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LncRNA KCNQ1OT1 activated by c-Myc promotes cell
proliferation via interacting with FUS to stabilize MAP3K1 in

acute promyelocytic leukemia
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Uncontrolled proliferation is the hallmark of cancer cells. Previous studies mainly focused on the role of protein-coding genes in
cancer cell proliferation. Emerging evidence showed that long non-coding RNAs (IncRNAs) also play critical roles in cancer cell
proliferation and growth. LncRNA KCNQ10OT1 is found to contribute to carcinogenesis, but its role in acute promyelocytic leukemia
(APL) is unclear. In this study, by analyzing data from Gene Expression Omnibus, The Cancer Genome Atlas database and our clinical
samples, we found that KCNQ1OT1 was selectively highly expressed in APL. Functional assays demonstrated that knockdown of
KCNQ10T1 reduced APL cell proliferation and increased apoptosis. Further evidence showed that KCNQ1OT1 was mainly located in
the cytoplasm of APL patient-derived NB4 cells and APL patient bone marrow samples. Mechanistically, KCNQ1OT1 bound to RNA
binding protein FUS, and silencing either KCNQ1OT1 or FUS reduced the expression level and stability of MAP3K1 mRNA. Whereas
KCNQ10T1 and FUS did not affect each other. Importantly, knockdown of MAP3K1 impaired APL cell proliferation. Finally, c-Myc
transactivated KCNQ10OT1 in APL cells through binding to its promoter while knockdown of c-Myc decreased KCNQ10T1
expression. Our results not only revealed that c-Myc transactivated KCNQ10T1 and upregulated KCNQ10T1 promoted APL cell
proliferation, but also demonstrated that KCNQ1OT1 bound to FUS to synergistically stabilize MAP3K1 mRNA, thus facilitating APL
cell proliferation. This study established a previously unidentified role of KCNQ10OT1 in the development of APL, and KCNQ10OT1

may serve as a potential therapeutic target for APL.
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INTRODUCTION
Uncontrolled proliferation, which is the outcome of a complex
multifactorial process, is the hallmark of cancer cells [1]. Previous
studies mainly focused on the function of protein-coding genes in
cancer cell proliferation. Recently, long non-coding RNAs
(IncRNAs), which can be transcribed from a considerable fraction
of the human genome [2], have been found to play an essential
roles in cancer cell proliferation [3]. However, IncRNAs reported to
be involved in leukemia cell proliferation are limited. Identifying
functional IncRNAs critical for leukemia cell proliferation and
growth will provide comprehensive insights into the pathogenesis
of leukemia and new potential targets for leukemia treatment.
Acute promyelocytic leukemia (APL), the M3 subtype of acute
myeloid leukemia (AML), is characterized by hyperproliferation of
leukemic promyelocytes in the bone marrow and/or peripheral
blood. APL typically presents with a life-threatening hemorrhagic
disorder and is a highly lethal disease historically [4, 5]. Application
of all-trans retinoic acid and arsenic trioxide makes APL a highly
curable disease during the past three decades [6, 71. Therefore, a

full understanding of the pathogenesis of APL will have an
important implication for underlying mechanisms and clinical
treatments of other subtypes of AML.

KCNQ10T1, a 91 kb-long non-protein-coding antisense
transcript, is initially discovered to be responsible for transcrip-
tional silencing of genes in the KCNQ1 cluster. This cluster is an
important tumor suppressor gene region [8]. The mechanistic
investigation found that in the nucleus, KCNQ10OT1 could
interact with DNMT1, histone methyltransferases G9a and the
PRC2 complex to silence the expression of genes within the
parental region, including the CDKN1C gene, which encodes cell
cycle inhibitor p57 [9, 10]. Clinically, overexpression of
KCNQ10T1 is frequently reported in Beckwith-Wiedemann
syndrome patients, and about 10% of these patients developed
embryonal tumors [11], suggesting its pro-oncogenic potential.
Consistently, growing evidence has shown the crucial roles of
KCNQ1OT1 in the initiation and invasion of cancers [12-14]. For
example, KCNQ10OT1 was highly expressed in lung adenocarci-
noma and high expression of KCNQ1OT1 is correlated to
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malignant behaviors, including large tumor size, higher lymph
nodes metastasis rate, and advanced TNM stage. Whereas
silencing of KCNQ10OT1 represses cell proliferation and invasion
[15]. In glioma, KCNQ1OT1 was upregulated and KCNQ1OT1
upregulation promotes tumor cell proliferation through activat-
ing miR-370/CCNE2 axis [16]. In addition, KCNQ1OT1 was also
upregulated in colorectal cancer (CRC), which accelerates the
proliferation, migration, and epithelial-mesenchymal transition
(EMT) of CRC cells via regulating miR-217/ZEB1 axis [17]. These
results suggest that KCNQ1OT1 contributes to carcinogenesis
through the competing endogenous RNA (ceRNA) mechanism in
the cytoplasm. However, the expression and role of KCNQ10T1
in APL remain unclear.

