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Coil-globule transitions drive discontinuous volume
conserving deformation in locally restrained gels
Tetsuya Yamamoto1, Yuichi Masubuchi1 & Masao Doi2

The equilibrium volume of a thermoresponsive polymer gel changes dramatically across a

temperature due to the coil–globule transitions of the polymers. When cofacially oriented

nanosheets are embedded in such a gel, the composite gel deforms at the temperature,

without changing the volume, and the response time is considerably shorter. We here the-

oretically predict that the deformation of the composite gel results from the fact that the

nanosheets restrain the deformation of some polymers, while other polymers deform rela-

tively freely. The unrestrained polymers collapse due to the coil–globule transitions and this

generates the solvent flows to the restrained regions. The response time of this process is

rather fast because solvent molecules travel only by the distance of the size of a nanosheet,

instead of permeating out to the external solution. This concept may provide insight in the

physics of composite gels and the design of thermoresponsive gels of fast response.
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A polymer gel is composed of a polymer network, which is
swollen in a solvent and changes its volume by taking in
(or squeezing out) solvent molecules1–3. Gels of specific

polymers (called thermoresponsive polymers) show the volume
phase transition, in which the volume of the gel at the thermo-
dynamic equilibrium changes by the factor of tens or more across
a temperature4–6. Thermoresponsive polymer gels have potential
applications to soft actuators7,8, resizable colloids9–11, drug
delivery systems7,12, etc. The volume phase transition is driven by
the coil–globule transition, in which polymers changes from
swollen random coil to collapsed globule in a small window of
temperature13,14. The dynamics of the volume phase transition is
very slow, typically in the order of hours (for a gel of
~1 mm size)15–17. The dynamics is accelerated for gels with
heterogeneous structures18,19, dangling bonds20, amphiphilic
conetwork21, and mobile crosslinks22,23. However, the response
time of the volume phase transition is not shorter than the order
of minutes (for a gel of ~1 mm size)21, because to change the
volume of the gel, solvent molecules must travel by the length
scale of the size of the gel through the fine mesh of the polymer
network1–3.

Poly(N-isopropylacrylamide) (PNIPA) gels show the volume
phase transition at a temperature, above which these gels collapse.
In recent experiments, Aida and coworkers prepared a composite
gel, in which solid nanosheets are immobilized in a PNIPA
gel24,25. These nanosheets are cofacially oriented and aligned in a
stack of layers, which are parallel to the nanosheets. Above the
transition temperature, the composite gel shows elongation in the
normal to the layers and contraction in the parallel to the
nanosheets. The volume of the gel does not change during the
deformation and the response time of the deformation is in the
order of seconds for the gel of ~1 mm size25. These features are in
contrast to the volume phase transition, with which gels change
their volume with a long response time. Understanding the
physical mechanisms involved in the volume-conserving defor-
mation may open a new avenue of researches of thermo-
responsive gels that respond in a reasonably short time.

The coil–globule transition of PNIPA is driven by the fact that
the attractive monomer–monomer interactions dominate the
monomer–solvent interactions and the mixing entropy above the
transition temperature due to the cooperative dehydration. At a first
glance, one may think that the volume-conserving deformation is
not driven by the coil–globule transitions because the volume
fraction of monomers does not increase when the volume is con-
stant. However, the nanosheets in the composite gel locally restrain
the deformation of polymers around these nanosheets, while other
polymers deform relatively freely; polymers at the restrained and
unrestrained regions may show different conformational changes at
the temperature of the coil–globule transition.

Here we theoretically analyze the deformation of the composite
gel by taking into account the fact that the gel is locally restrained
by the nanosheets. Our theory predicts that the composite gel swells
in the normal to the layer and shrinks in the lateral direction above
the transition temperature. The direction of the deformation is
indeed in agreement with experiments25. The deformation is driven
by the fact that the polymers in the unrestrained regions collapse in
the lateral direction due to the coil–globule transitions and this
generates the solvent flow from the unrestrained region to the
restrained region, extending the polymers in both of the regions in
the normal direction. The volume of the gel does not change during
the deformation because solvent molecules do not flow out from the
gel. With this mechanism, solvent molecules travel only by the
length scale of the size of a nanosheet and thus the response time of
the deformation is much shorter than the volume phase transition.
The stretching ratio of the gel changes discontinuously at the
transition temperature, analogous to the first-order phase transition,

