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Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process
known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be
viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering
their offspring’s immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go
beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both
invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that
they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this
view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We
highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose
that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled,
but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP
across taxa.

Parental effects and transgenerational
immune priming

The genotype of an offspring is determined by the merging
of maternal and paternal DNA, but the offspring’s pheno-
type is influenced by a plethora of environmental factors,
which provide enormous plasticity (Bonduriansky and Day
2009; Bonduriansky 2012; Scheiner 2014). Parental effects
represent one form of phenotypic plasticity across genera-
tions, where inherited environmental effects can be trans-
ferred to offspring from mothers and fathers (Kirkpatrick

and Lande 1989; Rossiter 1996; Mousseau and Fox 1998).
Traditionally, paternal effects were thought to be rare due to
both evolutionary and mechanistic constraints (Kokko and
Jennions 2008; Crean and Bonduriansky 2014). However, a
number of recent examples suggested they might be more
prevalent (Heijmans et al. 2008; Carone et al. 2010; Rando
2012; Roth et al. 2012; Crean et al. 2013; Jiang et al. 2013;
Crean and Bonduriansky 2014; Eggert et al. 2014; Kauf-
mann et al. 2014; Stein and Bell 2014). Thus, while
mechanistic constraints may exist, in sexually reproducing
species both maternal and paternal effects have the potential
to mediate offspring phenotype.

Parental effects are responsible for a broad range of
plastic responses across generations, e.g. predator defenses
(Agrawal et al. 1999), acclimation to abiotic environmental
changes (Donelson et al. 2012; Sunday et al. 2012; Shama
and Wegner 2014; Roth and Landis 2017), and disease
resistance (Mitchell and Read 2005; Goellner and Conrath
2008). Transgenerational immune priming (TGIP), where
parents enhance offspring immune defense based on their
own immunological experience, can thus be viewed as a
case of phenotypic plasticity achieved through parental
effects (Grindstaff et al. 2003; Moret 2006; Hasselquist and
Nilsson 2009; Moreau et al. 2012; Roth et al. 2012).
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Here we present and discuss current evidence for TGIP
in vertebrate and invertebrate systems. This focus does not
exclude the possibility of TGIP in other systems, e.g. plants
(for example see Luna and Ton 2012; Henry et al. 2013).
Within vertebrates and invertebrates, we address the
potential mechanisms by which the phenotypic plasticity
can be achieved across generational boundaries. We discuss
the ecological conditions where TGIP is expected to evolve,
and finish by considering future directions in TGIP research
to address outstanding gaps in our knowledge of this fun-
damental and widespread phenomenon.

Based on its use in the field of ecological and evolu-
tionary immunology, we use a broad definition of TGIP that
constitutes any transfer of parental immunological experi-
ence to offspring, which can also include examples where
the parental immunological experience takes place when
developing offspring cells are already present. Under a strict
mechanistic definition, this could include both inter- and
transgenerational epigenetic inheritance (Heard and Mar-
tienssen 2014), but can fit with a broad definition of
transgenerational epigenetics (Burggren 2016), where, in
this case, a modified immunological phenotype is inherited
due to the experiences of parents, without changes in gene
sequences. This broad classification of TGIP also includes
different phenomena with distinct mechanistic under-
pinnings. Two broad categories can be characterized: (1) the
provisioning of active immune components to offspring, for
example maternal antibody transfer in mammals or
deposition of antimicrobial peptides in insect eggs, and (2)
heightened endogenous immune function of offspring, for
example through altered offspring gene expression. The
merit of viewing mechanistically distinct phenomena under
the same umbrella definition is that we can generally assess
the causes and consequences of parental derived modifica-
tions to offspring immunological phenotypes. We also note
that it is important to compare and contrast these differ-
entiated phenomena when assessing TGIP from an adaptive
evolution standpoint.

Evidence for TGIP in vertebrates

Studies of transgenerational immunity have a long history in
vertebrate systems, but what constitutes vertebrate TGIP
remains a developing field. Recent studies have demonstrated
novel instances of TGIP that relate to both innate and adaptive
immune components. Innate immunity is evolutionary con-
served and is present in both invertebrates and vertebrates.
Due to its immediate activation, it constitutes a rapid reaction
against infection. Although recent studies have shown the
innate immune system is capable of specificity and can pro-
vide lasting protection (Chambers and Schneider 2012; Netea
et al. 2016), in general it is considered to be comparatively

unspecific. In vertebrates, it acts as the first line of defense,
with the highly targeted and specific vertebrate adaptive
immune response developing later.

Paul Ehrlich first described the passive transfer of com-
ponents of the maternal adaptive immune response in 1892,
with antibodies being transferred from mothers to offspring
via the placenta, milk or eggs (Brambell 1958, 1969; Sil-
verstein 2001). This can boost offspring survival against
pathogens isolated from the maternal environment. As the
antibody-mediated adaptive immune system of vertebrates
requires time to mature (Grindstaff et al. 2006; Boulinier
and Staszewski 2008; Hasselquist and Nilsson 2009), TGIP
is considered beneficial for early life stages when mortality
selection is highest (Rossiter 1996). Selection from
parasites is considered to have resulted in the independent
evolution of TGIP across vertebrates (Patterson et al. 1962;
Hasselquist and Nilsson 2009; Swain and Nayak 2009; de
Oya et al. 2011).