In the present study, we first analyzed data from Gene
Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA)
database and our clinical samples, and found that KCNQ10T1 was
selectively highly expressed in APL. Functional assays demon-
strated that knockdown of KCNQ10OT1 reduced APL cell prolifera-
tion. Mechanistically, KC(NQ10T1 bound to RNA binding protein
FUS to form a complex, which stabilized MAP3K1 mRNA.
Moreover, c-Myc transactivated KCNQ1OT1 in APL cells through
binding to its promoter. Our results emphasize an oncogenic role
of KCNQ1OT1 in the development of APL.

MATERIALS AND METHODS

Bioinformatics analysis

The expression profiles of KCNQ1OT1 in human tumor samples and paired
normal tissues were obtained from the GEPIA website (http://gepia.cancer-
pku.cn). The correlations between KCNQ10OT1/FUS and MAP3K1 in AML
were also obtained from the GEPIA website. The microarray gene
expression data were downloaded from GEO with accession numbers
GSE10358 and GSE12662. The data of RNA-sequencing in AML were
downloaded from the TCGA database (https://cancergenome.nih.gov/).
The potential interactions of FUS with KCNQ10T1 and MAP3K1 were
predicted by ENCORI (http://starbase.sysu.edu.cn/index.php) and RBPmap
(http://rbpmap.technion.ac.il). The interaction scores between KCNQ10T1/
MAP3K1 mRNA and FUS were also predicted by the RNA-Protein
interaction prediction (RPISeq) website (http://pridb.gdcb.iastate.edu/
RPISeq/). The binding sites on the KCNQ10T1 promoter for c-Myc were
predicted by the JASPAR tool (http://jaspar.genereg.net/).

Patient samples

Bone marrow samples were obtained from 19 patients with de novo APL
and eight cases with normal bone marrows (health and non-leukemia
patients). Leukemic cells isolated from bone marrows with >90% blasts
were cultured as previously described [18] and used for lentiviral
transfection. Patients characteristics were summarized in Supplementary
Material: Table S1.

Cell culture and reagent

NB4 cells were grown in RPMI 1640 (Gibco, Carlsbad, CA, USA) containing
10% fetal bovine serum (FBS) (Gibco). The 293T cells were cultured in
DMEM (Gibco) supplemented with 10% FBS. Cells were incubated in a
humidified atmosphere with 5% CO, at 37 °C.

Quantitative real-time RT-PCR

Total RNA was extracted with RNAiso plus (TaKaRa, Dalian, Liaoning, China)
and reverse transcription was conducted with PrimeScript RT reagent Kit
(TaKaRa). Quantitative real-time PCR (qRT-PCR) was performed on the
Roche LightCycler 96 system using the SYBR Premix Ex Taq Il (TaKaRa).
GAPDH was used for normalization. All primers for quantitative real-time
RT-PCR are listed in Supplementary Material: Table S2.

Subcellular fractionation location

The separation of nuclear and cytoplasmic fractions was performed using
the PARIS Kit (Thermo Fisher Scientific, Carlsbad, CA, USA) according to the
manufacturer’s instructions. qRT-PCR was used to determine the RNA
(KCNQ10T1, GAPDH, and U6) levels in fractions.

SPRINGER NATURE

Cell proliferation assay

NB4 cells transfected with shKkCNQ1OT1 or shMAP3K1 were seeded in 96-
well plates at a density of 1x 10° cells/ml. Cell proliferation was quantified
by the Cell Counting Kit-8 (CCK-8; Dojindo, Kumamoto, Japan) every 24 h
following the manufacturer’s instructions.

Colony formation assay

To assess the colony-forming efficiency of NB4 cells, transfected cells were
plated at a concentration of 5 x 10% cells/ml in RPMI 1640 supplemented
with methylcellulose and 10% FBS. After incubated for 2 weeks, cells were
fixed with 4% paraformaldehyde and stained with crystal violet (Sigma-
Aldrich). The visible colonies were counted manually and photographed
microscopically.