even for cases in which the coil–globule transition of the polymers is
continuous. Once the mechanism is understood, it may be applied
to the design of a thermoresponsive composite gel. The concept of
designing the deformations of a composite gel based on the solvent
flow between restrained and unrestrained compartments is rela-
tively generic, but it is very different from the conventional designs
of composite gels, which respond to the temperature by taking in
(or squeezing out) the solvent from the external solution26,27.
Experimentally testing our predictions may thus open a new avenue
of the applications and designs of composite thermoresponsive
polymer gels that respond in a reasonably short time.

Results
Composite gel model. We treat a composite gel in which solid
nanosheets are immobilized in the polymer network (see Fig. 1a
and Methods). The solid nanosheets are cofacially oriented and are
aligned in a stack of layers which are parallel to the nanosheets,
analogous to the experiments by Aida and coworkers24,25. We use a
simple model of a polymer gel with which the elastic energy of the
polymer network, the mixing entropy, and the interaction energy
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Fig. 1 A model of a composite gel. a The side view of a composite gel, in
which solid nanosheets (shown by white rectangles) are immobilized by a
polymer network (green lines) in a solvent (light blue background). The
nanosheets are cofacially oriented and are aligned periodically. b The
composite gel is a treated as an assembly of unit cells, which are composed
of the central region of radius rin, sandwiched by the two registered
nanosheets, and the surrounding region of thickness rex− rin. Each unit cell
is a cylinder of a radius rex and the height h0. The thickness rex− rin of the
surrounding region and the distance h0 between the nanosheets are smaller
than the radius rin of the nanosheets. The central region can deform in the
direction normal to the nanosheets (with an extension ratio λ⊥), but cannot
deform in the lateral direction. The surrounding region can deform freely in
the radial direction (with an extension ratio λ||) and can deform in the
normal direction with the same extension ratio as the central region. Our
theory treats a timescale in which solvent molecules do not permeate out
from the gel and thus the volume of each unit cell is constant
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are taken into account2,3 (see Methods and Supplementary Notes 1
and 2 for details). With this model, the coil–globule transition of the
polymers of the network is continuous (and thus the gel does not
show the volume phase transition when the nanosheets are
removed2,15). Moreover, there are no long-range interactions
(such as electrostatic interactions) between the nanosheets. The
magnitudes of the attractive monomer–monomer interactions,
relative to the monomer–solvent interactions, are represented by a
dimensionless interaction parameter χ14. The thermodynamic state
of the gel depends on the temperature via the interaction parameter
χ. We thus analyze the deformation of the gel when one changes the
interaction parameter χ.

For an ideal case in which solid nanosheets are aligned
periodically in the layers (Fig. 1), the composite gel is treated as
an assembly of unit cells, where each unit cell is composed of the
central cylindrical region, sandwiched by two registered
nanosheets, and the surrounding region (Fig. 1). We treat cases
in which the distance h0 between the two nanosheets and the
thickness rex−rin of the surrounding region are both much
smaller than the radius rin of the nanosheets. The solid
nanosheets are strongly adhered to polymers in the network
and thus restrain the deformation of the polymer network. The
central region can deform in the direction normal to the
nanosheets (with an extension ratio λ⊥), but cannot in the lateral
direction; the lateral deformation is suppressed by the elastic
energy with respect to the shear deformation of the polymer
network for cases in which the aspect ratio rin/h0 is large, see also
Supplementary Figs. 1 and 2 and Supplementary Note 4. The
surrounding region can deform freely in the radial direction (with
an extension ratio λ||) and it can deform in the normal direction
with the same extension ratio λ⊥ as the central region, see Fig. 1b.

The theory of gel dynamics predicts that the timescale with
which solvent molecules permeate in a polymer network is
proportional to the square of the relevant length scale2,3. In a
typical experiment, solvent molecules travel through a unit cell
(of ~1 μm size) in ~0.1 s and permeate out from the gel (of ~1
mm size) in ~1 day (with a typical value of the diffusion constant
of synthetic gels, ~1×10−7 cm2 s−1, see ref. 1). We here treat a
timescale in which solvent molecules flow between the central
and surrounding regions, but do not permeate out from the gel.
With this timescale, the volume of each unit cell is constant, see
Eq. (12).