In a common aquaculture application, TGIP of teleost
fish is taken advantage of to improve offspring survival by
boosting parental immunity (Mulero et al. 2007). Effects of
TGIP are seen on both innate and adaptive immune
responses of fish (Bly et al. 1986; Fuda et al. 1992; Take-
mura and Takano 1997). Teleost fish mothers deposit
antibodies directly into eggs, with primed offspring having
increased body weight, lysozyme activity, complement
system efficiency, and anti-protease activity (Hanif et al.
2004). Fish are interesting vertebrate model systems to
investigate TGIP in an evolutionary ecology framework, as
large-scale breeding can permit laboratory manipulation
experiments, and novel routes to achieve TGIP may be
facilitated by differential parental investment strategies in
teleosts (Clutton-Brock 1991; Wourms and Lombardi 1992;
Blackburn 2015). For example, in mouthbrooding cichlids
active immune substances can be transferred via the oral
mucosa to boost offspring immune defense (Sin et al. 1994;
Keller et al. 2017). Similarly, in species with paternal care,
fathers can provide eggs or fry with antimicrobial immune
components in a thick mucus layer, facilitating biparental
protection of their offspring (Giacomello et al. 2006;
Buckley et al. 2010; Pizzolon et al. 2010). Biparental TGIP
influences offspring lymphocyte proliferation and immune
gene expression in syngnathids (i.e. seahorses and pipe-
fishes), with their unique male pregnancy (Roth et al. 2012;
Beemelmanns and Roth 2016a, b, 2017). In vertebrates,
these are currently the only examples for a paternal invol-
vement in TGIP, including the potential involvement of
epigenetic mechanisms leading to changes in endogenous
offspring immunity, in addition to the transfer of active
immune components.

Studies in amphibians and reptiles are limited, but there
is some evidence of TGIP in these taxonomic groups. The
transfer of maternal antigen-specific antibodies to eggs has
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been shown in African clawed frogs (Xenopus laevis),
potentially protecting eggs prior to the development of the
offspring immune system (Poorten and Kuhn 2009). Active
innate immune components have also been shown to be
transferred to embryos from adult glass frogs, Hyalinoba-
trachium colymbiphyllum (Walke et al. 2011). A study of
desert tortoises (Gopherus agassizri) suggested higher
Immunoglobulin (Ig) G and IgM antibody concentrations in
offspring from infected parents (Schunlacher et al. 1999).
These examples show transfer of active innate and adaptive
immune components, but studies are yet to investigate
epigenetic changes leading to altered immune responses of
the offspring themselves.

In birds, the antibody quantity transferred to offspring via
maternal deposition into the eggs corresponds to the
maternal antibody titer in the blood during the pre-laying
period (Gasparini et al. 2002). Most studies of TGIP in birds
have induced parental immunity via the injection of sheep
red blood cells or other benign antigens. Specific TGIP has
only rarely been experimentally investigated in natural host-
parasite systems, e.g. Lyme disease Borrelia burgdorferi
(Gasparini et al. 2002) and Newcastle disease virus
(Rehmani and Firdous 1995). TGIP in birds enhances off-
spring defense by elevating offspring immune responsive-
ness, and maternally transferred antibodies may persist for
several weeks up to years after hatching (Ramos et al.
2014). In addition to eggs as a route of maternal antibody
transmission, transfer by crop milk feeding has been shown
in the pigeon Columba livia (Jacquin et al. 2012). Hence,
maternal antibody provisioning via milk feeding (breast or
crop) seems to have independently evolved in mammals and
birds.

In mammals, maternal vaccination or disease exposure
can enhance offspring survival. Most studies, however,
have focused on the impact of TGIP on early life stages
(Watanaveeradej et al. 2003; Leuridan and Van Damme
2007; Leuridan et al. 2011), while the question of persistent
effects of TGIP was largely ignored. Only more recently, it
has been demonstrated that maternal vaccination of mice
(Mus musculus) with mousepox (VACV WR) increased not
only survival of offspring upon a usually lethal infection
early in life, but also that this positive impact of TGIP
persisted beyond the maturation of the offspring adaptive
immune system and into adulthood (Navarini et al. 2010).
Studies of wild populations suggest a similar effect, e.g. in a
wild sheep population (Ovis aries), maternal antibody
concentration was positively correlated with lamb survival
(Graham et al. 2010).

Examples from amphibians, reptiles, and mammals have
demonstrated the transfer of active innate and adaptive
immune components, but studies are yet to explicitly
investigate and show evidence for epigenetic changes
leading to altered immune responses of the offspring

themselves in any of these taxonomic groups. However,
given studies in fish showing changes to offspring and even
grand-offspring immune gene expression (Beemelmanns
and Roth 2017), there is a precedent for TGIP to also be
achieved in vertebrates through this route.

