Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Body composition analysis and references in children: clinical usefulness and limitations

Abstract

The prevalence of obesity is increasing over the world. Especially in Asians compared to Caucasians, there has been a significant increase in the population with major chronic diseases. This has developed over a shorter time period which is associated with socioeconomic changes in recent decades and a greater predisposition to cardiometabolic disorders. Many Asians could be classified has having normal weight but with obesity as evidenced by body composition (BC) and fat distribution. Overweight in Asian adults is classified as a BMI > 23 kg/m2 and obesity as a BMI > 25 kg/m2. An effective strategy to manage the obesity epidemic by focusing on childhood obesity is needed because of the huge impact that obesity exerts on population health. However, monitoring tools are limited to anthropometry such as BMI and BMI z-scores which define overweight and obese as a BMI exceeding the 85th and 95th percentiles, respectively, on reference growth charts. To overcome the limitations of BMI, reference values for BC components have been produced using various techniques. The use of BC charts for children in personalized therapeutic approach has increased, although there is a lack of a consensus on a single reference technique. Zones on BC charts and the personalized values of BC components could be practical, especially for the detection of metabolically unhealthy normal weight (MUN) children. BC charts should be included in the growth chart package and BC monitoring through the entire life course will help us understand the association between growth, aging, health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention. Ann Nutr Metab. 2015;66:7–12.

    Article  CAS  Google Scholar 

  2. Yoon K-H, Lee J-H, Kim J-W, Cho JH, Choi Y-H, Ko S-H, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681–8.

    Article  Google Scholar 

  3. Conus F, Rabasa-Lhoret R, Péronnet F. Characteristics of metabolically obese normal-weight (MONW) subjects. Appl Physiol Nutr Metab. 2007;32:4–12.

    Article  Google Scholar 

  4. Asia Pacific Cohort Studies Collaboration. The burden of overweight and obesity in the Asia-Pacific region. Obes Rev. 2007;8:191–6.

    Article  Google Scholar 

  5. Rose G. Incubation period of coronary heart disease. Br Med J (Clin Res Ed). 1982;284:1600–1.

    Article  CAS  Google Scholar 

  6. Tanner J. The regulation of human growth. Child Dev. 1963;34:817–47.

    CAS  PubMed  Google Scholar 

  7. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

    Article  Google Scholar 

  8. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R. et al. CDC growth charts: United States. Adv Data. 2000;314:1–27.

    Google Scholar 

  9. Moon JS, Lee SY, Nam CM, Choi J-M, Choe B-K, Seo J-W, et al. 2007 Korean National Growth Charts: review of developmental process and an outlook. Korean J Pediatr. 2008;51:1–25.

    Article  Google Scholar 

  10. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240.

    Article  CAS  Google Scholar 

  11. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  Google Scholar 

  12. World Health Organization. (2009). Global health risks : mortality and burden of disease attributable to selected major risks. Geneva : World Health Organization. http://www.who.int/iris/handle/10665/44203.

  13. US Preventive Services Task Force, Barton T. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. Pediatrics 2010;125:361-7.

  14. Barlow SE, Expert C. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120:S164–192.

    Article  Google Scholar 

  15. Wells J, Cole T. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes. 2002;26:947.

    Article  CAS  Google Scholar 

  16. Chung S. Body mass index and body composition scaling to height in children and adolescent. Ann Pediatr Endocrinol Metab. 2015;20:125–9.

    Article  Google Scholar 

  17. Demerath EW, Schubert CM, Maynard LM, Sun SS, Chumlea WC, Pickoff A, et al. Do changes in body mass index percentile reflect changes in body composition in children? Data from the Fels Longitudinal Study. Pediatrics. 2006;117:e487–495.

    Article  Google Scholar 

  18. Styne DM. Puberty, obesity and ethnicity. Trends Endocrinol Metab. 2004;15:472–8.

    Article  CAS  Google Scholar 

  19. Deurenberg P, Deurenberg‐Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3:141–6.

    Article  CAS  Google Scholar 

  20. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet). 2004;363:157.

    Article  Google Scholar 

  21. Examination Committee of Criteria for 'Obesity Disease' in Japan; Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J. 2003;66:987–92.

  22. Park H, Park C, Oh S, Yoo H. Prevalence of obesity and metabolic syndrome in Korean adults. Obes Rev. 2008;9:104–7.

    Article  CAS  Google Scholar 

  23. Xi B, Liang Y, He T, Reilly KH, Hu Y, Wang Q, et al. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes Rev. 2012;13:287–96.

    Article  CAS  Google Scholar 

  24. Park J, Hilmers DC, Mendoza JA, Stuff JE, Liu Y, Nicklas TA. Prevalence of metabolic syndrome and obesity in adolescents aged 12 to 19 years: comparison between the United States and Korea. J Korean Med Sci. 2010;25:75–82.

