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Divergent synthesis of N-heterocycles via
controllable cyclization of azido-diynes catalyzed
by copper and gold
Wen-Bo Shen1, Qing Sun2, Long Li1, Xin Liu1, Bo Zhou1, Juan-Zhu Yan1, Xin Lu2 & Long-Wu Ye 1,3

Gold-catalyzed intermolecular alkyne oxidation by an N–O bond oxidant has proven to be a

powerful method in organic synthesis during the past decade, because this approach would

enable readily available alkynes as precursors in generating α-oxo gold carbenes. Among

those, gold-catalyzed oxidative cyclization of dialkynes has received particular attention as

this chemistry offers great potential to build structurally complex cyclic molecules. However,

these alkyne oxidations have been mostly limited to noble metal catalysts, and, to our

knowledge, non-noble metal-catalyzed reactions such as diyne oxidations have not been

reported. Herein, we disclose a copper-catalyzed oxidative diyne cyclization, allowing the

facile synthesis of a wide range of valuable pyrrolo[3,4-c]quinolin-1-ones. Interestingly, by

employing the same starting materials, the gold-catalyzed cascade cyclization leads to the

divergent formation of synthetically useful pyrrolo[2,3-b]indoles. Furthermore, the proposed

mechanistic rationale for these cascade reactions is strongly supported by both control

experiments and theoretical calculations.
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H ighly efficient construction of N-heterocycle skeletons is
one of the most important themes in organic synthesis.
The structurally diverse and interesting family of tricyclic

N-heterocycles, such as pyrrolo[3,4-c]quinolin-1-ones1–7 and
pyrrolo[2,3-b]indoles8–11, are important structural motifs that
can be frequently observed in bioactive molecules as well as in
natural products (Fig. 1). It is surprising, however, that only a few
preparative methods have been reported, with most employing
the corresponding quinolines12–14 and indoles15–17 as precursors,

respectively. Thus, new synthetic approaches for the direct con-
struction of these skeletons are highly desired, especially those
based on the assembly of structures directly from readily available
and easily diversified building blocks.

Gold-catalyzed intermolecular alkyne oxidation by an N–O
bond oxidant, presumably via an α-oxo gold carbenoid inter-
mediate, has attracted considerable interest during the past dec-
ade because this approach would enable readily available and
safer alkynes to replace not easily accessible and hazardous α-
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diazo carbonyls as precursors in generating α-oxo metal car-
benes18–30. Among those, gold-catalyzed oxidative cyclization of
dialkynes has received particular attention because this chemistry
offers great potential to build structurally complex cyclic mole-
cules31–35. For example, Hashmi et al. reported an elegant pro-
tocol for the gold-catalyzed oxidative diyne cyclization via a
presumable 1,6-carbene transfer (Fig. 2a)32. Notable is that
haloalkynes are typically required for this strategy. Such a gold-
catalyzed oxidative diyne cyclization has also been well exploited
in the synthesis of various functionalized O-heterocycles by
Zheng and Zhang33 and Ji et al.34 In addition, Tang et al. dis-
closed that rhodium could also catalyze this type of diyne oxi-
dation (Fig. 2b)35. Despite these significant achievements, these
alkyne oxidations have been mostly limited to noble metal cata-
lysts, and, to our knowledge, non-noble metal-catalyzed such as
diyne oxidation has not been reported.

Inspired by our recent study on ynamide chemistry36–43, we
envisioned that the synthesis of pyrrolo[3,4-c]quinolin-1-ones 2
might be accessed through such an oxidative cyclization of N-
propargyl (azido)ynamides 1. However, realizing this cascade
reaction is highly challenging because of two competing reactions.
First, the generated vinyl metal carbene is highly reactive and
often suffers the overoxidation by the same oxidant32, 35, 41, 42, in
addition to many other side reactions. Second, the azido group
would be expected to attack the ynamide directly to initiate the
relevant alkyne amination via a presumable α-imino metal car-
bene pathway44–55. Herein, we describe the realization of a
copper-catalyzed oxidative diyne cyclization protocol that allows
the facile synthesis of a variety of valuable pyrrolo[3,4-c]quinolin-
1-ones. Furthermore, by employing the same starting materials,
the gold-catalyzed cascade cyclization leads to the divergent

formation of pyrrolo[2,3-b]indoles. In addition, the mechanistic
rationale for these cascade reactions, in particular accounting for
the distinct selectivity, is also well supported by density functional
theory (DFT) calculations.