Evidence for TGIP in invertebrates

Despite lacking the characteristic antibody-mediated
immune memory achieved by the adaptive immune sys-
tem in vertebrates, invertebrates have been shown to exhibit
functionally analogous responses to immune memory,
which provides increased protection on secondary patho-
gen/parasite exposures. The breadth of taxa with some form
of this immune memory-like response is impressive, from
comb jellies (Bolte et al. 2013), sea anemones (Brown and
Rodriguez-Lanetty 2015) and bivalves, through a variety of
crustaceans (Rowley and Pope 2012) and insects (Sadd and
Schmid-Hempel 2006; Roth et al. 2009), spanning >900
million years of divergence. For within generational
immune priming in diverse invertebrates we refer readers to
a recent and thorough review of the topic (Milutinović and
Kurtz 2016). While evidence for TGIP is less abundant than
within generational priming, it has been described for a
number of these taxa (Sadd et al. 2005; Watson et al. 2005;
Freitak et al. 2009, 2014; Roth et al. 2010).

While much earlier work hinted at TGIP in invertebrates,
with increased survival of greater wax moth Galleria mel-
lanoella against bacteria following exposures three gen-
erations prior (Ishimori and Metalnikov 1924), there has
been a more recent revival of studies into invertebrate
TGIP. This began with work in the waterflea Daphnia
magna, where it was found that when mothers were
exposed to particular strain of the bacterial pathogen Pas-
teuria ramosa, clonal offspring were better protected to that
strain over a heterologous strain (Little et al. 2003). Sub-
sequently, work in the bumblebee Bombus terrestris and the
mealworm beetle Tenebrio molitor found priming of anti-
bacterial responses in offspring of mothers exposed to
immune eliciting bacterial components (Sadd et al. 2005;
Moret 2006). This general pattern of elevated immunity or
qualitatively better survival against pathogens in offspring
following maternal pathogen exposure has been described
in a range of host taxa (various insects, crustaceans,
nematodes).

Demonstrations of increased offspring survival to
pathogens following prior parental exposure do not require
the involvement of immunity. However, other studies have
directly measured immune parameters in offspring. Recent
gene expression studies have shown that even within insects
the routes to the realization of TGIP may be highly diverse.
TGIP may elevate baseline expression of immune effectors
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in offspring (Barribeau et al. 2016), prime offspring to
induce immune-related genes when required (Trauer-Kizi-
lelma and Hilker 2015), or have diverse effects beyond our
understanding of classical innate immunity and resistance
(Tate et al. 2017). In addition, depending on the system,
only specific types of pathogens may trigger TGIP. For
example, in mealworm beetles priming against gram-
positive bacteria was shown to be more efficient than
against gram-negative bacteria (Dhinaut et al. 2018),
although in the moth Manduca sexta, TGIP was shown
upon inoculation with gram-negative Serratia marcescens
(Rosengaus et al. 2017). Concerning the afforded protec-
tion, highly specific protection on a strain level (Roth et al.
2010) and cross-reactivity (Dhinaut et al. 2018) have both
been shown in related flour beetle systems, indicating that
the specificity of protection given by TGIP may also vary
greatly among pathogen types and hosts. The work on flour
beetles is especially noteworthy, because it has been shown
that both mothers and fathers can confer resistance to off-
spring following immune challenges (Roth et al. 2010;
Zanchi et al. 2011). Of relevance for potential mechanisms
behind TGIP, an elegant comparison of contemporary step
and genetic offspring of the same mother but different
fathers showed TGIP only in genetic offspring (Eggert et al.
2014). Other invertebrate systems have been used to
demonstrate the persistence of TGIP, which has been shown
to cross multiple generational boundaries. Priming of anti-
viral immunity in the nematode Caenorhabditis elegans can
last to F4 progeny (Rechavi et al. 2011). There is suggestive
evidence for elevated resistance over multiple generations
in the aquatic invertebrate Artemia franciscana following
exposure to the pathogen Vibrio campbellii (Norouzitallab
et al. 2015, 2016), although this is based on an experimental
design with unaccounted for pseudoreplicated.

In invertebrates, both mechanistically distinct routes of
achieving TGIP, transfer of active components or induced
changes in endogenous offspring immunity, have been
demonstrated, including in the same species. For example,
in bumblebees, eggs from immune challenged mothers have
greater antibacterial activity (Sadd and Schmid-Hempel
2007), but in addition, adult offspring show increased
immune gene expression (Barribeau et al. 2016). Also, the
studies that demonstrate TGIP across multiple generations
in invertebrates are really indicative of underlying epige-
netic mechanisms regulating offspring gene expression and
phenotypes.

Established and potential mechanisms of
TGIP: the unique and the shared

Comparing the mechanistic underpinnings of TGIP between
and within vertebrates and invertebrates provides a great

deal of information on convergent evolutionary strategies to
adaptively adjust offspring immunity based on the prevail-
ing pathogen environment. Particularly promising is a
comparative approach that investigates TGIP contingent on
innate immunity, which is relatively conserved between
vertebrates and invertebrates. Yet, aside from a few specific
cases, e.g. maternal antibody transfer in vertebrates,
mechanisms underlying TGIP are relatively poorly under-
stood, and filling this void will require considerable further
research effort. However, based on existing knowledge of
other plastic physiological traits and immunity, we can
suggest potential pathways leading to the realization of
TGIP.

