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Analog quantum simulation of the Rabi model in
the ultra-strong coupling regime

Jochen Braumiiller!, Michael Marthaler?, Andre Schneider!, Alexander Stehli!, Hannes Rotzinger1,
Martin Weides® 3 & Alexey V. Ustinov#

The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It
consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal
interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings
model by applying a rotating wave approximation. The rotating wave approximation breaks
down in the ultra-strong coupling regime, where the effective coupling strength g is com-
parable to the energy w of the bosonic mode, and remarkable features in the system
dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective
quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of
g/ ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a
cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial
qubit state, being the most distinct signature of the synthesized model.
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inding solutions to many quantum problems is a very

challenging task!. The reason is the exponentially large

number of degrees of freedom in a quantum system,
requiring computational power and memory that easily exceed
the capabilities of present classical computers. A yet to be
demonstrated universal digital quantum computer of sufficient
size would be capable of efficiently solving most quantum pro-
blems" 2. A more feasible approach to achieve a computational
speedup in the near future is quantum simulation!™. In the
framework of analog quantum simulation, a tailored and well-
controllable artificial quantum system is mapped onto a quantum
problem of interest in order to mimic its dynamics. Since the
same equations of motion hold for both systems, the solution of
the underlying quantum problem is inferred by observing the
time evolution of the artificially built model system, while making
use of its intrinsic quantumness. This scheme may be applied to
the simulation of complex quantum problems, in the spirit ori-
ginally proposed by Feynman'.

Quantum simulation was performed on various experimental
platforms. Examples of analog quantum simulation are the study
of fermionic transport* and magnetism® with cold atoms and the
simulation of a quantum magnet and the Dirac equation with
trapped ions® 7. The exploration of non-equilibrium physics was
proposed with an on-chip quantum simulator based on super-
conducting circuits® °. Digital simulation schemes with super-
conducting devices were demonstrated for fermionic models'’
and spin systems!!.

The quantum Rabi model in quantum optics describes the
interaction between a two-level atom and a single quantized
harmonic oscillator mode'? '3, In the weak coupling regime,
which may still be strong in the sense of quantum electro-
dynamics (QED), a rotating wave approximation (RWA) can be
applied and the Rabi model reduces to the Jaynes-Cummings
model'4, which captures most relevant scenarios in cavity and
circuit QED. In the ultra-strong coupling (USC) and deep strong
coupling regimes, where the coupling strength is comparable to
the mode energies'”, the counter rotating terms in the interaction
Hamiltonian can no longer be neglected and the RWA breaks
down. As a consequence, the total excitation number in the
quantum Rabi model is not conserved. Except for one recent
paradigm of finding an exact solution!®, an analytically closed
solution of the quantum Rabi model does not exist due to the lack
of a second conserved quantity which renders it non-integrable.
The quantum Rabi model, in particular in the USC regime and
beyond, exhibits non-classical features and rising interest in it is
inspired by strong advances of experimental capabilities!™ 17~19,
The specific spectral features of the USC regime and the con-
sequent breakdown of the RWA were previously observed with a
superconducting circuit by implementing an increased physical
coupling strength?® 2!, A similar approach involving a flux qubit
coupled to a single-mode resonator allowed to access the deep
strong coupling regime in a closed system?2. The USC regime was
reached before by dynamically modulating the flux bias of a
superconducting qubit, reaching a coupling strength of about 0.1
of the effective resonator frequency~>.