Flow cytometry
For cell cycle analysis, transfected cells were collected and fixed with 1%
formaldehyde at 4°C for 1h. After washed with PBS, cells were
permeabilized with 70% ethanol overnight at —20°C. Then cells were
treated with 100 pg/ml RNase A at 37 °C for 30 min. Subsequently, cells
were stained with PI for 30 min. GFP-positive cells were analyzed for DNA
content by a BD FACS Canto Il flow cytometer (BD Biosciences).

For cell apoptosis analysis, cells were double stained with APC-Annexin
V and Propidium iodide (Pl) by using the APC-Annexin V Apoptosis
Detection Kit with Pl (BioLegend, San Diego, CA, USA) according to the
manufacturer’s instructions. Then GFP-positive cells were analyzed by flow
cytometry.

Western blot

Cell protein lysates were subjected to SDS-polyacrylamide gel electro-
phoresis. Separated proteins were transferred to PVDF membranes and
treated with 5% skimmed milk, then incubated with corresponding
primary antibodies against MAP3K1 (Proteintech, 19970-1-AP), FUS
(Abcam, ab124923), and GAPDH (Proteintech, 10494-1-AP) overnight at
4°C followed by HRP-conjugated secondary antibodies for 2h. Band
density was analyzed using an ECL kit (Invitrogen, Carlsbad, CA, USA).

Chromatin immunoprecipitation (ChIP) assay

ChIP was performed using Pierce Agarose ChIP Kit (Thermo Fisher
Scientific, Rockford, IL, USA) according to the manufacturer’s instructions.
The following antibodies were used: c-Myc (Santa Cruz Biotech, sc-42x) and
rabbit IgG (Abcam, ab46540). Immunoprecipitated DNA was analyzed by
gPCR. All primers for ChIP-gPCR are listed in Supplementary Material: Table
S2.

RNA interference experiments and transfection

Lentiviral plasmids expressing short hairpins against KCNQ10T1/
MAP3K1/FUS/c-Myc and negative control were constructed using
pLVX-shRNA2 vector (Clontech Laboratories, Mountainview, CA, USA)
following the manufacturer’s instructions. Lentiviral particles were
generated by co-transfecting 293T cells of lentiviral plasmids with
packaging plasmids pMD2.G and psPAX2. Culture supernatants were
collected 48 h after transfection and were used to infect NB4 cells and
cells isolated from APL bone marrow samples in the presence of 8 ug/ml
of polybrene (Sigma-Aldrich, St. Louis, MO, USA). Expression levels of
targeted genes were detected by gRT-PCR or western blot. The
sequences of shRNAs targeting KCNQ1OT1 were sh1, 5-GCCAATGGA-
TAGAGAGCAA-3’; sh2, 5-GCCAATAGCAACTGACTAA-3’; sh3, 5-GCCA-
CATCTAACACCTATA-3'; sh4, 5'-GGTGAGAAACCTCTAACAA-3'. The RNAI
Consortium (TRC) human genome-wide shRNA collection was used to
make gene knockdown cells. MAP3K1 targeting shRNA [19] was
TRCN0000197225. FUS targeting shRNA [20] was TRCN0000039824.
c-Myc targeting shRNA [21] was TRCN0000039642. 5'-AGCGUGUAG-
CUAGCAGAGG-3’ was used as negative control sequence.