Transfer of active immune components

For decades, the mechanistic basis of TGIP in vertebrates
focused on the acquired immune system, and, specifically
the transfer of maternal Ig. The transfer of maternal anti-
bodies to offspring has been well documented and reviewed
substantially elsewhere (Hasselquist and Nilsson 2009;
Swain and Nayak 2009). Data further suggest that the
degree of transfer and persistence varies among species and
individuals (Boulinier and Staszewski 2008; Garnier et al.
2013). More recent evidence from vertebrates has demon-
strated that components of the innate immune system could
also be transferred to offspring (Hanif et al. 2004; Bee-
melmanns and Roth 2016b, 2017).

In teleost fish, the formation of lymphoid tissue, B cells,
and T cells takes time, and thus there is a lag before off-
spring adaptive immunity becomes effective (Magnadóttir
et al. 2005; Swain and Nayak 2009). To overcome
this period of high vulnerability, females provide their eggs
with adaptive and innate immune components such as
complement factors, serine protease-like molecules, lectins,
macroglobulin, and antimicrobial peptides (Magnadóttir
2006; Magnadóttir et al. 2005; Swain et al. 2006; Zhang
et al. 2013). While fish rely on a combination of both
innate and adaptive immune effectors for the transfer of
immunity to their offspring, it remains unknown whether
similar modes of transfer are at work in other vertebrate
clades.

Elevated antibacterial activity has been demonstrated in
eggs from immune challenged mothers in insects (Sadd and
Schmid-Hempel 2007; Dubuffet et al. 2015). In the snail
Biomphalaria glabrata, parental immune protection of eggs
takes place through the loading of eggs with an anti-
microbial protein (Baron et al. 2013). However, immune
activity of eggs may not solely derive from passive transfer,
and early stage invertebrate eggs may be capable of pro-
ducing robust immune responses (Gorman et al. 2004),
which result from endogenous immune gene expression
(Jacobs et al. 2017).
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Transfer of PAMPs to offspring

Aside from the direct transfer of immune components
between parents and offspring, it is possible that transfer of
pathogen associated molecular patterns (PAMPs) to off-
spring will ready their own endogenous immune responses
for the prevailing environment of potential infections. Early
transfer of microbes between generations may be much
more pronounced than previously thought in animals
(Funkhouser and Bordenstein 2013). In insects, mothers
exposed to bacterial immune challenge can transfer bacterial
fragments to their eggs (Freitak et al. 2014). In honey bees
this may be achieved by the nutrition protein vitellogenin
acting in a novel role as a potential carrier of an immune
priming signal to offspring by binding to PAMPs and
transporting bacteria fragments into eggs (Salmela et al.
2015). However, it remains to be investigated if this transfer
alone is sufficient to elicit the substantial TGIP responses
seen in several insects, and no transfer of bacterial frag-
ments was shown to be associated with TGIP against bac-
teria in M. sexta moths (Rosengaus et al. 2017).

Epigenetic inheritance influencing offspring gene
expression

Environmental influences can induce epigenetic changes in
an organism leading to an altered phenotype that might be
maintained across generations (Clutton-Brock 1991; Cam-
pos et al. 2014; Jablonka and Lamb 2015; Ragunathan et al.
2015; Rassoulzadegan and Cuzin 2015; Szyf 2015). The
contemporary term epigenetics or epigenetic inheritance
refers to all nongenetic heritable changes apart from DNA-
based changes (mutations) that may lead to altered gene
expression and could create phenotypic differences among
individuals (Berger et al. 2009; Jablonka and Lamb 2015).
Recent studies focusing on the impact of environmental
stressors on both vertebrates and invertebrates have con-
firmed that maternal and paternal experience induces epi-
genetic changes, such as DNA methylation and histone
modifications, which might be transferred over the genera-
tional boundary (Heijmans et al. 2008; Szyf 2015; Young-
son and Whitelaw 2008; Curley et al. 2011). In humans and
mice, epigenetic modifications may play a role in main-
taining pools of memory CD8 T cells following viral
infection (Youngblood et al. 2015). In pipefish, parental and
grandparental immune challenge leads to the differential
expression of 15 genes responsible for epigenetic regulation
(DNA methylation and histone de/methylation and de/
acetylation) in subsequent generations (Beemelmanns and
Roth 2016b, 2017). Epigenetic modification could thus
represent a mechanism for TGIP and the transfer of parental
and grandparental immunological experience, with the
potential of mediating long-term protection.