In our approach, we engineer an effective quantum Rabi
Hamiltonian with an analog quantum simulation scheme based
on the application of microwave Rabi drive tones. By a decrease
of the subsystem energies, the USC condition is satisfied in the
effective rotating frame, allowing to observe the distinct model
dynamics. The scheme may be a route to efficiently generate non-
classical cavity states?*~2¢ and may be extended to explore rele-
vant physical models such as the Dirac equation in (1+1)
dimensions. Its characteristic dynamics is expected to display a
Zitterbewegung in the spacial quadrature of the bosonic mode?’.
This dynamics has been observed with trapped ions’, likewise
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based on a Hamiltonian that is closely related to the USC Rabi
model. It has been shown recently that a quantum phase tran-
sition, typically requiring a continuum of modes, can appear
already in the quantum Rabi model under appropriate condi-
tions®®. The experimental challenge is projected to the coupling
requirements in the model which may be accomplished with the
simulation scheme presented. This can be a starting point to
experimentally investigate critical phenomena in a small and
well-controlled quantum system?’. With a digital simulation
approach, the dynamics of the quantum Rabi model in USC
conditions was similarly studied very recently>’.

In our experiment we simulate the quantum Rabi model in the
USC regime achieving a relative coupling strength of up to 0.6.
Dependent on our experimental parameters, we observe peri-
odically recurring quantum state collapses and revivals in the
qubit dynamics, being a distinct signature of USC. The collapse-
revival dynamics appears most clearly in the absence of the qubit
energy term in the model, according to the expectation from
master equation simulations. In addition, we use our device to
simulate the full quantum Rabi model and are able to observe the
onset of an additional substructure in the qubit time evolution.
With this proof of principle experiment we validate the experi-
mental feasibility of the analog quantum simulation scheme and
demonstrate the potential of superconducting circuits for the field
of quantum simulation.

Results

Simulation scheme. The quantum Rabi Hamiltonian reads
H on A
E:§52+wb*b+g&x(bT+b)7 (1)

with e the qubit energy splitting, @ the bosonic mode frequency
and g the transversal coupling strength. 6; are Pauli matrices with
6,|g) = —|g) and 6,|e) = |e), where |g), |e) denote eigenstates of
the computational qubit basis. b" (b) are creation (annihilation)
operators in the Fock space of the bosonic mode. Both elements
of the model are physically implemented in the experiment, with
a small geometric coupling ¢ < €, w, such that the RWA applies
and Eq. (1) takes the form of the Jaynes-Cummings Hamiltonian.
In order to access the USC regime, we follow the scheme pro-
posed in ref. ?7. It is based on the application of two transversal
microwave Rabi drive tones coupling to the qubit. The USC
condition is created in a synthesized effective Hamiltonian in the
frame rotating with the dominant drive frequency. In this engi-
neered Hamiltonian, the effective mode energies are set by the
Rabi drive parameters. The Jaynes—Cummings Hamiltonian in
the laboratory frame with both drives applied takes the form

By g&z+wi;TE+g(&,BT +8+i)) )
+6.07; cos(wrt + @y) + G.myc08(@2t + @),

with #; the amplitudes and w; the frequencies of drive i. ¢;
denotes the relative phase of drive i in the coordinate system of
the qubit Bloch sphere in the laboratory frame. Within the RWA
where ;/w; < 1, the @, enter as relative phases of the transversal
coupling operators e i, + h.c., where 6. =1/2(6,+i5,)
denote Pauli’s ladder operators. In the following, we set ¢; =0 to
recover the familiar 6, coupling without loss of generality. Going
to the frame rotating with ; and neglecting terms rotating with

e renders the first driving term time-independent, yielding
I%‘ = (efwl)%+(w7w1)l;fl;+g(6j)1+8’+E) 3

FL G+ (5, )t 4 o)), e
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Fig. 1 Quantum simulation device. a Optical micrograph with the atomic
spin represented by a concentric transmon qubit, highlighted in red and the
2/2 microstrip resonator (blue) constituting the bosonic oscillator mode.
The readout resonator couples to the qubit capacitively and is read out with
an open transmission line (TL) via the reflection signal of an applied
microwave tone or pulse. The second resonator visible on chip is not used
in the current experiment and is detuned in frequency from the relevant
bosonic mode by ~0.5 GHz. The scale bar corresponds to 1Tmm. b Effective
circuit diagram of the device

The 7,-term is now the significant term and we move into its
interaction picture. Satisfying the requirement w; — w, =#, and
applying a RWA vyields the effective Hamiltonian in the @, frame