Discontinuous deformation. We analyze the deformation of the
composite gel as a function of the interaction parameter χ. For
relatively small values of the parameter χ, the free energy has only
one minimum at λ⊥= 1, which corresponds to the undeformed
state (Fig. 2a). The free energy has a new minimum at λ⊥ > 1
(which we call the deformed state) when the parameter χ is larger
than a threshold value χsp1 (Fig. 2b). The free energy at the
deformed state decreases, relative to the free energy of the
undeformed state, with increasing the parameter χ and becomes
equal to the free energy of the undeformed state at χ= χtr. The
undeformed state becomes unstable when the interaction para-
meter χ is larger than another threshold value χsp2. This situation
is analogous to the first-order phase transition2. In general, the
composite gel shows a discontinuous deformation at a value of
the interaction parameter χ between χsp1 and χsp2. When the
parameter χ is changed very slowly, the extension ratio λ⊥
changes discontinuously at the interaction parameter χ= χtr, see
the vertical broken curves in Fig. 3.

The volume-conserving deformation of the composite gel is
driven by the coil–globule transition, where the polymer network
shrinks greatly to decrease the free energy for a large interaction
parameter χ (>1/2). Because of the volume conservation of the

unit cell, when the surrounding region collapses in the radial
direction to decrease the free energy, the entire unit cell extends
in the normal direction. The latter process increases the elastic
energy of the polymer network in the central region. This elastic
energy plays a role in the energy barrier between the undeformed
and deformed states, making the deformation discontinuous (see
Fig. 2b and Supplementary Fig. 3). Our theory predicts that the
unit cell extends in the normal direction in agreement with
experiments24,25. This results from the fact that with such a
deformation, the normal extension ratio λ⊥ (and thus the elastic
energy in the central region) is relatively small because the initial
volume of the surrounding region is smaller than the initial
volume of the central region.

For large values of the interaction parameter χ, the extension
ratio λ⊥ in the normal direction has an asymptotic form

λ? ¼ 1þ 2sð1� ϕeqÞ ð1Þ

(see Supplementary Note 3 for the derivation). s (=(rex− rin)/rin) is
the ratio of the volumes of the central and surrounding regions (see
also Eq. (13)). ϕeq is the volume fraction of the polymer network
when the composite gel is prepared (see also Eq. (8) and
Supplementary Fig. 4). The volume fraction ϕeq is a function of
the rescaled shear modulus g0 of the polymer network (which is
defined by the ratio of the scale of the elastic energy of the polymer
network to the mixing free energy, see Eq. (9)). The rescaled shear
modulus g0 increases with increasing the number of crosslinks per
unit volume13. The extension ratio of the composite gel in the
lateral direction has the form λ�1=2

? due to the conservation of the
volume of the unit cell. Our theory predicts that the extension ratio
λ⊥ (in the deformed state) increases with increasing the volume
ratio s (see Fig. 3a and also Eq. (1)) and it decreases with increasing
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Fig. 2 Free energy Fgel per a unit cell vs the extension ratio λ⊥. The free
energy Fgel per a unit cell (rescaled by F0ð� kBTπr

2
inh0=v0Þ) is shown as a

function of the extension ratio λ⊥ in the normal of the nanosheets for
several values of the interaction parameter χ; a χ= 0.3, b 0.6132, and c 0.8.
The values of parameters that are used for the calculations are s (=(rex−
rin)/rin)= 0.2 and g0= 1.0 × 10−3 (see Fig. 1 and Eq. (9) for the definition)
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the rescaled shear modulus g0 of the polymer network (Supple-
mentary Fig. 5). This prediction may be experimentally accessible
by measuring the extension ratio λ⊥ (or the extension ratio in the
lateral direction) as a function of the radius rin of the nanosheets,
the lateral distance 2(rex− rin) between the nanosheets, and/or the
number of cross-links per unit volume.