DNA methylation

DNA methylation adds a methyl group (CH3) to the 5′
carbon of cytosine bases and generally occurs where a
cytosine meets a guanine, at CpG sites (Bird 2002; Jaenisch
and Bird 2003). These sites tend to accumulate in promoter
regions forming “CpG islands” (Craig and Bickmore 1994).
Hypermethylation of CpG islands located within or adjacent
to promotor regions initiates packing of chromatin structure
or heterochromatin remodeling, resulting in gene silencing
(Grewal and Moazed 2003). DNA methylation negatively
regulates gene expression and is necessary for all cell dif-
ferentiation processes, such as stem cell differentiation
during embryogenesis (Monk et al. 1987; Razin and Shemer
1995; Lee et al. 2015). The chemical reaction of DNA
methylation is mediated by enzymatic action of several
evolutionarily conserved DNA methyltransferases
(DNMTs) involved in either maintaining methylation marks
or de novo methylation on previously unmethylated
sequences (Okano et al. 1999; Bestor 2000). De novo
methylation can thus play an essential role in maternal and
paternal imprinting (Kaneda et al. 2004), and is potentially a
crucial factor for epigenetic changes based on environ-
mental stress. In contrast to mutations, DNA methylation
patterns are reversible, highly dynamic, and can change
several times throughout the life of an organism (Monk
et al. 1987; Bird 2002; Lee et al. 2015). Recent studies have
shown that methylation marks are transferred during
meiosis, and are thus heritable across generations (Szyf
2015). It was initially thought that transgenerational epi-
genetic inheritance through DNA methylation marks was
impossible due to embryonic demethylation (Reik et al.
2001); however, other evidence suggests that certain ele-
ments escape demethylation, and may represent inherited
epimutations (Lane et al. 2003). While derived from a
pseudoreplicated experimental design, stochastic methyla-
tion patterns have been found across generations of Artemia
primed against Vibrio campbellii (Norouzitallab et al.
2016). In addition, DNA methylation genes are differen-
tially expressed in offspring and grand-offspring of immune
challenged pipefish individuals exhibiting TGIP (Bee-
melmanns and Roth 2016a, b, 2017; Roth and Landis
2017). These findings could in principle be suggestive
evidence for a role for DNA methylation in TGIP. While
methylation is an attractive mechanism for TGIP, recent
work on Tenebrio molitor beetles found no evidence of
changes in either DNA or RNA methylation during TGIP,
but did detect lower proportion of RNA methylation under
within generational immune priming (Castro-Vargas et al.
2017). However, this work only quantified global patterns
of methylation, leaving open the possibility of altered spe-
cific methylation profiles leading to TGIP phenotypes in
this system.
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Histone modifications

Chromatin in its condensed form consists of linked
nucleosomes, while the DNA is wrapped tightly around an
octamer of core histones (Berger 2002). Accessibility of the
DNA for transcription is regulated by addition (acetylation)
or removal (deacetylation) of acetyl groups to histone tails,
which changes the charge of the histones and the affinity to
negatively charged DNA (Wade et al. 1997; Zhang and
Reinberg 2001; Berger 2002). Chromatin structure is loose
with acetylated histones, and thus is more accessible for
transcription, while DNA is bound more tightly by deace-
tylated histones and transcription is silenced (Perry and
Chalkley 1982; Berger 2002). Histone acetyltransferase
(HAT) and histone deacetylase enzymes (HDAC) acetylate
and deacetylate, respectively (Holbert and Marmorstein
2005), with the balance between their activity significantly
impacting gene regulation throughout development and
influencing human diseases (Mukherjee et al. 2015).
Additionally, histone N-terminal tails are modified by
methylation, phosphorylation, and ubiquitination, which are
all necessary to accomplish specific functions during the
transcription (Zhang and Reinberg 2001; Berger 2002;
Holbert and Marmorstein 2005). Histone methylation is
catalyzed specifically by histone methyltransferases
(HKMT) (Peters and Schübeler 2005) or removed by his-
tone demethylases (Kooistra and Helin 2012). Chromatin
modifying processes have been shown to be essential reg-
ulators of the activity of many inflammatory genes (Foster
and Medzhitov 2009), and studies suggest methylation and
acetylation patterns are heritable and that histones pass on
epigenetic signals across generations (Campos et al. 2014;
Gaydos et al. 2014; Jones 2014). Thus, there is potential for
a role of histone modification in TGIP.

TGIP in pipefish is potentially mediated via histone
modifications, with offspring and grand-offspring of bac-
terially immune challenged males exhibiting differential
gene expression patterns of genes involved in histone
methylation, demethylation, acetylation, and deacetylation
(Beemelmanns and Roth 2017). Consistent patterns of
paternal and grand-paternal influences on histone mod-
ification genes suggest regulation of patrilineal TGIP might
be mediated by heritable histone modifications (Bee-
melmanns and Roth 2017). However, it remains unclear at
which exact sites histone modifications might be stably
maintained in the gametes of vertebrates, and which
mechanisms are responsible for heritable changes mediated
by histones.

Small RNAs

Small RNAs are molecules that are often involved in the
regulation of the activity of specific mRNA targets, which

may affect a diversity of physiological processes (Kim et al.
2009). As such, small RNAs have been indicated to be
involved in controlling immunological reactions (Xiao and
Rajewsky 2009; O’Connell et al. 2010; Lawless et al.
2014). Recent data suggested the transfer of one type of
maternal small RNA, microRNAs (miRNAs), via breast
milk in humans could boost offspring immune responses
(Kosaka et al. 2010; Munch et al. 2013). In invertebrates,
another small RNA type, small interfering RNAs (siRNAs)
have been linked to TGIP. In C. elegans, priming of the
antiviral response through siRNAs protects against viruses
across multiple generations (Rechavi et al. 2011; Sterken
et al. 2014; Gammon et al. 2017), although protective
siRNA inheritance has not been confirmed in all cases
(Ashe et al. 2015). The importance of small RNAs in TGIP
more widely, including the breadth of taxa that employ this
mechanism, is currently unclear. However, the involvement
of small RNAs, which can be transmitted stably through
meiosis, in other epigenetic phenomena (Richards 2006)
makes them a promising candidate for future studies of the
mechanistic underpinnings of TGIP.