Het _ 1m0z 5rp 85 (57 46 4
T 2+a)effb b+26x(b er) ()

We define the effective bosonic mode energy weg=w — w1,
which is the parameter governing the system dynamics. Noting
7y > 1, which is a necessary condition for the above
approximation to hold, the effective qubit frequency 5, and
effective bosonic mode frequency w.s can be chosen as
experimental parameters in the simulation. The complete
coupling term of the quantum Rabi Hamiltonian is recovered,
valid in the USC regime and beyond, while the geometric
coupling strength is only modified by a factor of two, resulting in
gefr = g/2. It is therewith feasible to tune the system into a regime
where the coupling strength is similar to or exceeds the subsystem
energies. This is achieved by leaving the geometric coupling
strength essentially unchanged in the synthesized Hamiltonian,
while slowing down the system dynamics by effectively decreasing
the mode frequencies to <8 MHz. Thermal excitations of these
effective transitions can be neglected since they couple to the
thermal bath excitation frequency ~1GHz of the cryostat via
their laboratory frame equivalent frequency of @,/2z~ 6 GHz.
We want to point out that the coupling regime is defined by
Zeft/@ess; Tather than involving the Rabi frequency #;, which does
not enter the synthesized Hamiltonian. While the simulation
scheme requires |¢ — w;| < 7, the qubit frequency does not
enter the effective Hamiltonian. The time evolution of the qubit
measured in the laboratory frame is subject to fast oscillations
corresponding to the Rabi frequency #,. Accordingly, the qubit
dynamics in the engineered quantum Rabi Hamiltonian Eq. (4),
valid in the w, frame, can be inferred from the envelope of the
evolution in the laboratory frame. The derivation of Eq. (4) can be
found in ref. 27 and is detailed in Supplementary Note 1. A
similar drive scheme based on a Rabi tone was previously used in
experiment to synthesize an effective Hamiltonian with a rotated
qubit basis®!. For the qubit and the bosonic mode degenerate in
the laboratory frame, a distinct collapse-revival signature appears in
the dynamics of the quantum Rabi model under USC conditions.
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Quantum simulation device. The physical implementation of the
quantum simulator is based on a superconducting circuit
embedded in a typical circuit QED setup®® 33, see Fig. 1. The
atomic spin of the quantum Rabi model is mapped to a con-
centric transmon qubit>* 3°. It is operated at a ratio of Josephson
energy to charging energy Ej/Ec =50 and an anharmonicity a/h
= w2/27 — wg,/2n=—-0.36 GHz ~ ~-Ec/h =-0.31 GHz, close to
resonance with the bosonic mode at 5.948 GHz. w;; denote the
transition frequencies between transmon levels i, j. The energy
relaxation rate of the qubit at the operation point is measured to
be 1/T; =0.2 x 10°s~1. An on-chip flux bias line allows for a fast
tuning of the qubit transition frequency as the concentric trans-
mon is formed by a gradiometric dc SQUID. The bosonic mode
of the model is represented by a harmonic A/2 resonator with an
inverse lifetime x ~ 3.9x 105! that is limited by internal loss.
Following the common convention, we use x as the inverse
photon lifetime of a linear cavity, which may be extracted as the
full width at half maximum of a resonance signature in frequency
space. Via Fourier transformation one can see that this means the
cavity relaxes to its groundstate at a rate of x/2. In a separate
experiment we find the internal quality of similar microstrip
resonators to be limited to about 1.2 x 10% in the single photon
regime, corresponding to a loss rate of 3.1 x 10°s~!. Microwave
simulations indicate that the quality is limited by radiation. The
sample fabrication process is detailed in Supplementary Note 2.

