4 concentrations in the inlet and outlet gas, respectively. The catalytic activity of the catalyst for C_3H_8 combustion was evaluated in a fixed-bed reactor containing 100 mg of catalyst at atmospheric pressure, and the feed gas consisted of 0.2 vol% C_3H_8 , 2 vol% O_2 , and Ar. The total gas flow rate was 50 mL/min, and the corresponding GHSV was 30 000 mL h^{-1} $g_{\rm cat}^{-1}$. The inlet and outlet C_3H_8 concentration were measured by by an online gas chromatograph (GC-2060) that was equipped with an FID. The C_3H_8 conversion ($X_{\rm C3H8}$) was calculated using the following Eq. (3): $$X_{C_3H_8}\% = \frac{[C_3H_8]_{in} - [C_3H_8]_{out}}{[C_3H_8]_{in}} \times 100$$ (3) where $[C_3H_8]_{in}$ and $[C_3H_8]_{out}$ are the C_3H_8 concentrations in the inlet and outlet gas, respectively. # Data availability All relevant data are available from the authors on reasonable request. Received: 27 November 2018 Accepted: 9 March 2019 Published online: 08 April 2019 # References - 1. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. *Science* **353**, 150–154 (2016). - Cargnello, M. et al. Exceptional activity for methane combustion over modular Pd@CeO₂ subunits on functionalized Al₂O₃. Science 337, 713–717 (2012). - Peng, H. G. et al. Confined ultrathin Pd-Ce nanowires with outstanding moisture- and SO₂-tolerance in methane combustion. *Angew. Chem. Int. Ed.* 57, 8953–8957 (2018). - Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006). - Deng, W. L. & Flytzani-Stephanopoulos, M. On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. *Angew. Chem. Int. Ed.* 45, 2285–2289 (2006). - De Rogatis, L. et al. Embedded phases: a way to active and stable catalysts. ChemSusChem 3, 24–42 (2010). - Wang, A. Q., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). - Zhang, Z. L. et al. Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO oxidation. *Nat. Commun.* 8, 16100 (2017). - Cui, T. L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. *Angew. Chem. Int. Ed.* 55, 9178–9182 (2016). - Liu, W. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. *Angew. Chem.* Int. Ed. 57, 7071–7075 (2018). - He, J. J., Wang, C. X., Zheng, T. T. & Zhao, Y. K. Thermally induced deactivation and the corresponding strategies for improving durability in automotive threeway catalysts. Johnson Matthey. *Technol. Rev.* 60, 196–203 (2016). - Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234–243 (2019). - Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? *Accounts Chem. Res.* 46, 1720–1730 (2013). - Zhang, Z. L. et al. Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017). - Ouyang, R., Liu, J. X. & Li, W. X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. *J. Am. Chem. Soc.* 135, 1760–1771 (2013). - Zhan, W. C. et al. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew. Chem. Int. Ed. 56, 4494–4498 (2017). - Zhan, W. C. et al. A sacrificial coating strategy toward enhancement of metalsupport interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 138, 16130–16139 (2016). - Tang, H. L. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew. Chem. Int. Ed. 55, 10606–10611 (2016). - Wang, L., Xu, S. D., He, S. X. & Xiao, F. S. Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. *Nano Today* 20, 74–83 (2018). - Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010). - Liu, X. Y., Wang, A. Q., Zhang, T. & Mou, C. Y. Catalysis by gold: new insights into the support effect. *Nano Today* 8, 403–416 (2013). - Li, W. Z. et al. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports. *Chem. Mater.* 26, 5475–5481 (2014). - Tang, H. L. et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016). - Liu, X. Y. et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012). - Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. *Nat. Catal.* 1, 540–546 (2018). - Liu, J., Ji, Q. M., Imai, T., Ariga, K. & Abe, H. Sintering-resistant nanoparticles in wide-mouthed compartments for sustained catalytic performance. Sci. Rep. 7, 41773–41780 (2017). - Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. *Nat. Commun.