The response time of the deformation has an approximate
form

τgel ¼
3
16

s
1þ 2s

1
χ � χsp2

r2in
Dgel

ð2Þ

for χ > χsp2 (see Supplementary Note 5 for the derivation). Dgel is
the diffusion constant with which solvent molecules permeate
through the polymer network (defined by Eq. (17)). Equation (2)
predicts that the response timescales as r2ins=ð1þ 2sÞ with the
radius rin of the nanosheets and does not depend on the size of
the gel. At the moment when the interaction parameter is
changed to χ(>χsp2), the osmotic pressure is uniform in the entire
region of the gel. A small deformation, driven by the thermal
fluctuations, develops the osmotic pressure difference between the
central and surrounding regions of a unit cell. This generates the
flow of solvent molecules from the surrounding region to the
central region. With this mechanism, the solvent molecules travel
only by the distance rin during the deformation. This fact is
responsible for the fast response of the composite gel. The
response time τgel decreases with increasing the interaction
parameter χ (Supplementary Fig. 6). These predictions may be
experimentally accessible.

Phase diagram. When the interaction parameter χ is changed
very slowly, the composite gel shows the discontinuous defor-
mation at a value χtr. The interaction parameter χtr at the tran-
sition is a function of the volume ratio s and the rescaled shear
modulus g0 of the polymer network. The interaction parameter χtr
at the transition increases monotonically with increasing the
volume ratio s (Fig. 4a). This is because the extension ratio λ⊥ of
the deformed state increases with increasing the ratio s and it
increases the elastic free energy due to the extension in the
normal direction (Fig. 3a). The interaction parameter χtr increases
monotonically with increasing the rescaled shear modulus g0 of
the polymer network (Fig. 4b). This is because the elastic energy
of the polymer network suppresses the deformation of the com-
posite gel. The interaction parameter χtr at the transition has an
asymptotic form

χtr ¼
1
2
þ 1ffiffiffi

3
p

22=5
ð1þ 6sþ 4s2Þ1=2g3=100 ð3Þ

for cases in which the rescaled shear modulus g0 is small.
Equation (3) may be useful to quantitatively test our theory.

When the interaction parameter χ is changed rapidly, an
undeformed gel changes to the deformed state at the second
threshold value χsp2 and a deformed gel changes to the
undeformed state at the first threshold value χsp1 (Fig. 4). These
threshold values increase with increasing the volume ratio s and
with increasing the rescaled shear modulus g0, analogous to the
transition value χtr (see Supplementary Figs. 7 and 8 and
Supplementary Discussion). Our theory predicts the asymptotic
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Fig. 4 Phase diagram of the composite gel. a The phase diagrams of a composite gel are shown as functions of the volume ratio s (≡(rex− rin)/rin) (see
Fig. 1 for the definition of rex and rin) for g0= 1.0 × 10−3 (black), 5.0 × 10−3 (orange), and 1.0 × 10−2 (light green), where g0 is the rescaled shear modulus
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forms of the threshold values (see Supplementary Eqs. (32) and
(38)). The predictions on the interaction parameter χtr at the
transition (and the threshold values χsp1 and χsp2) are probably
specific to cases in which the composite gel is composed of
polymers that show continuous coil–globule transitions, such as
polyacrylamide gels in acetone–water mixture28 (see also
Discussion section).

Discussion
Our theory predicts that the composite gel shows discontinuous
deformation by changing the temperature. The deformation is
driven by the fact that the surrounding regions locally collapse to
minimize the free energy and thus solvent molecules flow from
the surrounding regions to the central regions. The volume of the
composite gel is constant during the deformation and the
response time is relatively short because solvent molecules travel
only by the distance rin, corresponding to the radius of the
nanosheet. These features are in contrast to the volume phase
transition of gels, with which the volume of the gels changes
discontinuously and the response time is very long4–6. Recent
researches showed that a bilayer of the thin films of composite
gels is bent or twisted by changing the temperature because the
two films change their volume with different ratio26,27, analogous
to bimetal stripes29. The latter mechanism is very different from
the mechanism of the deformation of the composite gel with
layered nanosheets. With our mechanism, the solvent does not
permeate through the entire length of the gel and thus the
response time is very fast even for a bulk gel.