Sample characterization. The quantum state collapse followed by
a quantum revival is the most striking signature of the ultra-
strong and close deep strong coupling regime of the quantum
Rabi model and emerges for qubit and bosonic mode being
degenerate in the laboratory frame. We calibrate this resonance
condition by minimizing the periodic swap rate of a single
excitation between qubit and bosonic mode for the simple
Jaynes-Cummings model in the absence of additional Rabi
drives. Figure 2 shows the measured vacuum Rabi fluctuations in
the resonant case (a) and dependent on the qubit transition fre-
quency (b). For initial state preparation of the qubit and readout
we detune the qubit by 95MHz to a higher frequency. This
corresponds to switching off the resonant interaction with the
bosonic mode. Supplementary Note 3 describes experimental
details on flux pulse generation. Rabi vacuum oscillations can be
observed during the interaction time At and yield a coupling
strength ¢/27=4.3 MHz, in good agreement with the spectro-
scopically obtained result, see Supplementary Note 8.

Quantum state collapse and revival. As the collapse-revival
signature of the quantum Rabi model in USC conditions man-
ifests most clearly for a vanishing qubit term, we initially set 7, =
0, yielding the effective Hamiltonian in the qubit frame

H P SN I

E:wefbeb —0—‘%0}(1’) +b). (5)

Figure 3a shows the applied measurement sequence which is
based on the one in Fig. 2 but extended by a drive tone of
amplitude 7. The bosonic mode is initially in the vacuum state
and the qubit is prepared in one of its basis states |g), |e), which
are thermally impure. Qubit and bosonic mode are on resonance
during the simulation time At. The drive is applied at a frequency
@; detuned from the common resonance point by w.g, setting the
effective bosonic mode frequency in the rotating frame. Measured
data for wg/27 = 8 MHz is displayed in Fig. 3b, corresponding to
Zeff/@ets ~ 0.3. Data points show the experimentally simulated
time evolution of the qubit prepared in |e). A fast quantum state
collapse followed by periodically returning quantum revivals can

| DOI: 10.1038/541467-017-00894-w | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a 1 Freq.
g (m)* Readout . Qubit control,
2 z At readout
: ==
g. -
a 5.948 GHz
;g —— Damped sine
g
O Il
0 0.5 1.0 1.5
At (us)
b 1.044 1
c
2
__1.040 =
< >3
£ &
:’ o
1.036 1
=)
¢}
1.032 0
0 0.2 0.4 0.6 0.8 1.0
At (us)

Fig. 2 Vacuum Rabi oscillations between qubit and bosonic mode. a The
qubit is initially dc-biased on resonance with the bosonic mode, while it is
detuned for state preparation and readout. The solid black line in the inset
depicts the fast flux pulses applied to the flux bias line and indicates the
qubit frequency on the given axis. Qubit and bosonic mode are on
resonance during an interaction time At. A frequency fit (red) of the
vacuum Rabi oscillations yields 2g/2z = 8.5 MHz. With the decay rate I'=
(2.08 +0.03) x 10° 571 of the envelope and the qubit decay rate
1/T;=(0.2+0.12) x 10857 we extract the bosonic mode decay rate
x=(3.9 +0.13) x 10° s7\. Error bars denote a statistical s.d. as detailed in the
Methods. b For departing from the resonance condition (blue line) by
varying the dc bias current I, we observe the expected decrease in
excitation swap efficiency and an increase in the vacuum Rabi frequency.
The qubit population is given in colors and we applied a numerical
interpolation of data points

be observed. The ground state of the qubit subspace in the driven
system as well as in the synthesized Hamiltonian, Eq. (5), is in the
equatorial plane of the qubit Bloch sphere and is occupied after a
time At> Tj,1/k. It is diagonal in the |+) basis, with
|+) = 1/v/2(|e) +|g)). The revival dynamics can be understood
with an intuitive picture in the laboratory frame. The eigenener-
gies in the | +) subspaces take the form of displaced vacuum