Results
Optimization of reaction conditions. Table 1 shows the reali-
zation of the cascade cyclization of ynamide 1a in the presence of
various transition metals (for more details see Supplementary
Table 1, Supporting Information. To our delight, the tandem
reaction indeed produced the desired pyrrolo[3,4-c]quinolin-1-
one 2a under the previously optimized reaction conditions42,
albeit in low yield (Table 1, entry 1). We then investigated other
non-noble metals (Table 1, entries 2−6), and were pleased to find
that Cu(CH3CN)4PF6 catalyzed the oxidative cyclization to pro-
duce the desired 2a in 41% yield (Table 1, entry 6). Of note,
rhodium (Table 1, entry 7)35 and Brønsted acids56–59 such as
TsOH and TfOH were not effective in promoting this reaction
(for more details see Supplementary Table 1). Interestingly,
pyrrolo[2,3-b]indole 3a was obtained as the main product in the
presence of typical gold catalysts such as Ph3PAuNTf2 and
IPrAuNTf2 (Table 1, entries 8 and 9). Further screening of oxi-
dants revealed that the use of quinoline N-oxide 4b led to a
significantly improved yield in the presence of Cu(CH3CN)4PF6
as catalyst (Table 1, entry 10, for more details see Supplementary
Table 1), and 2a could be formed in 85% yield at 60 °C (Table 1,
entry 11). In addition, condition optimization on the formation of
3a was also explored (for more details see Supplementary
Table 1), and it was found that slightly improved yield was
obtained by employing Ph3PAuNTf2 as catalyst in the absence of

Table 1 Optimization of reaction conditionsa

Entry Catalyst Oxidant T (°C) Yield (%)b

2a 3a

1 Zn(OTf)2 (10 mol%) 4a 80 12 <1
2 In(OTf)3 (10mol%) 4a 80 15 <1
3 Sc(OTf)3 (10 mol%) 4a 80 13 <1
4 Y(OTf)3 (10mol%) 4a 80 12 <1
5 Cu(OTf)2 (10mol%) 4a 80 18 <1
6 Cu(CH3CN)4PF6 (10mol%) 4a 80 41 <1
7 [Rh(CO)2Cl]2 (5mol%) 4a 80 6 <1
8 Ph3PAuNTf2 (5 mol%) 4a 80 8 48
9 IPrAuNTf2 (5 mol%) 4a 80 <3 32
10 Cu(CH3CN)4PF6 (10mol%) 4b 80 72 <1
11c Cu(CH3CN)4PF6 (10mol%) 4b 60 85 <1
12 Ph3PAuNTf2 (5 mol%) – 25 <1 58
13d Ph3PAuNTf2 (5 mol%) – 25 <1 86
14e Ph3PAuNTf2 (2 mol%) – 25 <1 87

aReaction conditions: the reaction was performed with 1a (0.1 mmol), 4 (0.15 mmol), and catalyst (2–10 mol%) in DCE (2 mL) at 25−80 °C in vials
bMeasured by 1H NMR using diethyl phthalate as the internal standard
c2 h
dIn CH3NO2, 5 min
eIn CH3NO2, 30min
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oxidant (Table 1, entry 12). Gratifyingly, 86% yield was achieved
by using CH3NO2 as solvent (Table 1, entry 13), and similar yield
was obtained when the catalyst loading was reduced to 2 mol%
(Table 1, entry 14). Notably, no formation of 3a was observed
under copper catalysis (for more details see Supplementary
Table 1).

Synthesis of pyrrolo[3,4-c]quinolin-1-ones via Cu catalysis.
With the optimal reaction conditions in hand (Table 1, entry 11),
the reaction scope of the copper-catalyzed synthesis of pyrrolo
[3,4-c]quinolin-1-ones was then explored (Fig. 3). The reaction
proceeded smoothly with different aryl-substituted ynamides (R2

=Ar), affording the desired γ-lactam-fused quinolines 2a–h in
generally good to excellent yields (Fig. 3, entries 1–8, 2a was

confirmed by X-ray diffraction, for more details see Supplemen-
tary Table 2). In addition, heterocycle-substituted ynamide 1i was
also a suitable substrate for this oxidative cyclization to produce
the corresponding 2i in a serviceable yield (Fig. 3, entry 9),
whereas none of the desired 2j was observed with alkyl-
substituted ynamide 1j (Fig. 3, entry 10). The method worked
efficiently for various aryl-substituted ynamides bearing both
electron-donating and -withdrawing groups, and the desired 2k–
o were obtained in 63−94% yields (Fig. 3, entries 11–15). Yna-
mides containing other protecting groups also reacted well to
afford the tricyclic N-heterocycles in 68−85% yields (Fig. 3,
entries 16–18). Importantly, no diketone formation via double
oxidation by the same oxidant was observed in all cases32, 35.