Our theory predicts that the composite gel shows the dis-
continuous deformation even for cases in which the coil–globule
transition of the polymers is continuous. The discontinuity of the
deformation results from the fact that the volume of the unit cell
is constant in the relevant timescale. This implies that the dis-
continuity of the coil–globule transition of PNIPA is not essential
for the composite gel to drive the discontinuous deformation.
This prediction may be accessible by using the combinations of
polymers and solvent (such as polyacrylamide gels swollen in
acetone–water mixture28) with which the polymers shrink con-
tinuously with decreasing the temperature. For cases in which the
coil–globule transitions are discontinuous, the polymer gel may
show phase separation even without embedded nanosheets and
the composite gel made from the polymers thus may show the
discontinuous deformations at the temperature range, where coil
and globular states are both stable.

Aida and coworkers argued that the discontinuous deforma-
tion of the composite gel is driven by the modulation of the
electrostatic interactions between solid nanosheets due to the
hydration/dehydration of PNIPA polymers at the temperature of
the coil–globule transition25. This mechanism is only effective for
cases in which the dielectric constant changes significantly by the
hydration/dehydration and the concentration of mobile ions is
relatively small so that the electrostatic interactions are sig-
nificant. Our theory predicts that the composite gel shows the
discontinuous deformation even for cases in which the electro-
static interactions are fully screened by mobile ions. It is of
interest to experimentally measure the extension ratio at the
transition by changing the concentration of salt impurity. Our
theory predicts that the fast response of the composite gel results
form the fact that solvent molecules travel only by the distance rin.
This is true also for cases in which the deformation is driven by
the electrostatic interactions.

Our theory provides a couple of experimentally accessible
predictions. First, the extension ratio λ⊥ in the normal direction
increases with increasing the ratio s of the volume of the central
and surrounding regions (Fig. 3) and it decreases with increasing

the (rescaled) shear modulus g0 of the polymer network (Sup-
plementary Fig. 5). Equation (1) is a quantitative prediction that
can be tested experimentally. This may also be checked via the
extension ratio of the gel in the lateral direction, where this
extension ratio is λ�1=2

? due to the volume conservation. The
volume ratio s can be changed by changing the size of the
nanosheets (or, in some cases, by changing the number of
nanosheets per unit volume) and the rescaled shear modulus g0
may be changed by changing the number of crosslinking per unit
volume. The extension ratio λ⊥ decreases with decreasing the
aspect ratio rin/h0, but only slightly (Supplementary Fig. 2a).
Second, the response time τres of the deformation scales as
sr2in=ð1þ 2sÞ to the radius rin of the nanosheets and it does not
depend on the system size (Eq. (2)). Third, for cases in which the
polymers in the network show continuous coil–globule transi-
tions, the interaction parameter χtr at the transition increases with
increasing the rescaled shear modulus g0 of the polymer network
and/or the volume ratio s (see Fig. 4 and Eq. (3)).

Although our theory is relatively generic, this theory is ideally
tested by experiments that satisfy the following conditions: First,
the solid nanosheets are strongly attached to the polymer net-
work, preferably covalently bonded to the polymers (see for
example, ref. 24). In some cases, this condition may be dis-
pensable; the polymer network in the surrounding region is not
likely to slide into the central region because the entire region of
the gel is connected by the polymer network and the elastic
energy of the polymer network suppresses the lateral deformation
of the central region (see also Supplementary Note 6). Second, the
nanosheets are cofacially oriented and are aligned in a stack of
layers (preferably, equally spaced also in each layer), analogous to
the composite gels prepared by Aida and coworkers24,25. In
general, there is a finite variance in the distributions of the size,
orientations, and alignment of the nanosheets. Even for cases in
which the variance is significant, the timescale of the deformation
is still in the order of τgel as long as the lateral and normal
distances between the nanosheets are smaller than their radius rin.
In the latter case, the composite gel may deform continuously
with increasing the interaction parameter χ. When the orienta-
tions of the nanosheets are completely disordered, the deforma-
tion of the composite gel, which is presumably isotropic
deformation, is prohibited by the conservation of the volume of
the gel. Third, the thickness, rex− rin, of the surrounding region
(or a half of the lateral distance between the nanosheets) and the
normal distance h0 between the two nanosheets are both shorter
than the radius rin of the nanosheet. These conditions ensure that
the nanosheets locally restrain the deformation of the gel and
produce restrained regions and relatively free regions. Fourth, the
deformation is measured in a timescale of the order of the
response time τgel, in which solvent molecules travel by the dis-
tance of the radius of the nanosheet. In a very long timescale,
solvent molecules flow out from the gel and change the volume of
the gel, eventually reaching the equilibrium state3,15. The process
towards the equilibrium indeed corresponds to the volume phase
transition, where the lateral contraction (or extension) of the
central regions of the unit cells is still restrained by the nanosh-
eets. With a typical value of the diffusion constant of synthetic
gels, Dgel ~ 1 × 10−7 cm2 s−11, the timescale of the volume change
is ~1 day (for a gel of ~ 1 mm size) and the response time τgel is
~0.1 s (for nanosheets of ~1 μm radius). The two timescales are
well separated and thus there is a relatively long time period in
which our theory is effective. One can also control the above two
timescales by designing the radius of the nanosheets, the size of
the gel, and the pore size of the polymer network. Fifth, in the
swelling process, the gel is swollen in a good solvent (where the
interaction parameter is smaller than 1/2). The jump of the
extension ratio λ⊥ at the threshold of the discontinuous
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deformation decreases with increasing the interaction parameter
of the solvent used in the swelling process and, eventually, the
deformation becomes continuous, see Supplementary Fig. 9.