Al g 7 g
Weff (b + —ZCUeff) (b + —Zweff) + const., (6)

which is a coherent state that is not diagonal in the Fock basis.
The prepared initial state in the experiment is therefore not an
eigenstate in the effective basis with the drive applied such that
many terms corresponding to the relevant Fock states n of the
bosonic mode participate in the dynamics with phase factors
exp{inw.gt}, n € N*. While contributing terms get out of phase
during the state collapse, they rephase after an idling period of
27/ g to form the quantum revival. The underlying physics of
this phenomenon is fundamentally different from the origin of
state revivals that were proposed for the Jaynes—Cummings
model’®. Here, the preparation of the bosonic mode in a large
coherent state with @ 2 10 is required and non-periodic revivals
are expected at times « 1/g. rather than Vo', as
demonstrated in Supplementary Fig. 7. The blue line in Fig. 3b
corresponds to a classical master equation simulation of the qubit
dynamics in the rotating frame in the two-level approximation. It
includes the second excited level of the transmon®® and decay
terms in the underlying Liouvillian according to measured values.
Refer to Supplementary Note 5 for further details. Figure 3c, d
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shows a classical simulation and the quantum simulation for
g2 =5 MHz with the qubit prepared in one of its eigenstates
|g), |e). The population of the bosonic mode takes a maximum
during the idling period and adopts its initial population at
2nlweg in the absence of dissipation, see Fig. 3e. The fast
oscillations in Fig. 3c, d correspond to the Rabi frequency
11/2x ~ 50 MHz. This value is chosen such that the requirement
/e >> 1 is fulfilled while staying well below the transmon
anharmonicity, avoiding higher level populations. Deviations in
the laboratory frame simulation traces are due to a uncertainty in
the Rabi frequency that is extracted from Fourier transformation
of measured data. The broadening in frequency space is mainly
caused by the beating in experimental data, which is an
experimental artifact. The relevant dynamics of the USC quantum
Rabi Hamiltonian corresponds to the envelope of measured data.
Since the laboratory frame dissipation is enhanced for a larger
ratio of photon population in the bosonic mode, the accessible
coupling regime is bound by the limited coherence of the bosonic
mode, in particular. This is reflected in a dependence of the
coherence envelope of the quantum revivals on the ratio g/w.s
see Supplementary Fig. 7, reflecting that the excitation number is
no longer a conserved quantity in the quantum Rabi model. We
find a better agreement with experimental data for using a slightly
increased value for the geometric coupling strength in the master
equation simulation than extracted from vacuum Rabi oscilla-
tions. See Supplementary Notes 3 and 6 for a discussion and a
summary of the relevant parameters.

The validity of the analog simulation scheme proposed in ref.
27 and used in this letter is confirmed by master equation
simulations given in Supplementary Fig. 4. For ideal conditions,
we demonstrate that the dynamics of the qubit and the bosonic
mode in the quantum Rabi model is well reproduced by the
constructed effective Hamiltonian and that the population of the
bosonic mode is independent of the Rabi drive amplitude 7,
despite of it forming a large energy reservoir that is provided to
the circuit.

In the experiment we face a parasitic coupling of the Rabi tones
to the bosonic mode that is degenerate to the qubit and spatially
close by in the circuit. This leads to an excess population of the
bosonic mode, however without disturbing the functional
evolution of its population. This is evident as the evolution of
the simple harmonic Hamiltonian Hy, /i = wgb'b + %nr(l;T +b)
agrees with the expectation for the quantum Rabi model up to a
scaling factor, where the last term corresponds to the
parasitic drive of strength #, transformed to the rotating
frame. By performing the displacement transformation

