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Abstract
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure,
functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface
ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell
(rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies
alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus–host
associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity
of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular
community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics,
and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of
these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular
clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell
genomics reveals a network of virus–host interactions in extreme environments, provides evidence that extensive virus–host
associations are common, and further expands the unseen impact of viruses on cellular life.

Introduction

For most natural environments, we lack a comprehensive
inventory of both viruses, their microbial hosts and the
virus–host networks they form [1, 2]. A comprehensive
understanding is necessary because viruses likely play a
central role in controlling microbial community structure
and function [3–6]. Culture-based assays have revealed
complex networks of infection between bacteriophage and
bacterial hosts where a single bacteriophage may be able to
infect multiple bacterial species, and each bacterial species
may be a host for multiple different phage types [7–10].
Comparative genomics of bacterial and archaeal strains also
identified the presence of many different proviral elements
[11–13]. However, culture-based infection assays and host
range determination are limited in scope by the small
number of microbial species and their viruses that can
presently be cultured.

In recent years, several culture-independent methods
have been developed to investigate host–virus associa-
tions (reviewed by [14]). These include analysis by
metaviromics [15, 16], CRISPR spacer sequences [17–
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19], phageFISH [20], viral tagging [21, 22], microfluidic
digital PCR [23], and single-cell genomics (SCG) [24–
27]. Of these methods, SCG has provided some of the
most detailed in situ insights into virus–host associations.

For example, analysis of 58 single-cell amplified genomes
(SAGs) from marine surface bacterioplankton showed that
20 of the SAGs contained viral sequences, some of which
were shown to be actively replicating [28]. As a second
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Fig. 1 Cellular classification of SAGs. Heatmap of the average
nucleotide identity (ANI) of 253 classified single cell SAGs sequenced
in this study compared against 32 reference genomes including 13
SAGs previously sequenced at high coverage from the same hot spring
[29] (red text). SAGs were hierarchically clustered using complete
linkage (left hierarchical dendogram). The column directly to the right

of the hierarchical dendogram indicates classified cell species (color
key provided) for all SAGs classified as single cells. Partial length 16S
rRNA sequences from the 32 reference genomes were used to con-
struct a maximum likelihood phylogenetic tree and nodes with greater
than 95% posterior probability are bolded. The E. coli strain served as
the outgroup. The scale bar is in substitutions per site
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example, analysis of 127 uncultivated SUP05 bacterial
SAGs from an oxygen minimum zone revealed that ~1/3
were infected and that viruses reshaped core cellular
metabolism [25]. Yet, few studies combine methods to
provide a comprehensive inventory of virus–host asso-
ciations for the entire microbial community.

Microbial communities in high temperature (>80 °C)
acidic hot springs (pH < 4) are typically composed of only a
limited number of bacterial and archaeal cell types and their
viruses, in contrast to natural environments with higher
resident diversity, like the surface oceans or the human gut.
We have previously used community metagenomics to
establish that the Yellowstone Nymph Lake 01 (NL01) hot
spring microbial community is comprised of only 110
dominant viral types and 8 archaeal cellular species [16],
and that this microbial community is relatively stable over a
period of years [29]. The majority of virus and cellular types
identified in NL01 remain uncultured nor has it been pos-
sible to characterize virus–host interactions from the meta-
genomic sequence data alone. Here, we combine SCG,
CRISPR, and hexanucelotide analysis with community and
viral metagenomics analysis to detect rampant and broad
virus-host associations within the NL01 microbial
community.

Materials and methods

Sample site

Water samples (1 mL) were collected from the Nymph Lake
01 (NL01) hot spring in Yellowstone National Park (YNP,
Supplemental Fig. 1). At the time of sampling, the hot
spring conditions were 83.3 °C, pH 2.45, and 1.085 mS
conductivity. Samples were preserved on site with 5%
glycerol and immediately flash frozen in a dry ice–ethanol
bath. Samples were provided to the Bigelow Single Cell
Genomics Center (East Boothbay, ME).