TGIP will not always be the rule: adaptive
hypotheses and predicted ecological
conditions for TGIP

Vertebrates and invertebrates have multiple pathways by
which offspring immunity may be primed based on parental
experience of pathogen and parasite exposures. There are
two potential adaptive evolutionary hypotheses for the two
distinct mechanistic types of TGIP (parental transfer or
heightened endogenous offspring immunity) that have been
discussed above. Transfer to offspring of active immune
components may be beneficial in providing protection to
offspring during an otherwise vulnerable period, when the
offspring is not yet able to mount its own effective
responses. Mechanisms leading to heightened endogenous
responses by offspring that are based on parental immune
experience will be selected for as they ready offspring for
the prevailing parasite and pathogen environment. These
hypotheses are not mutually exclusive. For example,
transfer of antibodies in vertebrates will protect offspring
before they can produce their own antibodies, but in addi-
tion, the diversity and quantity of antibodies can mirror the
antecedent experienced parasite and pathogen environment
of the mother (Grindstaff et al. 2003). It should be noted,
however, that a correlation between the levels of an active
immune component in mothers and the quantity transferred
to offspring does not require an adaptive explanation. A
parsimonious explanation could be that this is a simple
passive mechanistic consequence of an increased titer of the
component in the mother, which requires no link to its effect
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on offspring fitness. The subsequent discussion of the
evolution of TGIP assumes the hypothesis that TGIP will
ready offspring for the infection risk of the current
environment.

While the literature abounds with evidence of TGIP in
vertebrate and invertebrate systems, its existence is not
universal. For example in invertebrates, several studies have
not found evidence for TGIP (Voordouw et al. 2008; Vor-
burger et al. 2008; Linder and Promislow 2009; Pigeault
et al. 2015), and in some cases even reversed patterns of
negative effects of parental immune stimulation on off-
spring resistance have been shown (Vantaux et al. 2014;
Littlefair et al. 2017). Such cases may also be more com-
mon than the literature suggests as a consequence of pub-
lication bias against negative results (Møller and Jennions
2001). The absence of TGIP in these systems may be due to
mechanistic constraints preventing TGIP, or that specific
assays may miss the relevant immune parameter. For
example, the observation of a TGIP phenotype can depend
on the physiological immune pathway assayed (Sadd et al.
2005; Trauer-Kizilelma and Hilker 2015). However, the
presence or absence of TGIP may have deeper routes per-
taining to the evolutionary history of an organism, with the
evolution and maintenance of TGIP being dependent on the
predictability of parasite and pathogen environments across
generations and the fitness-related costs of TGIP to both
parents and offspring. In the following section, we discuss
these aspects that may influence the evolution of TGIP.
Exceptions might exist to these broad generalizations of the
underlying ecological determinants relating to the selective
advantage of TGIP, and we highlight these where
appropriate.

The evolution of TGIP, the degree of specificity or cross-
reactivity it shows across parasite and pathogen types, and
extent of protection it confers to offspring will fundamen-
tally depend on the ecology of the organism in question and
the parasites and pathogens that it encounters (Fig. 1). The
risks of parasite and pathogen infection are often spatially
patchy. When environmental barriers limit parasite dispersal
and assemblages of parasite genotypes are stable over
generations, it is highly probable that hosts and their off-
spring will encounter the same parasite genotypes repeat-
edly (Little and Kraaijeveld 2004). In this case, long-lasting
and specific TGIP will be beneficial by facilitating a faster
reaction towards the current parasite or pathogen assem-
blage that is based on the immunological experience of
parents (Lui 2000). Hence, ecological conditions where
pathogenic communities are stable may select for persistent
and multigenerational TGIP (Lemke et al. 1994; Nor-
ouzitallab et al. 2015; Beemelmanns and Roth 2017).
Likewise, when host dispersal is low the likelihood of
similar parasite pressures being encountered across gen-
erations increases. Such scenarios will promote the

evolution of TGIP (Pigeault et al. 2016). For similar rea-
sons, models predict that when investment into TGIP is a
plastic trait, in species with philopatric and dispersing
individuals TGIP will be found only in philopatric indivi-
duals (Pigeault et al. 2016). While TGIP is intuitively
expected to be present when offspring are more likely to
encounter the same parasites and pathogens as their parents,
there are exceptions. For instance, TGIP has been described
in marine invertebrates like scallops that are broadcast
spawners (Yue et al. 2013), where parental experience is
unlikely to predict offspring pathogen environment. How-
ever, in these cases there is at least a conceivable benefit if
TGIP protects against vertically transmitted pathogens, and
thus offspring will, by the nature of this transmission route,
be exposed to the same pathogens as their parents.