This reaction was also extended to substituted N-propargyl
ynamides and these chiral substrates could be readily prepared
with excellent enantiomeric excesses by using Ellman′s tert-
butylsulfinimine chemistry (for more details see Supplementary
Fig. 87). Thus, the desired enantioenriched tricyclic N-hetero-
cycles 2s–t were formed in good yields with well-maintained
enantioselectivity by employing 8-isopropylquinoline N-oxide 4c
as oxidant (Fig. 4).

Synthesis of pyrrolo[2,3-b]indoles via Au catalysis. We also
investigated the substrate scope for the gold-catalyzed synthesis of
pyrrolo[2,3-b]indoles with the same ynamide substrates under the
optimal reaction conditions (Table 1, entry 14). As shown in
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Fig. 5, this alkyne amination-initiated tandem reaction39, 44–55

proceeded very well and afforded the desired pyrrole-fused
indoles 3a–h in mostly good to excellent yields (Fig. 5, entries
1–8, 3a was confirmed by X-ray diffraction, for more details see
Supplementary Table 3). This chemistry could also be extended to
heterocycle- or alkyl-substituted ynamides, leading to the corre-
sponding 3i and 3j in 73% and 86% yields, respectively (Fig. 5,
entries 9 and 10). Ynamides bearing different aryl groups and
protecting groups were also suitable substrates for this gold cat-
alysis to furnish the desired fused N-heterocycles in 56−86%
yields (Fig. 5, entries 11–18).

Further synthetic transformations of the as-synthesized
tricyclic N-heterocycles were also explored (Fig. 6). For example,
the Ts group in γ-lactam-fused quinoline 2a, obtained on a gram
scale in 77% yield, was easily removed by the treatment with
H2SO4 to afford the corresponding 5a in 74% yield, which could
be further transformed into DHODH inhibitor 5b6. Alternatively,
5a could be converted into pyrrolo[3,4-c]quinoline-1,3-dione 5c,
known for antibacterial activity against Gram-positive and Gram-
negative bacteria2, via a facile K2CO3-mediated air oxidation60, 61

and metal-free oxidative arene imidation62. By using a similar
strategy, the synthesis of caspase-3 inhibitor 5d was achieved
starting from the corresponding ynamide 1u5. In addition,
pyrrole-fused indole 3a could be subjected to removal of the Ts

group by NaOH or reduction of the carbonyl group by LiAlH4 to
produce the desired 6a and 6b, respectively.

Mechanistic investigations. To understand the mechanism of
these cyclizations, several control experiments were first con-
ducted. As shown in Fig. 7, control experiments with H2

18O
and18O2 isotopic labeling proved that the oxygen atom in the
carbonyl group of 3a originates from water but not molecular
oxygen. Of note, no incorporation of 18O into the 3a was
observed when 3a was subjected to the reaction conditions with
H2

18O (for more details see Supplementary Fig. 81).
In addition, when ynamide 1v was subjected to this copper-

catalyzed cascade reaction, no 2v formation was observed, and
the corresponding 2va was obtained in 66% yield instead (Fig. 8).
These results suggested that vinyl copper carbene intermediate
was presumably involved in such a diyne oxidation.

Based on the above experimental observations (for more details
see Supplementary Figs. 80–85), previously published results32, 35,
44–55, and on DFT computations (for more details see
Supplementary Figs. 75–79) plausible mechanisms for the
divergent CuI/AuI-catalyzed synthesis of 2a and 3a are illustrated
in Fig. 9. First, the catalytic [MI]-species is preferentially bound to
the amide-neighbored, electron-richer triple bond of 1a, forming
precursor A (for more details see Supplementary Fig. 75). In the
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oxidant-free cycle (for more details see Supplementary Fig. 76),
intramolecular cyclization is thus triggered by nucleophilic attack
of the proximal N atom of azide to form intermediate B, followed
by elimination of N2 to form metal-carbenoid intermediate C,
and a second cyclization to the enylium-cationic intermediate D.
The latter can readily react with ambient H2O, leading eventually
to product 3a (for more details see Supplementary Figs. 80, 81).
The overall barrier height (OBH) (for more details see
Supplementary Figs. 78, 79) is determined by the relative free
energy of transition state TSc, which amounts up to 25.6 kcal/mol
in CuI catalysis, 9.5 kcal/mol higher than that in AuI catalysis.
This accounts well for the much higher efficiency of the AuI-
catalyst in the oxidant-free synthesis of 3a. In the oxidant-
involving cycle (for more details see Supplementary Fig. 77),
precursor A subjects to nucleophilic attack of oxidant 4a to form
vinyl metal intermediate B′. Upon N–O bond cleavage, B′
transforms into α-oxo metal-carbenoid intermediate C′ (for
details, see the Supporting Information)63–65, leading smoothly to
the final product 2a66–70. It appears that the OBH (for more
details see Supplementary Figs. 78, 79) of such oxidant-involving
cycle is determined by the relative free energy of transition state
TSB', which amounts up to 18.0 and 23.4 kcal/mol in the AuI- and
CuI-catalyses, respectively. Note that in the presence of oxidant,
the oxidant-free cycle may even be favored over the oxidant-
involving path, if the former has a lower OBH than the latter.
This is true for the AuI-catalyst system, but not true for the CuI-
catalyst system. Accordingly, the oxidant-involving CuI- and AuI-
catalyst systems prefer to produce 2a and 3a, respectively (for
details, see Supplementary Data 1).