Retroviral construct and transfection

The sequence encoding full-length MAP3K1 was amplified from cDNA of
NB4 cells and then directionally cloned into retroviral vector MigR1, by Xho
I and EcoR I sites, to form plasmid MigR1-MAP3K1. Retroviral particles were
produced by co-transfecting 293T cells with packaging plasmids VSV-G
and gag-pol. The following procedure was the same as lentivirus
production.
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Fig. 1 KCNQ1OT1 is highly expressed in APL. A-D The expression of KCNQ1OT1 in different FAB subtypes from two AML patient cohorts
(GSE10358 and TCGA). E The expression of KCNQ1OT1 in APL and normal promyelocytes (Pro) was retrieved from GEO (GSE12662).
F KCNQ10OT1 expression was determined in 19 primary APL patient samples and eight normal bone marrows (Normal BM). The result is
presented with the means + SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. NS not significant.
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Fig. 2 Highly expressed KCNQ10T1 promotes APL cell proliferation. A Four shRNAs were used to silence KCNQ1OT1 in NB4 cells. The
expression of KCNQ1OT1 was determined in NB4 cells transfected with pLVX-shRNA2-derived lentiviruses carrying shRNAs specifically
targeting KCNQ1OT1. B CCK8 assays were performed to determine the viability of NB4 cells transfected with KCNQ10T1-sh1, KCNQ10T1-sh2,
and negative control (NC). C Colony formation assays were performed to test the proliferation of KCNQ10T1-shRNA-transfected NB4 cells.
Colonies were captured and counted. D Cell apoptosis was analyzed by flow cytometry. Lower Right: early apoptotic cells (Early), Upper Right:
late (or terminal) apoptotic cells (Late). E Cell cycle distribution was determined by flow cytometry. The result is presented with the means +
SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 3 KCNQ10OT1 positively regulates MAP3K1. A The expression of MAP3K1 in APL and normal promyelocytes was retrieved from GEO
(GSE12662). B The expression of MAP3K1 was detected in 19 primary APL patient samples and eight normal bone marrow samples. C, D Cell
proliferation was determined by cell count and CCK8 assay in NB4 cells infected with MAP3K1-shRNA at indicated time points. E, F The RNA
and protein level of MAP3K1 was determined in NB4 cells infected with KCNQ10T1-sh1 and KCNQ10T1-sh2. G The expression of MAP3K1 was
detected in two primary APL BM samples infected with KCNQ10T1-sh1 by qRT-PCR. H MAP3K1 was overexpressed in NB4 cells with silencing
of KCNQ1OT1. Cell proliferation was determined by CCK8 assay at indicated time points. | pGL3-MAP3K1 promoter luciferase plasmid was
transfected into NB4 cells that stably expressing KCNQ10T1-sh1 and KCNQ10T1-sh2. Luciferase activity was measured 24 h after transfection.
The result is presented with the means + SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.

Plasmid constructions and site-directed mutagenesis

A 2462 bp DNA fragment encompassing the MAP3K1 transcription start
site and a 568 bp KCNQ1OT1 promoter fragment were respectively
amplified by PCR using genomic DNA from NB4 cells. The PCR products
were cloned into the pGL3-basic reporter plasmid (Promega, Madison, WI,
USA). Mutations of the predicted c-Myc binding sites in the pGL3-
KCNQ1OT1 construct were made using the QuikChange site-directed
mutagenesis kit (Stratagene, La Jolla, CA, USA) following the manufac-
turer's protocol. The c-Myc sequence was amplified using NB4 cDNA and
then cloned into the pcDNA3.1 (+) vector. Detailed primer information is
listed in Table S2.

Transient transfection and luciferase reporter assay

NB4 cells were electro-transfected using the Amaxa Nucleofector Il device
(Lonza, Cologne, Germany) with Nucleofector Kit V (Lonza); 293T cells were
transfected with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. The detailed procedure was described
previously [22]. Renilla luciferase plasmid pRL-SV40 acted as an internal
control to normalize transfection efficiencies. Firefly and Renilla luciferase
activities were measured using the Dual-Luciferase Reporter Assay System
reagents (Promega) 24 h after transfection.

SPRINGER NATURE

RNA immunoprecipitation (RIP) assay

RIP was performed using the EZ-Magna RIP RNA-Binding Protein
Immunoprecipitation Kit (Millipore, Billerica, MA, USA) following the
manufacturer’s instructions. Immunoprecipitated RNA was subjected to
gRT-PCR analysis to detect MAP3K1 and KCNQ1OT1 expression.

RNA pulldown assay

MAP3K1 mRNA 3-UTR was in vitro transcribed by using T7 RNA
polymerase (NEB, Ipswich, MA, USA), purified with the RNeasy Plus Mini
Kit (Qiagen, Hilden, Germany), and treated with RNase-free DNase |
(Qiagen). Then transcribed MAP3K1 mRNA 3’-UTR was labeled with biotin
using the Biotin RNA Labeling Mix (Sigma). The biotinylated MAP3K1 3’-
UTR was incubated with protein extract obtained from NB4 cells. After that,
streptavidin magnetic beads were used to isolate the RNA-protein
complex. Finally, the complex was analyzed by western blot.

Statistical analysis

The data were analyzed statistically using the Student’s t-test. Values were
the mean = standard error of the mean (S.E.M.) obtained from at least three
independent experiments. P value of less than 0.05 was considered as