Single cell genome sequencing

Flow cytometric separation of individual cells and whole
genome amplification were performed at the Bigelow
Single Cell Genomics Center using previously described
methods [30, 31]. Based on effective MDA amplification
of genetic material, a 384-well plate was selected for low
coverage shotgun sequencing with an Ilumina end-paired
HiSeq. The obtained reads were trimmed with trimmo-
matic v0.32 [32], normalized with kmernorm 1.05 (https://
sourceforge.net/projects/kmernorm/), and assembled with
SPAdes version 3.0.0 [33]. All contigs over 2.2 kb were
used to estimate genome size and completeness using
CheckM [34].

Cellular classification

Cells were classified using a script (https://github.com/chjp/
ANI) that measures sequence similarities between the con-
tigs and reference genomes in terms of the average
nucleotide identity (ANI). All cells were compared against
the reference panel consisting of previously sequenced
single-cell genomes from the same hot spring [29] as well
as 18 thermophile reference genomes (Supplemental
Table 1). ANI scores were combined with the percent of
SAG base pairs to generate an ANI bar code for every SAG
against the 32 reference genomes (https://github.com/
speng32/SAG_hot_spring_YNP). All ANI matches cover-
ing <5% of the SAG genome were discarded. SAGs with
two or more species present at ≥91% ANI were examined
for the presence of double cells. SAGs with less than 1/3
reference genomes shared were considered as double cells.
Twelve SAGs showed evidence of having two cells present.
Eight of these SAGs were classified as double cells and the
remaining 4 were unclassified and removed from further
analysis. SAGs with only a single species present at ≥95%
ANI using at least 30% of the SAG genome were classified
as belonging to the same species as the reference
genome(s). SAGs that failed to meet the above categories
(≥95% ANI and ≥30% coverage) were classified as likely
single cells (≥95% ANI and <30% coverage) (14 SAGs) or
unclassifiable (28 SAGs) and removed from further analy-
sis. ANI results were clustered hierarchically and a heatmap
of ANI (Fig. 1) and bp coverage (Supplemental Fig. 2) was
generated for every classified SAG against every reference
genome. 16S rRNA sequences were identified in 8 SAGs
and compared to the reference genomes as a means to
evaluate the accuracy of ANI-based taxonomic
identification.

Hexamer frequency analysis

The contigs from SAGs classified as the same species were
grouped together for hexamer frequency analysis. The
hexamer frequency distribution of the grouped SAGs as
well as a dataset of the viral types present in the NL01 hot
spring [16] were generated using VirusHostMatcher [35].
The virus–host pair with the lowest hexamer distance was
calculated by d2

* [35] and pairs with a distance value <0.3
were used as an indication of a potential virus–host pair.

Viral sequence identification

All sequence reads obtained from SAG sequencing were
used as the query of a BLASTn search against the viral
database previously described [16]. Reads with a significant
match (e-value <1.0−10) to the viral database were filtered
and classified as having a viral origin if they matched at
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>95% nucleotide identity over 100 bp. Identified viral reads
were subsequently mapped back to their viral group pre-
viously established using network analytics [16] using a
custom script. Reads that mapped to multiple viral groups
were assigned to the viral group with the most reads from
that individual SAG to reduce false positives. To test if this
mapping protocol resulted in false identification of viruses,
controls were performed where the same SAG reads were
mapped to the contigs from the Tara Oceans Virome (TOV)
datasets (18SUR 66Mbp and 18DCM 99Mbp) [15] and a
virome from the human gut (6 Mbp) [36] all of which were
not expected to contain viruses found in hot spring envir-
onments. Additionally, sequence reads from 25 publically
available SAGs generated from non-hot spring environ-
ments from the JGI IMG (http://jgi.doe.gov/) representing
ten bacterial and two archaeal phyla (703.7 million total
reads) were compared against the viral database at the same
stringency described above.