D = exp{—7,/ (2weff)(ET — b)}, this contribution translates into
a qubit tunneling term o 6y, giving rise to a sub-rotation of the
effective frame. The resulting dynamics complies with the
envelope defined by the ideal Hamiltonian with the tunneling
term absent and therefore maps to the ideal quantum Rabi model,
leaving its dynamics qualitatively unaffected. The transformations
described are detailed in Supplementary Note 1, with master
equation simulations supporting these statements in Supplemen-
tary Fig. 6. In Fig. 3d we made use of the topological symmetry of
simulations with initial qubit states |g), |e), by subtracting two
successive measurements with the qubit prepared in its
eigenstates |g), |e), respectively, in order to cancel out the
additional dispersive shift induced by the bosonic mode. As
described in the Methods, we obtain the population evolution of
the bosonic mode, depicted in Fig. 3e, by summing two successive
measurements with the qubit prepared in |g), |e), respectively.
We can infer its effective population by a fit to master equation
simulations in the absence of a parasitic drive of the bosonic
mode. Since the maximum population is around unity while the
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Fig. 3 Quantum state collapse and revival with only the dominant Rabi drive applied. a Schematic pulse sequence and overview on the relative frequencies
used in the experiment. b Quantum simulation of the periodic recurrence of quantum state revivals for west/27 =8 MHz. The blue line corresponds to a
master equation simulation of the qubit evolution in the rotating frame. ¢, d Master equation and quantum simulation of the qubit time evolution for initial
qubit states |g), |e) and wes/27 =5 MHz, corresponding to gesr/wesr ~ 0.5. The red line shows the qubit population evolution of the driven system in the
laboratory frame, Eq. (2), while the blue lines follow the qubit evolution in the synthesized Hamiltonian Eq. (4), likewise extracted from a classical master
equation simulation. The deviation between the envelope of the laboratory frame data and the rotating frame data in ¢ reflects the approximations of the
simulation scheme. Experimental data shows the difference between two measurements for the qubit prepared in |g), |e), respectively, in order to isolate
the qubit signal. @ Measured population evolution of the bosonic mode, extracted from the sum of the two successive measurements and fitted to
classically simulated data. f-i Qubit time evolution for varying relative phase ¢, of the applied drive. The initial qubit state is prepared on the equator of the
Bloch sphere |g) + |e). Dispersive shifts induced by the bosonic mode are subtracted based on its classically simulated population evolution. Error bars

throughout the figure denote a statistical s.d. as detailed in the Methods

qubit is in the equatorial state, the non-conservation of the total
excitation number is apparent.

While the phase of the qubit Bloch vector is not well defined
for initial states |g), |e), the qubit state carries phase information
when prepared on the equatorial plane of the Bloch sphere via a
7/2 pulse. Figure 3f-i shows the qubit time evolution with varying
relative phase ¢, between initial state and applied drive, plotted in
the original qubit basis, as calibrated in a Rabi oscillation
experiment. Experimentally, the orientation of the coordinate
system is set by the first microwave pulse and we apply the Rabi
drive with a varying relative phase ¢, corresponding to the angle
between qubit Bloch vector and rotation axis of the drive in the
equatorial plane. When both are perpendicular, ¢,==+x/2,
similar oscillations including the state revival can be observed,
assuming a steady state in the equatorial plane. For the case where
@1 =0, 7, qubit oscillations in the laboratory frame are suppressed
while the baseline is shifted up or down due to the detuning of the
Rabi drive. The substructure emerges from the swap interaction
term between qubit and bosonic mode that may be regarded as a
perturbation as #; > g. Classical master equation simulations
confirm that the basis shift, dependent on the prepared initial
qubit state, is enhanced by the presence of the second excited
transmon level and by a spectral broadening of the applied Rabi
drive. The experimentally observed shift is not entirely captured
by the classical simulation which we attribute to missing terms in
the master equation that may be related to qubit tuning pulses
and are unknown at present. See Supplementary Note 4 for a
further discussion of the effect. Dependent on ¢,, we observe a

18:779

varying maximum photon population of the bosonic mode in
classical simulations and indicated in the measured dispersive
shift of the readout resonator. The qubit population as depicted in
Fig. 3f-i is retrieved from measured raw data by subtracting the
contribution of the bosonic mode. A deviation of the effective
qubit basis is likewise observed for preparing the qubit in one of
its eigenstates |g), |e).