Cell Death and Disease (2021)12:795
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Fig. 4 FUS stabilizes MAP3K1 mRNA in APL cells. A The expression levels of KCNQ1OT1 in the cytoplasm and nucleus of NB4 cells and two
APL patient samples were detected by gRT-PCR. U6 was used as a nucleus marker and GAPDH was used as a cytosol marker. B The interaction
probabilities of FUS with MAP3K1 mRNA and 3’-UTR of MAP3K1 mRNA were predicted by the RNA-Protein interaction prediction (RPISeq)
website. Predictions with probabilities >0.5 were considered “positive] indicating that the corresponding RNA and protein are likely to
interact. C RIP experiments were performed in NB4 cells, and the coprecipitated RNA was subjected to qRT-PCR for MAP3K1 expression. The
fold enrichment of MAP3K1 mRNA in FUS RIP is relative to the IgG control. D The biotinylated MAP3K1 3’-UTR was used to pull down FUS.
Western blot assay was used to detect the FUS in MAP3K1 3’-UTR precipitates. E The expression of FUS in APL and normal promyelocytes was
retrieved from GEO (GSE12662). F The expression level of FUS was determined in 19 primary APL patient samples and eight normal bone
marrow samples by gqRT-PCR. G, H The RNA and protein level of MAP3K1 was detected in NB4 cells transfected with shRNA specifically
targeting FUS (shFUS). | RNA stability assays were performed using Actinomycin D to disrupt RNA synthesis in NB4 cells, and the expression of
MAP3K1 mRNA was measured every 2 h. The result is presented with the means + SEM of three independent experiments. *p < 0.05, **p < 0.01.

statistical significance. * indicates p<0.05, ** indicates p <0.01, ***
indicates p < 0.001, **** indicates p < 0.0001.

RESULTS

KCNQ1OT1 is significantly highly expressed in APL

First, we analyzed the expression level of KCNQ10OT1 with GEPIA
[23], a web-based tool to compare gene expression based on
TCGA [24] and GTEx data [25]. Among all tumor samples and
paired normal tissues, KCNQTOT1 was exclusively highly
expressed in AML (Fig. S1). Then we downloaded and analyzed

Cell Death and Disease (2021)12:795

the human AML gene expression microarray profile (GSE10358)
from the GEO database, and found that the expression of
KCNQ10T1 was especially higher in APL (AML-M3) than other
AML subtypes (Fig. 1A, B). The results were confirmed by the data
downloaded from the TCGA database (Fig. 1C, D). Subsequently,
the expression of KCNQ1OT1 in APL and normal promyelocytes
was retrieved from GEO (GSE12662). As a result, KCNQ1OT1 was
indeed upregulated in APL compared with normal promyelocytes
(Fig. 1E). To verify the microarray results, 19 primary APL patient
samples and eight normal bone marrows were collected and
expression of KCNQ10OT1 was examined (Fig. 1F). Collectively,

SPRINGER NATURE
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analyzed in NB4 cells transfected with shFUS. D The expression level of KCNQ1OT1 in NB4 cells infected with shFUS and negative control were
analyzed every 2 h after treatment with actinomycin D. E Western blot assay was performed to determine the expression level of FUS in NB4 cells
infected with KCNQ10T1-sh1 and KCNQ10T1-sh2. F The fold enrichment of MAP3K1 was determined in FUS RIP in NB4 cells infected with
KCNQ10T1-sh1 and negative control (NC). G The level of MAP3K1T mRNA in NB4 cells infected with KCNQ10T1-sh1 and negative control was
analyzed every 2 h after treatment with actinomycin D. The data are shown with the means + SEM of three independent experiments. *p < 0.05.

these results suggest that KCNQ1OT1
expressed in APL.

is selectively highly

Upregulated KCNQ10T1 promotes APL cell proliferation

To explore the biological function of upregulated KCNQ10T1 in
APL, four shRNAs were used to silence KCNQ1OT1 in APL patient-
derived NB4 cells. As shown in Fig. 2A, KCNQ10T1-sh1 (sh1) and
KCNQ10T1-sh2 (sh2) silenced KCNQ1OT1 more efficiently, so they
were selected for the following experiments. Cell proliferation
assays (CCK8) showed that knockdown of KCNQ1OT1 significantly
reduced cell growth (Fig. 2B). Consistently, silencing of KCNQ10T1
also markedly decreased the colony formation ability of NB4 cells
(Fig. 2C). To explore whether KCNQ1OT1 is involved in cell
apoptosis and cell cycle progression, flow cytometry analysis was
performed. Silencing of KCNQ10T1 increased the apoptotic rate of
NB4 cells (Fig. 2D). However, knockdown of KCNQ10T1 had no
obvious effect on cell cycle progression (Fig. 2E). These results
demonstrated that upregulated KCNQ1OT1 promoted APL cell
proliferation whereas inhibited cell apoptosis.