The assumption is that the benefits of increased protec-
tion afforded by TGIP will be weighed against costs. If
parasite and pathogen pressures fluctuate over generations,
TGIP may come at a net cost (von Schantz et al. 1999).
Parental effects are shaped by selection on both parents and
offspring (Kirkpatrick and Lande 1989; Mousseau and Fox
1998). These levels of selection may frequently oppose each
other (Kirkpatrick and Lande 1989; Wolf and Brodie 1998),
resulting in costs that can either be inflicted upon the par-
ents, the offspring, or both (Gallizzi et al. 2008). The
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Fig. 1 A simple schematic representing the base expectations of the
existence of TGIP when accounting for the predictability of the
parasite environment between generations and the costs associated
with elevated immunity. In the absence of associated costs, all off-
spring will be expected to display increased resistance, irrespective of
parental experience with parasites and the predictability of the envir-
onment across generations. When costs for increased resistance are
present, increased resistance is only predicted when the parental
environment predicts the parasite environment of offspring, and when
parents are exposed to infection (TGIP). Under a framework of spe-
cific costs of resistance, parasite-specific TGIP is only expected to
evolve when the predictability of the environment across generations is
also specific to the parasite types
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offspring may suffer as TGIP stimulates the young to mount
a costly immune response (Carlier and Truyens 1995).
Mounting an immune response carries energetic costs,
necessitating that resources are allocated away from
development, maturation, reproduction, and growth (Shel-
don and Verhulst 1996; Lochmiller and Deerenberg 2000;
Schmid-Hempel 2005; Ardia et al. 2011, 2012). When
considering whether TGIP is to be expected, costs of its
implementation are important to take into account. By its
very nature as an inducible phenotype, it is predicted that
TGIP will carry costs. If this were not the case, the
expectation would be for offspring immunity to be main-
tained at primed levels constantly. Experiments that
manipulate the environment encountered by primed off-
spring have elucidated some of the underlying costs of
TGIP. For instance, in bumblebees where a mismatch
between maternal immunological experience (bacterial
based immune challenge) and offspring parasite environ-
ment (trypanosome parasite) was created, costs were seen in
that offspring primed to bacteria were more susceptible to
the distinct trypanosome parasite than naive offspring (Sadd
and Schmid‐Hempel 2009). Further costs relating to off-
spring life-history traits have been highlighted in cases of
TGIP in beetles (Roth et al. 2010; Zanchi et al. 2011). In
mosquitoes, TGIP has been shown to be negatively corre-
lated with offspring reproduction in the absence of infection
(Contreras-Garduño et al. 2014). In vertebrates transfer of
antibodies to offspring can hinder the development of an
offspring’s own immune response (Siegrist 2003), as in the
case of antibodies against Newcastle Disease virus in birds
(Staszewski and Siitari 2010). In mammals, the transfer of
immunity via the placenta can result in a costly inflamma-
tion by inducing the complement system and phagocytes
(Hanson 2004). There can also be costs associated with
TGIP as sexual hormones are depleted, decreasing nestling
development and secondary sexual ornaments (Eising et al.
2001; Gil et al. 2006). Theoretical studies predict that TGIP,
especially when costly to reproduction, might increase
parasite prevalence and destabilize population dynamics in
the long term (Tidbury et al. 2012). Thus, further experi-
mental and theoretical work is required to understand the
complex interplay between costs and benefits of TGIP.

Given the balance of costs and benefits based on the
predictability of the parasite and pathogen environment,
only under certain conditions will TGIP be favored and
have an adaptive benefit (Fig. 1). If these conditions of
environment, costs and benefits, and relationship between
parents and offspring are not met, then we expect that TGIP
will be absent or non-specific. If an environment is het-
erogenous with regard to the probability of infection, but
parasite and pathogen types are not stable over time, then it
could be expected that priming of a general immune
response will be favored (Fig. 1). Furthermore, the

existence of TGIP could be mechanistically constrained,
and thus particular immune pathways may not show
immune priming or certain pathogens and parasites may not
elicit it. The wider community of parasites and pathogens
may even dictate constraints on the expression of TGIP
phenotypes, as demonstrated in flour beetles where parental
co-infection with a gut protozoan curtailed the normally
observed TGIP against bacteria (Tate and Graham 2015).

While many prerequisites need to be fulfilled for TGIP to
evolve, spread and be maintained, it only requires one factor
to be absent or the relative costs of TGIP to be too high for
its evolution to be obstructed. In some examples of studies
failing to demonstrate TGIP there are logical grounds for its
absence. For example, in mosquitoes (Aedes aegypti) no
effects in offspring following the stimulation of the mater-
nal melanization response were detected (Voordouw et al.
2008). However, eggs of A. aegypti are usually laid in
ephemeral pools of water that are unlikely to be shared
across generations. Thus, the parasite environment experi-
enced by a mother may not be tightly correlated with the
offspring environment, and as such, it is perhaps unsur-
prising that costly TGIP is predominantly absent. Interest-
ingly, recent work in invertebrates has demonstrated that
offspring may be primed to differing stages of the immune
response, with recognition, signaling, or effectors being
more readily induced, or that offspring exhibit heightened
levels of constitutive immune expression (Trauer-Kizilelma
and Hilker 2015; Barribeau et al. 2016; Tate et al. 2017). It
is plausible that these various levels of priming, from a
readied state to elevated production of effector molecules
are a consequence of the predictability of the parasite
environment between generations. In systems where the
likelihood of offspring encountering the same parasite and
pathogen pressures as parents is high, it may pay for off-
spring to invest fully into heightened constitutive immunity,
whereas in cases where the likelihood is lower, just being
ready, with sensitized recognition or signaling, may be
beneficial.