Full quantum Rabi model. In order to simulate the full quantum
Rabi model including a non-vanishing qubit energy term we
switch on the second drive, 7, # 0, see Fig. 4a. Quantum simu-
lations are performed with the qubit initially in |g), subject to
thermal excess population. The drive tones are up-converted in
two separate IQ mixers while sharing a common local oscillator
input to preserve their relative phase relation. For the simulation
scheme to be valid, we need to fulfill the constraint w, = @, — 7,
see the schematics in Fig. 4b. This is achieved by initially applying
a simulation sequence with 7, =0 in order to obtain the fre-
quency equivalent of the Rabi frequency #; from a Fourier
transformation of the qubit time evolution. Subsequently, we
apply the same sequence with a finite #,, ¢, = ¢, and w, set by
obeying the above constraint. Figure 4c shows a master equation
simulation of the complete quantum Rabi model for 7,=0
(black) and 5, # 0 (red), respectively. The main difference is an
emerging substructure between quantum revivals and an increase
of the revival amplitude in the presence of the qubit energy term.
The substructure before the first revival is not reproduced in
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Fig. 4 Simulation of the full quantum Rabi model. a Schematic pulse
sequence used in the experiment. b Overview on the relative frequencies of
the bosonic mode and the applied drives. The constraint ;= @, - w5 is
sketched. € Master equation simulations for vanishing qubit term 5, =0
(black) and with non-vanishing qubit term 5, > O (red). The blue line
corresponds to the classical simulation for #,/27=3 MHz. d Quantum
simulation for equal parameters. The dispersive shift of the readout
resonator induced by the bosonic mode is subtracted based on classically
simulated data. Error bars denote a statistical s.d. as detailed in the Methods

measured data, see Fig. 4d, which we attribute to ring up
dynamics of the applied drives, such that the frequency constraint
of the simulation scheme is not satisfied at small At. In addition,
the parasitic drive of the bosonic mode contributes in parts to the
suppression of the substructure. Convergence of the experimental
simulation however can be observed better at later simulation
times, where we observe an increase in the revival amplitude and
more pronounced oscillations after the first revival, in agreement
with the classical simulation. These signatures vanish in check
measurements for intentionally violating the above constraint or
applying the weak Rabi drive with a phase delay ¢; # ¢,, see
Supplementary Note 7. We estimate the frequency equivalent of
1,/27 ~ 3 MHz via comparing the relative peak heights of both
drive tones with a spectrum analyzer. With w.g/27=6 MHz we
approach a regime where 2g./+/®es1,/2>1, marking the
quantum critical point in the related Dicke model>”.

The limitations imposed by the low coherence in the slowed
down effective frame can be mitigated in a future experiment by
employing a high-quality 3D cavity featuring a dc bias and a
dedicated Rabi drive antenna coupling to the qubit. Fast tuning
pulses may be realized by making use of the ac Stark shift induced
by an off-resonant tone. A device with stronger suppression of
parasitic couplings to the bosonic mode would not further require
a classical post processing, which allows to extend the presented
scheme to regimes where classical simulations become very
inefficient.

Discussion
We have demonstrated analog quantum simulation of the full
quantum Rabi model in the ultra-strong and close deep strong
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coupling regime. The distinct quantum state collapse and revival
signature in the qubit dynamics was observed, validating the
experimental feasibility of the proposed scheme?’. The main
limitation of the scheme is an effective slowing down of the
system dynamics, while the laboratory frame dissipation rates are
maintained in the synthesized frame. In analogy to the measure of
cooperativity in standard QED, we find the ratio
ger/\/k/T1 ~ 30, rendering the qubit and bosonic mode decay
rates an ultimate limitation for the simulation quality. The
decelerated system dynamics in the effective frame however
allows for the observation of quantum revivals on a timescale of
~100 ns, while the revival rate in the laboratory frame USC
quantum Rabi model is on an sub-nanosecond scale, being
experimentally hard to resolve. The small transmon anharmoni-
city limits the Rabi frequency to below ~100 MHz ~0.3 lal in
order to avoid higher level populations and suppress parasitic
coupling to the bosonic mode. The accessible coupling regime is
not limited by the simulation scheme, however we can experi-
mentally observe quantum revivals only up to a coupling regime
where gefr /@efr ~ 0.6 due to the finite coherence in our circuit.