KCNQ10T1 promotes APL cell proliferation by regulating
MAP3K1

To investigate the potential downstream targets of KCNQ10T1,
the GEPIA database was browsed and MAP3K1, a crucial member
of the MAPK signaling cascade, was found to be highly expressed
in AML (Fig. S2). Importantly, there was a significant positive
correlation between MAP3K1 and KCNQ1OT1 in AML (Fig. S3).
Then, the expression of MAP3K1 in APL and normal promyelocytes
was retrieved from GEO (GSE12662). As shown in Fig. 3A, the
expression level of MAP3K1 was higher in APL than that in normal
promyelocytes. The results were validated by our clinical cohort
(Fig. 3B). To elucidate the role of MAP3K1 in APL cell proliferation,
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shRNA specifically targeting MAP3K1 was used to silence MAP3K1
(Fig. S4). As shown in Fig. 3C, 3D, knockdown of MAP3K1
drastically reduced NB4 cell proliferation. Thereafter, we aimed to
clarify the association between KCNQ10OT1 and MAP3K1. Our
results revealed that KCNQ1OT1 silencing obviously diminished
the expression of MAP3K1 both at mRNA and protein levels (Fig.
3E, F), indicating that KCNQ1OT1 could regulate the expression of
MAP3K1. The findings were validated in two APL bone marrow
samples (Fig. 3G). Subsequently, a rescue assay was used to
elucidate the role of MAP3K1 in the KCNQ10OT1-mediated
proliferation of APL cells. Reduced cell growth in NB4 cells with
KCNQ1OT1 silencing was reversed by overexpression of MAP3K1
(Fig. 3H). All the above results suggest that KCNQ1OT1 promotes
APL cell proliferation by regulating MAP3K1. To explore the
regulatory mechanism of KCNQ10OT1 on MAP3K1, we examined
whether KCNQ10OT1 could transactivate the promoter of MAP3K1.
Luciferase reporter assays demonstrated that MAP3K1 promoter
activity was unaffected by silencing of KCNQ1OT1 (Fig. 3lI),
suggesting that KCNQ1OT1 might modulate MAP3K1 expression
at the post-transcriptional level.

FUS binds to and stabilizes MAP3K1 mRNA in APL

To explore the potential mechanism of KCNQ1OT1 in APL,
subcellular localization was detected. The level of KCNQ10T1
was higher in the cytosol than that in the nucleus in both NB4 cells
and APL patient samples (Fig. 4A). Cytoplasmic IncRNAs are well-
known to interact with RNA binding proteins (RBPs) [26]. From the
ENCORI database (http://starbase.sysu.edu.cn/index.php), FUS was
predicted as a shared RBP for KCNQ1OT1 and MAP3K1 mRNA
(Table S3 and S4). Then the interaction between FUS and MAP3K1
mRNA was further predicted by the RNA-Protein interaction
prediction (RPISeq) website. The scores of RF classifier and SVM
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classifier were both over 0.5 (Fig. 4B), suggesting that FUS had a
great possibility of interaction with MAP3K1 mRNA. Because RBP
interactions with 3’-UTR are important determinants of mRNA
stability [27], and FUS tend to bind 3’-UTR of MAP3K1 mRNA (Fig.
4B), the 3’-UTR was used to perform RNA pulldown. RNA
immunoprecipitation (RIP) and RNA pulldown assay results
showed that FUS highly bound to MAP3K1 mRNA (Fig. 4C, D).
Furthermore, by browsing GEPIA website, we found that FUS
was positively correlated with MAP3K1 in AML (Fig. S5), indicating
that FUS may positively regulate MAP3K1 mRNA. We retrieved the
gene expression data from GEO (GSE12662) and found that,
similar to MAP3K1, FUS expression was also higher in APL than
normal promyelocytes (Fig. 4E). The result was confirmed by our
clinical samples (Fig. 4F). To test the influence of FUS on MAP3K1,
level of MAP3K1 was determined in NB4 cells transfected with
shRNA targeting FUS. As revealed in Fig. 4G, H, knockdown of FUS
significantly downregulated MAP3K1 both at mRNA and protein
levels. Because FUS is known to act as an mRNA stabilizer [28], we
further explored whether FUS could modulate MAP3K1 mRNA
stability. As expected, after treatment with Actinomycin D, the
half-life of MAP3K1 mRNA was decreased by silencing FUS (Fig. 4l).
To sum up, FUS binds to and stabilizes MAP3K1 mRNA in APL cells.