We used the following rationale to establish a threshold
criteria for identifying virus–host associations within an
individual SAG dataset. Since the estimated genome com-
pleteness for each SAG varied, we first determined the ratio
of identified unique viral sequence reads (average of 150 bp
in length) to the total unique host base pairs for each SAG.
The number of unique viral base pairs was determined by
mapping SAG reads to the NL01 viral dataset using
BLASTn and removing any overlap to the reference viral
genomes. The unique number of host base pairs was cal-
culated using the ANI-based composition statistic [37, 38]
for each SAG with respect to the 32 reference genomes,
minus the unique viral base pairs. These ratios were com-
pared to expected ratios using an average viral genome size
of 30 kb, a host genome size from 1.5–3.0 MB, and
assuming no sequencing bias towards either virus or host or
a 2× bias towards virus or host (arbitrarily chosen to
account for variation in amplification). Using this rationale,
we determined that a minimum of 2–5 unique 150 bp viral
sequence reads should be present in an individual SAG
dataset if that SAG were in fact associated with a virus
whose genome was present at the same copy number as the
cellular genome.

After determining the profile of viral content in each
individual SAG, the dataset was treated as a bipartite net-
work. The BiMat algorithm [39] was applied to the bipartite
viral–host network for modularity analysis. The binary
network was generated using a minimum cutoff of 2 or 5
unique viral sequence reads from a SAG to the 110 viral
groups previously identified in the NL01 hot spring [16].

CRISPR spacer sequence identification

CRISPR spacer sequences were identified in SAG contigs
using Piler-CR [40]. Identified CRISPR spacer sequences

were extracted and compared against the viral database with
virus–host associations assigned to CRISPR spacer
sequences that match ≥90% identity over the entire spacer
length. Contigs with CRISPR matches were selected and the
viral group they belonged to was identified using a custom
python script. As controls for the false identification of
CRISPR spacer–virus associations, a CRISPR spacer data-
set of 966 unique spacers from a human gut microbial
community was analyzed against the NL01 viral database.
In addition, the SAG CRISPR spacer sequences were
compared to the viral dataset of the human gut bacterial
community [36] under the same conditions described above.

Statistical test for contamination

To identify the possibility of sample contamination within
adjacent wells on the 384-well plates during sample pre-
paration, a statistical approach was used to evaluate the
correlation between the physical distance and the sequence
similarity between adjacent wells. First, the physical dis-
tance between two neighboring wells from the same row or
the same column as a unit was defined. A distance matrix
with all pairwise distances was computed based on the
Euclidean distance between any two wells. Second, the
sequence similarity between two wells was calculated based
on the number of unique and shared viral groups of the two
wells. The Jaccard index of a given pair of wells A and B
was calculated as J ¼ SA\SB

SA ∪ SB
, where SA denotes the set of

viral groups in SAG A and SB denotes the set of detected
viral groups in SAG B. Third, the Spearman’s rank corre-
lation was calculated to evaluate the relationship between
physical distances of the wells and the Jaccard index. A
series of distance cutoffs between 1.5 and 3 were used to
calculate the Spearman’s correlation of two wells to focus
on the cross contamination in nearby wells. Finally, to
evaluate the statistical significance of the observed Spear-
man’s correlation coefficients at different distance cutoffs, a
permutation test was performed to obtain the null distribu-
tion of the Spearman’s coefficients. For the permutation
test, the plate layout was randomly shuffled 100 times and
the Spearman’s correlation coefficients were re-calculated at
corresponding distance cutoffs. The observed Spearman’s
correlation coefficients were then compared with the null
distributions.

Results and discussion

In this study, we combined single-cell genomics and com-
munity metagenomics to characterize virus–host interac-
tions. Single cells were randomly isolated directly from hot
spring samples, their genomes amplified and sequenced.
109,930,697 total paired end reads were produced from
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307 single amplified genomes (SAGs, average ~358,000
reads per cell) with a maximum of 2,015,593 and a mini-
mum of 3823 reads per SAG (Supplemental Table 2). A
total of 34.1 Mbp was assembled ranging from a minimum
total bp of 7806 to a maximum of 380,184 with an average
total assembled length of 110,997 bp per cell. This corre-
lates to an average genome completeness of approximately
9% but ranges from <1 to 44% complete based on CheckM
analysis.