* 5, 4885 (2014) - Wang, G. X. et al. Fish-in-hole: rationally positioning palladium into traps of zeolite crystals for sinter-resistant catalysts. *Chem. Commun.* 54, 3274–3277 (2018) - Li, W. Z. et al. Stable platinum nanoparticles on specific MgAl₂O₄ spinel facets at high temperatures in oxidizing atmospheres. *Nat. Commun.* 4, 3481–3488 (2012) - Yang, X. W. et al. Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: a new path to highperformance catalysts for methane combustion. Appl. Catal. B 239, 373–382 (2012) - Trueba, M. & Trasatti. S. P. γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 3393–3403 (2005). - Rascon, F., Wischert, R. & Coperet, C. Molecular nature of support effects in single-site heterogeneous catalysts: silica vs. alumina. *Chem. Sci.* 2, 1449–1456 (2011) - Kang, J. H., Menard, L. D., Nuzzo, R. G. & Frenkel, A. I. Unusual non-bulk properties in nanoscale materials: thermal metal-metal bond contraction of γalumina-supported Pt catalysts. J. Am. Chem. Soc. 128, 12068–12069 (2006) - Kwak, J. H. et al. Coordinatively unsaturated Al³⁺ centers as binding sites for active catalyst phases of platinum on γ-Al₂O₃. Science 325, 1670–1673 (2009). - Mei, D. H. et al. Unique role of anchoring penta-coordinated Al³⁺ sites in the sintering of γ-Al₂O₃-supported Pt catalysts. J. Phys. Chem. Lett. 1, 2688–2691 (2010). - Tang, N. F. et al. Coordinatively unsaturated Al³⁺ sites anchored subnanometric ruthenium catalyst for hydrogenation of aromatics. ACS Catal. 7, 5987–5991 (2017). - Shi, L. et al. Al₂O₃ nanosheets rich in pentacoordinate Al³⁺ ions stabilize Pt-Sn clusters for propane dehydrogenation. *Angew. Chem. Int. Ed.* 54, 13994–13998 (2015). - Kovarik, L. et al. Tomography and high-resolution electron microscopy study of surfaces and porosity in a plate-like γ-Al₂O₃. J. Phys. Chem. C 117, 179–186 (2013). - Wang, J. et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano 7, 4902–4910 (2013). - Kwak, J. H. et al. Role of pentacoordinated Al³⁺ ions in the high temperature phase transformation of γ-Al₂O₃. J. Phys. Chem. C 112, 9486–9492 (2008). - Jiang, H., Lee, P. S. & Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. *Energy Environ. Sci.* 6, 41–53 (2013). - Georgakilas, V. et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. *Chem. Rev.* 116, 5464–5519 (2016). - Schneider, J. et al. Understanding TiO₂ photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014). - Zhou, J. K. et al. Synthesis of self-organized polycrystalline F-doped TiO₂ hollow microspheres and their photocatalytic activity under visible light. J. Phys. Chem. C 112, 5316–5321 (2008). - Zhang, J. S., Chen, Y. & Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. *Energ. Environ. Sci.* 8, 3092–3108 (2015). - Zhang, J. S., Zhang, M. W., Yang, C. & Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014) - Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as highperformance oxygen evolution electrocatalysts. *Angew. Chem. Int. Ed.* 53, 7281–7285 (2014). - Lu, A. H., Hao, G. P. & Sun, Q. Design of three-dimensional porous carbon materials: From static to dynamic skeletons. *Angew. Chem. Int. Ed.* 52, 7930–7932 (2013). - Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016). - Zhu, C. et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. *Nano. Lett.* 16, 3448–3456 (2016) - Zhang, Q. et al. Three-dimensional interconnected Ni(Fe)O_xH_y nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. *Nano Res.* 11, 1294–1300 (2018). - Kim, J. E., Oh, J. H., Kotal, M., Koratkar, N. & Oh, I. K. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. *Nano Today* 14, 100–123 (2017). - Yu, Z. Y. et al. Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy. Science 358, 97–101 (2017). - Yu, Z. Y., Luo, J., Harmer, M. P. & Zhu, J. An order-disorder transition in surface complexions and its influence on crystal growth of boron-rich nanostructures. *Crystal Growth and Design* 15, 3547–3551 (2015). - Sun, M. H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. *Chem. Soc. Rev.