Sex role reversed vertebrate species may further inform
of the ecological conditions that can support TGIP evolu-
tion. TGIP was traditionally thought to be exclusively
maternal in vertebrates, mediated by the maternal antibody
transfer (Gasparini et al. 2002; Reid et al. 2006; Swain and
Nayak 2009), being supported by findings showing
unchanged antibody titers in vertebrates when fathers, but
not mothers, were immune challenged (Gasparini et al.
2002; Reid et al. 2006). Males may be considered unable to
transfer immunity because sperm are simply too small to
transfer much more than just DNA (Wassarman et al. 2001;
Arnqvist and Rowe 2005), but there is also an evolutionary
benefit argument that offspring are more likely to encounter
a similar parasite and pathogen environment to their
mothers than their fathers. However, these limitations may
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not hold in animals with extreme paternal care. For instance,
the sex-role reversed pipefish Syngnathus typhle has
biparental TGIP (Roth et al. 2012; Beemelmanns and Roth
2016a, b, 2017; Roth and Landis 2017). In S. typhle, males
have evolved a unique placenta-like structure in the male
brood pouch for nutrient and oxygen transfer (Wilson et al.
2001; Dzyuba et al. 2006; Harlin-Cognato et al. 2006;
Stölting and Wilson 2007; Ripley and Foran 2009), but it
may also facilitate TGIP. In Syngnathids with their male
pregnancy, selection for biparental immune priming is
likely due to the intimate connection of the father with the
offspring both from an ultimate and a proximate view.
Offspring are born in the environment of the father, and are
hence exposed to the paternal parasite pressure (Roth et al.
2012).

From an evolutionary perspective, it is clear that the
existence of TGIP will not be the ubiquitous default, and
will depend on the presence of a suite of factors favoring its
evolution and maintenance. Examples contradicting the
predictions of the benefits of TGIP will be enormously
informative to understanding the generality of this system of
defense, but may be underrepresented in the published
literature.

Future outlook

Although the term transgenerational immunity was origin-
ally coined for the transfer of maternal antibodies to off-
spring in vertebrates, it has become apparent that the
concept has considerably broader consequences, tax-
onomically, immunologically, and in terms of mechanisms
underlying trans-generationally primed phenotypes. Sim-
plistically speaking, however, the existence of similar
functional outcomes across vertebrate and invertebrate
groups suggests common selective pressures from parasites
and pathogens leading to the priming of offspring immunity
dependent on parental experience. Yet, there remains a great
deal that is unknown about the mechanistic causes and
ecological and evolutionary consequences of TGIP.

To substantially add to our understanding of TGIP, stu-
dies need to step away from only measuring classical routes
and immune parameters. For example, it is now apparent
that TGIP in vertebrates is much more than maternal anti-
body transfer, and endogenous immune-related gene
expression of offspring can be significantly altered (Roth
et al. 2012; Beemelmanns and Roth 2016a, b, 2017; Roth
and Landis 2017). Rapid advancements in sequencing
technologies now allow for the TGIP phenotype to be tied
to genome-wide transcriptomic patterns, and this has been
informative in invertebrate systems (Trauer-Kizilelma and
Hilker 2015; Barribeau et al. 2016; Tate et al. 2017). Where
study systems permit, future work should aim to assess

temporal changes in gene expression and how these are
linked to infection dynamics, as has been performed in the
flour beetle-bacteria system (Tate et al. 2017).

More comparative studies should also be undertaken.
While it is expected that the particulars of TGIP phenotypes
may be host and parasite system specific, such approaches
have the potential to reveal broader commonalities. Fur-
thermore, comparative studies are necessary to directly test
some of the hypotheses that relate to the existence and
extent of TGIP in relation to the ecological setting within
which organisms have evolved. Much of the discussion
about the ecological conditions surrounding the evolution of
TGIP remains speculative. We require extensive compara-
tive studies that compare the existence of TGIP across
categories of organisms that are predicted to differ, e.g. with
different philopatric tendencies.

Further work is required to uncover the underlying
mechanisms of TGIP. While many candidate mechanisms
exist, that could be responsible in both vertebrates and
invertebrates, stringent tests of these mechanisms have yet
to be carried out. Epigenetic markers in offspring or the
presence of apparently sampled antigens from the parental
environment is, however, not enough. Causal links must be
established that associate these potential mechanistic routes
and the actual offspring phenotypes. Little knowledge exists
about epigenetic mechanisms that could potentially regulate
host−pathogen interactions and the development of host
immune defense strategies (Gómez-Díaz et al. 2012).
Numerous studies indicate that epigenetic mechanisms
fulfill a crucial role in regulating the transcription of
immune-related genes upon infections (Huang and Wells
2014; Marr et al. 2014; Okamoto et al. 2014; Smale et al.
2014). Pathogen exposure of the parental generation might
mediate epigenetic marks that could be passed on as pro-
tective cues to the offspring and subsequent generations.
How epigenetic effects are involved in TGIP is still unre-
solved, and empirical data that follow parental and filial
phenotypes through time in controlled experiments are
needed. Non-DNA-based inheritance as one form of mul-
tigenerational plasticity might be more widespread than
previously thought, leading to claims for a more wide-
ranging view of inheritance and adaptation (Danchin et al.
2011). To what extent these epigenetic effects are adap-
tively beneficial and play a role in driving phenotypic var-
iation of traits across generations is so far poorly
understood. TGIP, particularly in systems amenable to high-
throughput study, offers a conceptual framework within
which generalizations about epigenetic effects and their
ecological and evolutionary consequences may be
interpreted.
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