In order to determine the cellular identity of each SAG a
multistep process was developed (Supplemental Fig. 3).
First, the average nucleotide identity (ANI) [37, 38] for all
contigs greater than 2 kb for each SAG was calculated with
respect to 32 reference genomes. The reference genomes
consisted of a combination of SAGs previously sequenced
at high depth (17–90% genome completeness) from the
same hot spring and other complete or near complete
thermophilic archaeal and bacterial reference genomes from

the NCBI database (WGS release 212, February, 2016).
Second, the percentage of sequence homology between a
SAG and the reference genomes were determined. SAGs
were hierarchically clustered and assigned to their closest
cellular species based on ANI score in combination with the
percentage of sequence homology between the SAG and its
closest reference genome (Fig. 1, Supplemental Table 3).
We utilized an ANI score of 95% in combination with 30%
sequence coverage to classify the majority of SAGs (253/
307 SAGs). The 54 SAGs that were not classified were
either double cells of the symbiont Nanoarchaea with its
Acidocryptum host (8 examples), or 46 SAG cells that
failed to meet our classification criteria. These 54 SAGs
were removed from further analysis. To further support
cellular identification, all SAGs were examined for 16S
rRNA gene sequences. 16S rRNA sequences were present
in only 8 SAGs and cellular classification based on their
16S rRNA was determined by alignment to reference
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genomes. In all 8 cases, the 16S rRNA gene and ANI
classifications produced the same result.

The classification of SAGs revealed a low-diversity
microbial community consisting of 8 cellular clades,
dominated by Archaea (Fig. 1), consistent with our previous
studies [29]. The 253 SAGs classified to one of 8 cellular
clades. Of these, 247 were classified as one of 7 clades of
Archaea (97.6%), 6 were classified as members of a single
clade of Bacteria (2.4%), and none were classified as
Eukaryotic. The vast majority (98%) of the Archaeal cells
are members of the Crenarchaeota (241/247 SAGs) while
Nanoarchaeota (6) make up the remaining 2.0%. The only
bacterial species detected belonged to the Aquificales. The
NL01 microbial community structure was nearly identical
to the community structure determined by 16S rRNA
amplicon sequencing from a sample taken 12 months pre-
viously. Overall, 6 of the 8 clades identified in this study
have not been cultured to date, and these 6 uncultured
clades comprise 96% of the SAGs in this study (244/253
SAGs).

As a first step in characterizing virus-host associations,
we generated a distance matrix based on hexamer nucleo-
tide analysis using the d2

* metric [35] of the 8 cellular
clades against the 110 viral types previously determined to
be present in the hot spring [16] (Supplemental Table 4). If
the smallest measured d2

* between a cell type and a virus
type was <0.3 it was used as indication of a possible
virus–host association. Previous studies have indicated that
hexamer nucleotide analysis can be a useful predictor of
virus–host associations, given a cutoff of <0.3 as a con-
servative identification of possible virus-host pairs [35].
Hexamer nucleotide analysis indicated that 61 virus types
were potentially associated with the 7 archaeal cell types.
The number of virus types associated with a particular
archaeal cell type ranged from 28 virus types for the
Acidilobus clade to 1 for the Sulfolobus sp 1, clade. Con-
trols consisting of 75 bacterial genomes unlikely to serve as
hosts for the hot spring viruses along with the grouped
sequences from the 8 SAG cellular clades of this study,
found no false virus–host associations to the bacterial
genomes (Supplemental Table 4). A limitation of hex-
anucleotide analysis is that it only suggests a possible
virus–host association and does not indicate viral host range
[35]. Moreover, hexanucelotide analysis lacks resolution
when closely related cellular species/strains are compared
[35]. Therefore, this analysis provides an indication of
possible virus–host associations and not definitive proof of
the association.

Further identification of individual virus types within
each SAG was accomplished by mapping sequencing reads
from individual SAGs to the 110 viral types present in
NL01 previously established by network-based analytics
using time-series community viromics data [16]. We first