* 45, 3479–3563 (2016). - Chen, L. H. et al. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-mesomacroporous structure. Angew. Chem. Int. Ed. 50, 11156–11161 (2011). - Nishihata, Y. et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. *Nature* 418, 164–167 (2002). - Kang, H. K., Jun, Y. W., Park, J. I., Lee, K. B. & Cheon, J. Synthesis of porous palladium superlattice nanoballs and nanowires. *Chem. Mater.* 12, 3530–3532 (2000). - McBride, J. R., Hass, K. C. & Weber, W. H. Resonance-Raman and latticedynamics studies of single-crystal PdO. Phys. Rev., B 44, 5016–5028 (1999). - Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. *Nat. Commun.* 8, 15447–15455 (2017). - Bell, W. E., Inyard, R. E. & Tagami, M. Dissociation of palladium oxide. J. Phys. Chem. C 70, 3735–3736 (1966). - Farrauto, R. J., Hobson, M. C., Kennelly, T. & Waterman, E. M. Catalytic chemistry of supported palladium for combustion of methane. *Appl. Catal. A* 81, 227–237 (1992). - Coster, D., Blumenfeld, A. L. & Fripiat, J. J. Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study. *J. Phys. Chem.* 98, 6201–6211 (1994). - 64. Li, X. J. et al. The role of alumina in the supported Mo/HBeta-Al₂O₃ catalyst for olefin metathesis: a high-resolution solid-state NMR and electron microscopy study. J. Catal. 250, 55–56 (2007). - Pecharromán, C., Sobrados, I., Iglesias, J. E., Gonzalez-Carreno, T. & Sanz, J. Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. *J. Phys. Chem. B* 103, 6160–6170 (1999). - Murata, K. et al. The metal-support interaction concerning the particle size effect of Pd/Al₂O₃ on methane combustion. *Angew. Chem. Int. Ed.* 56, 15993–15997 (2017). - Colussi, S. et al. Nanofaceted Pd-O sites in Pd-Ce surface superstructures: enhanced activity in catalytic combustion of methane. *Angew. Chem. Int. Ed.* 48, 8481–8484 (2009). - Nilsson, J. et al. Chemistry of supported palladium nanoparticles during methane oxidation. ACS Catal. 5, 2481–2489 (2015). - Zhu, Z. Z. et al. Influences of Pd precursors and preparation method on the catalytic performances of Pd-only close-coupled catalysts. *J. Ind. Eng. Chem.* 18, 2135–2140 (2012). - Toso, A., Colussi, S., Padigapaty, S., de Leitenburg, C. & Trovarelli, A. High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Appl. Catal. B 230, 237–245 (2018). # **Acknowledgements** W.C.Z. and Y.L.G. appreciate the financial support from the National Key Research and Development Program of China (2016YFC0204300), the National Natural Science Foundation of China (21577034), the 111 project (B08021) and Shanghai Pujiang Program (17PJD012). Y.G. appreciates the National Natural Science Foundation of China (21577035). Z.Y.Y. appreciates the National Natural Science Foundation of China (51871058 and 51701170). S.D. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ### **Author contributions** W.C.Z., J.S.Z. and S.D. conceived and designed the experiments. X.W.Y. and Q.L. performed all the experiments and analysed all the data. E.J.L. worked for the AFM images. Z.Q.W. and X.Q.G. completed the DFT calculation part. Z. Y. Y. worked for TEM images. Y.G. and L.W. assisted to synthesize catalysts. Y.L.G. assisted to analyse characterization results. All authors discussed the results and commented on the manuscript. W.C.Z. and J.S.Z. wrote the paper, and S.D. revised the paper. ### **Additional information** Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09662-4. Competing interests: The authors declare no competing interests. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/ **Journal Peer Review Information:** *Nature Communications* thanks Abhaya Datye, and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. **Publisher's note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. © The Author(s) 2019