While the presented dynamics can still be efficiently simulated
on a classical computer, a true quantum supremacy will onset
when incorporating more harmonic modes, leading to an expo-
nential growth of the joint Hilbert space. Substituting the single-
quantized mode by a continuous bosonic bath renders our setup a
viable tool for investigating the spin boson model in various
coupling regimes, which recently attracted exgerimental interest
in the context of quantum simulations*® *!. The presented
simulation scheme can be applied for a continuum of modes,
such that an engineered bath in a restricted frequency band is
collectively shifted by the applied Rabi drive frequency. This can
become a route to address the infrared cutoff issue in a tailored
bosonic bath and to observe a quantum phase transition in the
spin boson model.

Methods

Experimental technique. The quantum circuit is mounted in an aluminum box
and cooled below ~50 mK. It is enclosed in a cryoperm case for additional magnetic
shielding. Qubit preparation and manipulation microwave pulses are generated by
heterodyne single sideband mixing and applied to the same transmission line used
for readout. To ensure phase control of the drive tones with respect to the qubit
Bloch sphere coordinate system fixed by the first excitation pulse, we use a single
microwave source for qubit excitation and the drives required by the simulation
scheme. Different pulses are generated by heterodyne IQ mixing with separate IQ
frequencies and amplitudes. The bosonic mode resonator is located far away from
the transmission line which reduces parasitic driving. Readout of the qubit state is
performed dispersively by means of a separate readout resonator located at w,/27
=8.86 GHz in a projective measurement of the 6, operator with a strong readout
pulse of 400 ns duration. Further details on the experimental setup are given in
Supplementary Note 3.

Protocol for extracting the qubit population. In the simulation experiments
presented in Figs. 3 and 4, we note a modulated low-frequency bulge in the
recorded dispersive readout resonator shift that does not agree with the expected
qubit population evolution. By comparing with the classical master equation
simulation, we can recognize the population evolution of the bosonic mode which
reflects the governing fundamental frequency w.g of the effective Hamiltonian. By
simulating the full circuit Hamiltonian including qubit, bosonic mode and readout
resonator, we find that the effect is induced by an additional photon exchange
coupling f between the bosonic mode and the readout resonator. The coupling is
facilitated by the electric fields of the resonators and is potentially mediated by the
qubit. See Supplementary Note 5 for the complete system Hamiltonian. In the
diagonalized subspace of the two resonators, the bosonic mode can induce a cross-
Kerr like photon number dependent shift o« f2 on the harmonic readout resonator
as it inherits nonlinearity from the qubit. By adding or subtracting two subsequent
simulation traces with the qubit prepared in either of the initial states |g), |e), we
can isolate the signals corresponding to the population of the qubit and the bosonic
mode. This measurement protocol is based on the symmetry of the qubit signal for
preparing eigenstates, while the bosonic mode induced shift is always repulsive and
does not change its sign. The photon exchange coupling f therefore provides
indirect access to the population of the bosonic mode without a dedicated readout
device available. Specifically monitoring the population of the bosonic mode and
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performing a Wigner tomography would highlight another hallmark signature of
the USC regime, namely the efficient generation of non-classical cavity states’.
Due to a lack of such a symmetry in case the relative phases of the Rabi drives are
relevant, the qubit population can be retrieved from measured raw data based on
the expectation for the bosonic mode population as obtained from the classical
master equation simulation. In this procedure, the dispersive shift o f* remains as
the only free fit parameter. See Supplementary Note 5 for more details on the
described protocol.

Data acquisition. We readout the qubit state by observing the dispersive shift of
the readout resonator which is acquired via a 400 ns long readout pulse. Full time
traces, recording the readout pulse, are 2 x 103 fold pre-averaged per trace on our
acquisition card. Successively, the data is sent to the measurement computer where
we extract the IQ quadratures by Fourier transformation. We typically average over
~30 acquired traces to obtain a reasonable signal to noise ratio. Due to the
reflection setup, most information is stored in the phase quadrature of the recorded
signal. The given error bars represent the s.d. of the mean, as calculated from the
pre-averaged data points and propagated according to Gauss.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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