In conclusion, the discontinuous volume-conserving defor-
mation of the composite gel is driven by the flow of the solvent
between the surrounding region and the central region. The local
restraint of the gel and the coil–globule transition are enough to
drive the solvent flow. Once the mechanism of the deformation is
understood, it may be applied to design composite gels. The
concept of producing two types of regions with different extent of
restraint may be useful to design composite gels, which respond
to the temperature in a reasonably short time. Our approach is
relatively generic and it is straightforward to extend our theory to
cases in which the solid nanosheets show long-range interactions,
such as electrostatic repulsion, by including these contributions to
the free energy (Methods). Aida and coworkers prepared a
composite gel of L-shape to demonstrate that the composite gel
shows uni-directional procession when one changes the tem-
perature back and forth, switching between the deformed and
undeformed states24,25. It is of interest to make a theory that
guides the design of such a gel in an extension of our theory. The
researches of the bilayer films of composite gel26,27 are partly
motivated by the fact that the actuation mechanism of some
plants30–33 resemble the deformation of these films. Conversely,
our theory may provide an option to analyze the actuation
mechanism of plants which do not operate with the bilayer
mechanism and it may be relevant for cases in which the
actuation speed is relatively fast and the volume of the actuation
unit is approximately constant. We anticipate that critical
experimental tests on our theory open a new avenue of designs
and applications of composite gels.

Methods
Composite gel. We treat a composite gel, which is prepared by swelling a polymer
network in an athermal solvent (in which the interaction parameter χ is zero, see
Eq. (6) and the discussion below) to the equilibrium and then by embedding solid
nanosheets. The solid nanosheets are cofacially oriented and are aligned periodi-
cally (Fig. 1). We assume that the solid nanosheets are strongly adhered to the
polymer network and thus restrain the deformation of the network. In these cases,
the composite gel is treated as an assembly of unit cells, which are composed of the
central region, sandwiched by the two registered solid nanosheets, and the sur-
rounding region (Fig. 1). We treat a timescale in which the volume of the gel is
constant. Because all the unit cells are equivalent, we analyze the deformations of a
unit cell.

Free energy. In the reference state (before the network is swollen in a solvent), the
position of a material point is represented by using the positional vector r0= (x, y, z)
(x2 þ y2 � r2ex=λ

2
eq and 0 < z < h0/λeq, where rex/λeq and h0/λeq is the radius and

height of a volume of a polymer network corresponding to a unit cell in the reference
state) (Supplementary Fig. 10a). After the deformation, the position of the material
point is displaced to r(x, y, z) (see also Eqs. (7)–(11) below). The deformation of the
unit cell is characterized by the metric tensor gαβ (≡rα · rβ), where rα is the derivative
of the positional vector r(x, y, z) with respect to xα. Here and after, the indices α and β
represent either 1, 2, or 3 and x1= x, x2= y, and x3= z (Supplementary Methods).