    Article  Google Scholar 

  25. Park HW, Kim YH, Cho M, Kwak BO, Kim KS, Chung S. Adolescent build plotting on body composition chart and the type of diabetes mellitus. J Korean Med Sci. 2012;27:1385–90.

    Article  CAS  Google Scholar 

  26. Park HG, Chung SC, Kim MH, Kim KS, Park JH, Jeon HJ, et al. A case of metabolic syndrome in a child with normal weight. J Korean Soc Pediatr Endocrinol. 2005;10:115–9.

    Google Scholar 

  27. Wiklund P, Tormakangas T, Shi Y, Wu N, Vainionpaa A, Alen M, et al. Normal-weight obesity and cardiometabolic risk: a 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity (Silver Spring). 2017;25:1077–82.

    Article  CAS  Google Scholar 

  28. Wells JC. Toward body composition reference data for infants, children, and adolescents. Adv Nutr. 2014;5:320S–329S.

    Article  Google Scholar 

  29. Park HW, Yoo HY, Kim CH, Kim H, Kwak BO, Kim KS, et al. Reference values of body composition indices: the Korean National Health and Nutrition Examination Surveys. Yonsei Med J. 2015;56:95–102.

    Article  Google Scholar 

  30. Xiong K-Y, He H, Zhang Y-M, Ni G-X. Analyses of body composition charts among younger and older Chinese children and adolescents aged 5 to 18 years. BMC Public Health. 2012;12:835.

    Article  Google Scholar 

  31. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4:e7038.

    Article  Google Scholar 

  32. Fan B, Shepherd JA, Levine MA, Steinberg D, Wacker W, Barden HS, et al. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems. J Clin Densitom. 2014;17:344–77.

    Article  Google Scholar 

  33. Chiplonkar S, Kajale N, Ekbote V, Mandlik R, Parthasarathy L, Khadilkar V, et al. Validation of bioelectric impedance analysis against dual-energy X-ray absorptiometry for assessment of body composition in Indian children aged 5 to 18 years. Indian Pediatr. 2017;54:919–24.

    Article  Google Scholar 

  34. Martinez EE, Smallwood CD, Quinn NL, Ariagno K, Bechard LJ, Duggan CP, et al. Body composition in children with chronic illness: accuracy of bedside assessment techniques. J Pediatr. 2017;190:56–62.

    Article  Google Scholar 

  35. Nagy P, Kovacs E, Moreno LA, Veidebaum T, Tornaritis M, Kourides Y, et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int J Obes (Lond). 2014;38:S15–25.

    Article  Google Scholar 

  36. Park H, Chung S, Hye Won P, Sochung C. et al. Body composition and obesity in Korean adolescents and its impact on diabetes mellitus. Korean J Obes. 2013;22:137–44.

    Article  Google Scholar 

  37. Chung S. Growth and puberty in obese children and implications of body composition. J Obes Metab Syndr. 2017;26:243–50.

    Article  Google Scholar 

  38. Liu A, Byrne NM, Kagawa M, Ma G, Poh BK, Ismail MN, et al. Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different backgrounds. Br J Nutr. 2011;106:1390–7.

    Article  CAS  Google Scholar 

  39. Liu A, Byrne NM, Ma G, Nasreddine L, Trinidad TP, Kijboonchoo K, et al. Validation of bioelectrical impedance analysis for total body water assessment against the deuterium dilution technique in Asian children. Eur J Clin Nutr. 2011;65:1321.

    Article  CAS  Google Scholar 

  40. Liu A, Byrne NM, Kagawa M, Ma G, Kijboonchoo K, Nasreddine L, et al. Ethnic differences in body fat distribution among Asian pre-pubertal children: a cross-sectional multicenter study. BMC Public Health. 2011;11:500.

    Article  Google Scholar 

  41. Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS. The elevated susceptibility to diabetes in India: an evolutionary perspective. Front Public Health. 2016;4:145

    Article  Google Scholar 

  42. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  CAS  Google Scholar 

  43. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  CAS  Google Scholar 

  44. Green AS, Rozance PJ, Limesand SW. Consequences of a compromised intrauterine environment on islet function. J Endocrinol. 2010;205:211–24.

    Article  CAS  Google Scholar 

  45. Tam C, Wang Y, Luan J, Lee H, Luk A, Tutino G, et al. Non‐linear relationship between birthweight and cardiometabolic risk factors in Chinese adolescents and adults. Diabet Med. 2015;32:220–5.

    Article  CAS  Google Scholar 

  46. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300:2886–97.