KCNQ10T1 and FUS synergistically stabilize MAP3K1 mRNA

Next, the RPISeq website was used to further predict the
interaction between KCNQ1OT1 and FUS. The scores of RF
classifier and SVM classifier were 0.8 and 0.89, respectively (Fig.
5A), indicating that FUS has a good chance of binding to
KCNQ10OT1. The result was validated by RIP assays in NB4 cells
(Fig. 5B). However, silencing FUS did not exert any influence on
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KCNQ1OT1 expression (Fig. 5C) and KCNQ10OT1 stability (Fig. 5D).
Similarly, the level of FUS was unchanged in NB4 cells with
downregulated KCNQT1OT1 (Fig. 5E). These results together
indicated that FUS does not affect KCNQTOT1 expression.
Importantly, knockdown of KCNQ1OT1 markedly decreased the
interaction between FUS and MAP3K1 mRNA in NB4 cells (Fig. 5F).
Consistently, silencing of KCNQ1OT1 in NB4 cells obviously
reduced the stability of MAP3K1 mRNA (Fig. 5G). Taken together,
our results suggest that KCNQ1OT1 and FUS synergistically
mediate MAP3K1 mRNA stability.

c-Myc transactivates KCNQ10T1 expression in APL

DNase | hypersensitive site (DNase | HS) and enrichment of
H3K4me3 have been combined to mark active promoters
[29-31]. To interrogate the mechanism of KCNQ10OT1 upregula-
tion in APL, we utilized the DNase | HS-sequencing and
chromatin immunoprecipitation-sequencing (ChIP-seq) data of
NB4 cells generated by the ENCODE Project Consortium [32] to
identify the regulatory region of KCNQ10OT1. The results were
displayed using UCSC Genome Browser (http://genome.ucsc.
edu) [33]. As shown in Fig. 6A, DNase | HS was found to be
located around the transcription start site (TSS), and the
enrichment of H3K4me3 binding was located around the TSS
and around +1000bp downstream of TSS. These results
suggested that the region from —200 bp to +1200 bp of TSS
might mediate the transcription of KCNQ10T1. ¢-Myc, a crucial
transcription factor involved in proliferation and leukemogen-
esis, is upregualted in APL [34]. Therefore, c-Myc binding sites on
KCNQ10OT1 promoter were predicted with the JASPAR tool. The
results revealed two significantly enriched binding sites for
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c-Myc around the TSS (Fig. S6 and Fig. 6D). Next, ChIP-qPCR was
used to detect the binding of c-Myc on the KCNQ10OT1
promoter. The results demonstrated that c-Myc bound to
KCNQ10T1 promoter (Fig. 6B). To clarify the role of c-Myc in
KCNQ1OT1 activation, shRNA specifically targeting c-Myc was
introduced into NB4 cells. As shown in Fig. 6C, silencing of c-Myc
drastically decreased the expression of KCNQ10OT1 in NB4 cells.
Thereafter, promoter-reporter assays were conducted in
293T cells. The KCNQ1OT1 promoter construct containing
potential c-Myc binding sites was co-transfected with increasing
amounts of the c-Myc expression construct. As shown in Fig. 6E,
the KCNQ1OT1 promoter was transactivated by c-Myc in a dose-
dependent manner. On the contrary, mutation of either one or
both c-Myc binding sites (Fig. 6D) significantly diminished the c-
Myc-mediated transactivation (Fig. 6F). Cumulatively, our results
demonstrated that c-Myc bound to and transactivated
KCNQ10OT1 promoter in APL.

DISCUSSION

KCNQ10OT1 has been reported to be involved in lung cancer
[13, 15], tongue cancer [35], glioma [16], colorectal cancer [17],
bladder cancer [36], prostate cancer [12], and AML [37, 38]. In AML,
KCNQ10T1 contributes to AML cell proliferation through
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regulating c-Myc and Tspan3 via ceRNA mechanism in U937, HL-
60, and K562 cells [37, 38]. However, the expression and function
of KCNQ1OT1 in APL are still unknown. Here, we first identified
that KCNQ1OT1 was exclusively highly expressed in AML among
all tumor samples and paired normal tissues, whereas within AML,
expression of KCNQ1OT1 was higher in APL than other subtypes
of AML. Notably, upregulated KCNQ10OT1 promoted the prolifera-
tion of APL patient-derived NB4 cells.