The free energy density of a gel has the form2,3

Fgel ¼
Z

dV0 fela þ
ϕ0
ϕ
fsol

� �
; ð4Þ

where fela is the volume density of the elastic energy of the polymer network and fsol
is the volume density of the mixing free energy. ϕ0 is the volume fraction of the
reference state. ϕ is the volume fraction after the deformation and has the form
ϕ ¼ ϕ0=

ffiffiffi
g

p
, where g is the determinant of the metric tensor gαβ. dV0 represents the

volume element of the reference state.
The neo-Hookean model treats a polymer network, which is composed of

randomly crosslinked Gaussian chains2. With this model, the elastic energy density
fela has the form

fela ¼
1
2
G0ðgαα � 3Þ; ð5Þ

where G0 is the shear modulus of the polymer network and is proportional to the
absolute temperature T for cases in which the elasticity of the polymer network is

entropic2,13. gαα is the trace of the metric tensor gαβ. Here and after, we use the
Einstein convention, with which repeated subscripts in the same term imply the
sum over possible values of the indices. It is straightforward to extend our theory to
cases in which the elastic energy has a more elaborate form for quantitative
agreement with experiments34.

The mixing free energy fsol has the form

fsol ¼
kBT
v0

ð1� ϕÞlogð1� ϕÞ þ χϕð1� ϕÞ½ �; ð6Þ

where χ is the dimensionless interaction parameter that represents the magnitudes
of the monomer–monomer and solvent–solvent interactions, relative to the
monomer–solvent interactions. kB is the Boltzmann constant and T is the absolute
temperature. v0 is the size of a monomer.

With Eqs. (5) and (6), the free energy Fgel does not predict the volume phase
transition when the nanosheets are removed2,15.

Swelling process. For simplicity, we treat cases in which the polymer network is
swollen in an athermal solvent (χ= 0). After the swelling process, the material
point at r0= (x, y, z) is displaced to the position

rs ¼ λeqðx; y; zÞ; ð7Þ

where λeq is the swelling ratio. We calculate the free energy of the gel, Eq. (4), by
using Eq. (7) in a function of the swelling ratio λeq. Taking the derivative of the free
energy with respect to the swelling ratio λeq leads to the force balance equation

� G0

λeq
þ ΠsolðϕeqÞ ¼ 0; ð8Þ

where ΠsolðϕÞ � ϕ2 ∂
∂ϕ

fsolðϕÞ
ϕ

� �
is the osmotic pressure of the gel (with χ= 0) and

ϕeqð� ϕ0=λ
3
eqÞ is the volume fraction of the polymer network in the equilibrium

(Supplementary Note 1). The volume fraction ϕeq is a function only of the rescaled
shear modulus g0 that is defined by the form

g0 ¼
G0v0

kBTϕ
1=3
0

ð9Þ

(see also Supplementary Fig. 4). Because the shear modulus G0 of the polymer
network is proportional to the absolute temperature T2, the rescaled shear modulus
g0 does not depend on the absolute temperature T.

Restraint of the gel due to the nanosheets. We incorporate solid nanosheets in
the swollen gel and then increase the interaction parameter χ. The lateral defor-
mation of the central region is suppressed by the elastic energy with respect to the
shear deformation for cases in which the aspect ratio rin/h0 is large (Supplementary
Note 4 and Supplementary Figs. 1 and 2). We thus assume that the polymer
network in the central region does not deform in the lateral direction. The posi-
tional vector of a material point in the central region has the form

rcen ¼ λeqðx; y; λ?zÞ; ð10Þ

where λ⊥ is the extension ratio in the normal direction (normal to the nanosheets).
The polymer network in the surrounding region can deform in the normal
direction with the same extension ratio λ⊥ as in the central region and deforms in
the radial direction with an extension ratio λ||(Fig. 1). The positional vector of a
material point in the surrounding region has the form

rsur ¼ λeqðλjjxr; yr; λ?zrÞ; ð11Þ

where xr and yr are the coordinates in the radial and angular directions, respec-
tively, see Supplementary Fig. 10b. The free energy of the gel is derived as a
function of the extension ratios λ|| and λ⊥ by using Eqs. (10) and (11) (Supple-
mentary Note 2).