    Article  CAS  Google Scholar 

  47. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. Relation of age at menarche to race, time period, and anthropometric dimensions: the Bogalusa Heart Study. Pediatrics. 2002;110:e43–e43.

    Article  Google Scholar 

  48. Chumlea WC, Schubert CM, Roche AF, Kulin HE, Lee PA, Himes JH, et al. Age at menarche and racial comparisons in US girls. Pediatrics. 2003;111:110–3.

    Article  Google Scholar 

  49. Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States, 1999-2012. JAMA Pediatr. 2014;168:561–6.

    Article  Google Scholar 

  50. Karelis AD. To be obese--does it matter if you are metabolically healthy? Nat Rev Endocrinol. 2011;7:699

    Article  Google Scholar 

  51. Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an endocrine society scientific statement. Endocr Rev. 2018;39:79–132.

    Article  Google Scholar 

  52. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet. 2000;26:13.

    Article  CAS  Google Scholar 

  53. Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.

    Article  CAS  Google Scholar 

  54. Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2007;65:S7–S12.

    Article  Google Scholar 

  55. Caprio S, Pierpont B, Kursawe R. The "adipose tissue expandability" hypothesis: a potential mechanism for insulin resistance in obese youth. Horm Mol Biol Clin Investig. 2018;33:1–7.

    Google Scholar 

  56. Verduin WM, Van Den Helder R, Doodeman HJ, Struijf E, Houdijk AP. Dexa body composition assessment in 10-11 year healthy children. PLoS ONE. 2016;11:e0165275

    Article  CAS  Google Scholar 

  57. Taksali SE, Caprio S, Dziura J, Dufour S, Calí AM, Goodman TR, et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008;57:367–71.

    Article  CAS  Google Scholar 

  58. Caprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology. 2017;152:1638–46.

    Article  CAS  Google Scholar 

  59. Karastergiou K, Fried SK, Xie H, Lee M-J, Divoux A, Rosencrantz MA, et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol & Metab. 2013;98:362–71.

    Article  CAS  Google Scholar 

  60. Ajluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, et al. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol (Oxf). 2017;86:698–707.

    Article  CAS  Google Scholar 

  61. Hübers M, Pourhassan M, Braun W, Geisler C, Müller M. Definition of new cut‐offs of BMI and waist circumference based on body composition and insulin resistance: differences between children, adolescents and adults. Obes Sci Pract. 2017;3:272–81.

    Article  Google Scholar 

  62. Laurson KR, Saint-Maurice PF, Welk GJ, Eisenmann JC. Reference curves for field tests of musculoskeletal fitness in US children and adolescents: The 2012 NHANES National Youth Fitness Survey. J Strength Cond Res. 2017;31:2075–82.

    Article  Google Scholar 

  63. Hattori K, Tatsumi N, Tanaka S. Assessment of body composition by using a new chart method. Am J Human Biol. 1997;9:573–8.

    Article  Google Scholar 

  64. Lee SH, Cho MH, Kim YH, Chung S. Two cases of successful type 2 diabetes control with lifestyle modification in children and adolescents. J Obes Metab Syndr. 2017;26:71–5.

    Article  Google Scholar 

  65. Hinton BJ, Fan B, Ng BK, Shepherd JA. Dual energy X-ray absorptiometry body composition reference values of limbs and trunk from NHANES 1999–2004 with additional visualization methods. PLoS ONE. 2017;12:e0174180.

    Article  Google Scholar 

  66. Kyle UG, Pirlich M, Lochs H, Schuetz T, Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study. Clin Nutr. 2005;24:133–42.

    Article  Google Scholar 

  67. den Hoed M, Pluijm SM, de Groot-Kruseman HA, Te Winkel ML, van den Akker EL, Hoogerbrugge P. et al. The negative impact of underweight and weight loss on survival of children with acute lymphoblastic leukemia. Haematologica. 2015;100:62–9.

    Article  Google Scholar 

  68. Kyle U, Earthman C, Pichard C, Coss-Bu J. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69:1298.

    Article  CAS  Google Scholar 

  69. Brantlov S, Ward LC, Jødal L, Rittig S, Lange A. Critical factors and their impact on bioelectrical impedance analysis in children: a review. J Med Eng Technol. 2017;41:22–35.

    Article  Google Scholar 

  70. Brantlov S, Jødal L, Lange A, Rittig S, Ward LC. Standardisation of bioelectrical impedance analysis for the estimation of body composition in healthy paediatric populations: a systematic review. J Med Eng Technol. 2017;41:460–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sochung Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, S. Body composition analysis and references in children: clinical usefulness and limitations. Eur J Clin Nutr 73, 236–242 (2019). https://doi.org/10.1038/s41430-018-0322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0322-8

This article is cited by

Search

Quick links