KCNQ10T1 was primarily identified as a chromatin regulatory
RNA through binding to histone methyltransferases G9a and the
PRC2 complex and DNA methyltransferase 1 (DNMT1) [8].
Recently, KCNQ10T1 was found to act as a ceRNA through
interacting with RNA binding protein AGO2 [16, 17, 37, 38]. These
findings raise the possibility that KCNQ1OT1 could interact with
other RNA binding proteins. However, the interaction between
KCNQ10T1 and RNA binding proteins is rarely reported. On the
other hand, as a well-known RNA binding protein, FUS, is a crucial
mMRNA stabilizer in cytoplasm. For instance, FUS interacts with
IncRNA CTBP1-AS2 to stabilize TLR4 in cardiomyocyte hypertrophy
[39]. FUS could also bind to IncRNA DLX6-AS1 to regulate MAP4KT,
thus promoting cell proliferation, migration and EMT of gastric
cancer [40]. In this study, we demonstrated that KCNQ1OT1 was
mainly located in the cytoplasm of NB4 cells and APL patient
samples. Cytoplasmic KCNQ1OT1 bound to FUS, and KCNQ10T1/
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FUS complex synergistically stabilized MAP3K1 mRNA, thus
facilitating APL cell proliferation. To the best of our knowledge,
our study is the first to report that KCNQ10OT1 interacts with RBP
FUS to stabilize downstream targets, thus contributing to the
proliferation of APL cells. Our findings not only reveal a previously
unidentified role of KCNQ1OT1 in facilitating APL cell proliferation,
but also uncover the molecular mechanism of how KCNQ10T1
participates in APL development.

As a proto-oncogenic transcription factor, c-Myc plays a vital
role in cell proliferation, cell transformation and tumorigenesis
[41, 42]. Clinically, c-Myc is overexpressed or amplified among
various human cancers, including AML [43-45]. A less than 2-fold
increase in c-Myc levels can transform monocyte-macrophages
[46]. In mice, transduction of myeloid cells with c-Myc causes AML
development [47]. Though c-Myc plays an essential role in
leukemogenesis, known targets of c-Myc in AML are limited. It is
reported that c-Myc-bound promoters are always with an active
chromatin state characterized by specific histone marks, such as
H3K4me3 and hypersensitivity to digestion by DNase | [48]. In this
study, we used the published data of DNase | HS-seq and
H3K4me3 ChIP-Seq to predict the active promoter of KCNQ10T1
in NB4 cells, and then found that c-Myc bound to and
transactivated the KCNQ1OT1 promoter. Our results describe an
important role of KCNQ1OT1 in mediating c-Myc-induced
leukemia cell proliferation and enrich the mechanism of how
c-Myc contributes to APL pathogenesis.

The mitogen-activated protein kinase (MAPK) pathway plays a
critical role in APL cell proliferation [49, 50]. MAP3K1 is a serine/
threonine kinase and is a pivotal upstream regulator in MAPK
signaling. In vivo mutagenesis screening has identified MAP3K1 as a
driver in the development of melanoma in mice [51]. In addition,
copy number loss and somatic mutations of MAP3K1 were reported
in a significant fraction of human tumor samples. The resultant
impairment of MAP3K1 led to defects in pro-survival signaling,
which reduced tumor growth and metastasis [52]. Consistently,
MAP3K1 mutations were frequently observed in luminal A subtype
of breast cancer. These patients were characterized by better overall
survival and lower relapse rates than other subtypes [53]. Above
results suggest that MAP3K1 is involved in cancer development.
Interestingly, we found that IncRNA KCNQ1OT1/FUS complex
stabilized MAP3K1 and upregulated MAP3K1 contributes to APL
cell proliferation. Our results indicate that MAP3K1 may also
function as a downstream effector of other modulators, including
IncRNA, to play a role in cancer cell proliferation.

It would be interesting to identify the exact binding sites of FUS
on KCNQ10OT1. However, KCNQ10OTT1 is a 91 kb-long transcript and
there are hundreds of potential FUS binding sites on KCNQ10T1
predicted by ENCORI and RBPmap websites. Besides, interactions
between IncRNAs and RNA binding proteins may be influenced by
the secondary and/or tertiary structure of IncRNAs [54]. We will try
to resolve this issue in future work. In addition, we observed that
silencing of KCNQ10T1 increased the apoptosis of APL cells. We
will clarify the mechanism of how KCNQ1OT1 affects APL cell
apoptosis in the following study. Another limitation of this work is,
the experiments to clarify the function and mechanism of
KCNQ10T1 were mainly performed in vitro, more in vivo studies
are needed to further verify the function of KCNQ1OT1 in APL.

In sum, the present study not only revealed that c-Myc
transactivated KCNQ1OT1 in APL and upregulated KCNQ1OT1
promoted APL cell proliferation, but also demonstrated that
KCNQ10T1 bound to FUS, thus stabilizing the mRNA of MAP3K1
(Fig. 7). This study established a novel role of the c-Myc/
KCNQ1OT1/FUS/MAP3K1 axis in APL cell proliferation and may
offer new targets for APL therapy.
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