In the relevant timescale, solvent molecules may flow between the central and
surrounding regions, but they do not flow out from the gel; the volume of the unit
cell is constant. The conservation of the unit volume is represented by the form

πr2inh0 þ 2πðrex � rinÞrin ¼ πr2inλ?h0 þ 2πλjjðrex � rinÞrinλ?h0: ð12Þ

Equation (12) leads to the extension ratio λ|| as a function of the extension ratio λ⊥
and the ratio of the volumes of the two regions

s ¼ rex � rin
rin

; ð13Þ

(Supplementary Eq. (21)). By using this relationship, the free energy is represented
as a function only of the extension ratio λ⊥ (Fig. 2). The extension ratio λ⊥ in the
stable states is derived by finding the local minima of the free energy with respect to
λ⊥ (Fig. 3).
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Time evolution equation. For simplicity, we treat cases in which the thickness rex
− rin of the surrounding region is very small. Solvent molecules thus travel through
the central region most of the time and the surrounding region is in the local
equilibrium. The time evolution of the deformation of the composite gel is
represented by the displacement vector u(r)= (0, 0, ϵ(t)zs) of the central region,
where ϵ(t) (=λ⊥− 1) is the strain and zs is the distance from the nanosheet at the
bottom of the unit cell (Supplementary Fig. 10c).

The flow field vsol(r) of the solvent in the central region is derived by using
Darcy’s law

ð1� ϕÞðvsolðrÞ � _uðrÞÞ ¼ �κ∇pðrÞ; ð14Þ

where ϕ is the volume fraction of the polymer network, κ is Darcy’s constant, and p
(r) is the hydrostatic pressure. Henceforth, the dot above a physical quantity (such
as _uðrÞ in Eq. (14)) indicates the time derivative of the quantity. The space is
occupied by either solvent molecules or monomers. This is ensured by the
condition

∇ � ðϕ _uðrÞ þ ð1� ϕÞvsolðrÞÞ ¼ 0: ð15Þ

The time evolution equation of the strain has the form

τ0
d
dt

ϵðtÞ ¼ � 1
Ki þ 4Gi=3

∂

∂λ?

Fgel
πr2inh0

� �
; ð16Þ

where Ki+ 4Gi/3 is the elastic modulus of the gel (Ki is the osmotic modulus and Gi

is the shear modulus) and is defined by the Supplementary Eq. (52). τ0 is the
timescale with which solvent molecules travel by the distance rin and has the form
τ0 ¼ r2in=ð8DgelÞ, see also Equation 146 in ref. 3. The (effective) diffusion constant
Dgel of the gel has the form

Dgel ¼ κðKi þ 4Gi=3Þ; ð17Þ

see also refs. 2,3. Equations (14)–(16) are derived by using the Onsager principle
(Supplementary Note 5).

Response time of the deformation. We analyze the strain ϵ(t) as a function of
time for cases in which the interaction parameter is changed from zero to χ at t= 0.
Equation (16) is analogous to the equation of motion of so-called model A
dynamics35,36. The right-hand side of Eq. (16) is zero at the undeformed state and
thus thermal fluctuations drive the deformation. In the short timescale, the solution
of Eq. (16) has an asymptotic form

ϵðtÞ ¼ ϵ0e
t=τgel ; ð18Þ

which is derived by expanding the right-hand side of Eq. (16) in the power series of
the strain ϵ(t) and omitting the higher order terms. The asymptotic form of the
response time τgel for small values of the rescaled shear modulus g0 is shown in Eq.
(2) (see also Supplementary Eq. (55) for a more general expression). ϵ0 is the initial
strain due to the thermal fluctuations. In the long timescale, the solution of Eq. (16)
has an asymptotic form

ϵðtÞ ¼ ϵ1 1� e�α1 t=τ0
� �

; ð19Þ

where ϵ∞ is the strain in the deformed state and the dimensionless parameter α∞ is
defined below the Supplementary Eq. (58) (see also the Supplementary Fig. 11).
Equation (19) is derived by expanding the right-hand side of Eq. (16) in the power
series of the strain ϵ(t)− ϵ1 and omitting the higher order terms.

Data availability. The Mathematica file (Aidageltheoryver20(revision).nb) used to
derive the data that support the findings of this study are available in figshare with
the identifier (https://doi.org/10.6084/m9.figshare.6083357).
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