Discussion
In summary, we have developed a copper-catalyzed oxidative
cyclization of azido-diynes, affording a wide range of functiona-
lized pyrrolo[3,4-c]quinolin-1-ones in mostly good to excellent

yields. Importantly, this protocol represents a non-noble metal-
catalyzed diyne oxidation by an N–O bond oxidant. In addition,
the gold-catalyzed cascade cyclization of the same substrates leads
to the efficient formation of pyrrolo[2,3-b]indoles. Thus, this
controllable cascade cyclization enables the efficient and diver-
gent synthesis of two types of valuable tricyclic N-heterocycles
from identical starting materials under exceptionally mild con-
ditions. Moreover, the computational study provides further
evidence on the feasibility of the proposed mechanism of these
cascade reactions, especially for the distinct selectivity. Further
studies on other controllable cascade cyclizations are currently
underway.
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Methods
Materials. Unless otherwise noted, materials were obtained commercially and used
without further purification. All the solvents were treated according to general
methods. Flash column chromatography was performed over silica gel (300–400
mesh). See Supplementary Methods for experimental details.

General methods. 1H NMR spectra and 13C NMR spectra were recorded on a
Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d3.
For 1H NMR spectra, chemical shifts are reported in ppm with the internal TMS
signal at 0.0 ppm as a standard. For 13C NMR spectra, chemical shifts are reported
in ppm with the internal chloroform signal at 77.0 ppm as a standard. Infrared
spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film
and are reported in reciprocal centimeter (cm−1). Mass spectra were recorded with
Micromass QTOF2 Quadrupole/Time-of-Flight tandem mass spectrometer using
electron spray ionization. 1H NMR, 13C NMR, and high-performance liquid
chromatography (HPLC) spectra (for chiral compounds) are supplied for all
compounds: see Supplementary Figs. 1–74. See Supplementary Methods for the
characterization data of compounds not listed in this part.

General procedure for the synthesis of pyrrolo[3,4-c]quinolin-1-ones 2.
Methylquinoline N-oxide (0.3 mmol, 47.7 mg) and Cu(CH3CN)4PF6 (0.02 mmol,
7.5 mg) were added in this order to the ynamide 1 (0.20 mmol) in DCE (4.0 mL) at
room temperature. The reaction mixture was stirred at 60 °C and the progress of
the reaction was monitored by TLC. The reaction typically took 2 h. Upon com-
pletion, the mixture was then concentrated and the residue was purified by
chromatography on silica gel (eluent: petroleum ether/dichloromethane) to afford
the desired pyrrolo[3,4-c]quinolin-1-one 2.

General procedure for the synthesis of pyrrolo[2,3-b]indoles 3. Ph3PAuNTf2
(0.004 mmol, 3.0 mg) was added in this order to the ynamide 1 (0.20 mmol) in
CH3NO2 (4.0 mL) at room temperature. The reaction mixture was stirred at room
temperature and the progress of the reaction was monitored by TLC. The reaction
typically took 30 min. Upon completion, the mixture was then concentrated and
the residue was purified by chromatography on silica gel (eluent: petroleum ether/
ethyl acetate) to afford the desired pyrrolo[2,3-b]indole 3.

Data availability. The X-ray crystallographic coordinates for structures reported in
this article have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition number CCDC 1535333 (2a) and CCDC 1535335 (3a).
The data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via http://www.ccdc.cam.ac.uk/ data_request/cif. Any further relevant
data are available from the authors upon reasonable request.
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