established a rationale for how many viral base pairs would
be expected to be detected in given SAGs given the low
level of genome completeness obtained (average host gen-
ome completion was 9%). This was accomplished by
determining the ratio of viral sequence to host base pairs for
each SAG (Supplemental Figure 4) and comparing
observed ratios to expectations (see Methods). We estimate
that finding two or more unique SAG viral sequences (at
least 300 bp) represents a reasonable minimum for detecting
virus–host associations. A conservative threshold for
virus–host association assumes a two-fold bias in sequence
amplification, suggesting a threshold of five or more unique
sequence reads (at least 750 bp) to a given viral group in a
SAG. Using the more conservative requirement of ≥5 SAG
viral reads (750 bp) matching a virus type, viral sequences
were detected in 160 of the 253 classified single cell SAGs
(63% of SAGs) (Fig. 2, Supplemental Table 5), virus–host
associations identified using the lower value of ≥2 viral
reads (300 bp) matching a virus type are provided in Sup-
plemental Table 5). Viral sequences were detected in all
cellular groups except for Hydrogenobaculum. Of the 110
viral types, 26, were detected (24% of total vial types) in the
253 SAGs. For example, over 49,851 reads mapped to 34.5
kb of continuous sequence represented on the entirety of 3
contigs assembled from a single Acidocryptum nanophilum
SAG (AD-903-K19). This 34.5 kb segment likely represents
the near-full length genome of a new archaeal virus.

Next, we examined the number of virus types found in
each infected SAG. Surprisingly, more than one viral type
was detected in a majority of the cells. Of the 160 SAGs
where viral reads were detected, 95 (59%) had ≥750 bp
sequence reads from 2 or more viral types, with an average
of 2 viral types detected per cell (Fig. 2). This data suggests
that co-infection may be common in the hot spring envir-
onment. Indeed, 63% of cells randomly sampled by SAG
analysis had evidence of virus association. Given the low
depth of average SAG genome coverage (approx. 9%), we
anticipate that actual association levels are much higher,
suggesting that (nearly) all cells in the hot spring interact
with viruses. This work extends the scope of virus asso-
ciations measured in previous reports in marine environ-
ments where viral sequences were found in 30–50% of cells
[25, 28].

Several lines of evidence indicate that the detected virus-
host associations are biologically relevant and not a con-
sequence of random associations. First, no sequencing reads
from any of the 307 SAGs were recruited onto two much
larger marine viral metagenomic or a human gut viral
metagenomic datasets using the identical mapping strin-
gency conditions (Supplemental Table 6). Additionally,
sequencing reads from 25 publically available non-hot
spring associated SAGs from the JGI IMG (https://img.jgi.
doe.gov/) representing 10 bacterial and two archaeal phyla
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were compared against the viral database used in this study.
These SAG’s isolated from other environments, totaling
703.7 million reads, did not match any of the 110 viral
groups used in this study at the same stringency settings
(Supplemental Table 7). These controls support the con-
clusion that the conditions used in this study strike a balance
between viral detection sensitivity and stringency sufficient
to detect biologically relevant virus–host associations in
individual SAGs. Future targeted virus RTqPCR analysis
on single cells should clarify if the detected viruses are
actively replicating.

Analysis of CRISPR spacer sequences were used to
detect additional virus–host associations. CRISPR spacer
sequences were extracted from SAGs and mapped to the
110 viral types (Supplemental Table 8). A total of 2321
unique CRISPR spacer sequences were detected in 135
SAGs. Spacer sequences were found in all cell types except
for the Nanobsidianus. Previous studies had also failed to
identify CRISPR sequences in Nanobsidianus sp from YNP
hot springs [29, 41]. CRISPR spacer-virus matches were
found for 695 (30%) spacer sequences to 38 of the 110 viral
types from 121 SAGs (90% of spacer-containing SAGs).
The majority of spacers with matches were found in Acid-
ocryptum cells (541/695). Twenty-two viral types were
identified by both read mapping and by CRISPR spacer
matching to the same cellular species. As expected, controls

of comparing 966 non-relevant CRISPR spacer sequences
derived from the human gut microbial community to the
110 hot springs viral types failed to detect any virus–host
associations under the same conditions. Overall, 47 of the
110 viral types (42%) were detected by either mapping of
SAG reads or by SAG CRISPR spacer matching. Further-
more, 18 of these 47 virus types were predicted by hexamer
distance analysis to the same host. Taken together, these
three independent measures support the conclusion that
virus–host associations are a common feature in this hot
spring environment.

It is worthwhile to retrospectively consider how useful it
is to rely on hexanucleotide analysis to accurately connect
viruses to potential hosts. In this work, we have the
advantage of having internal standards of viral sequences
present within individual SAGs to compare against hex-
anucleotide analysis at different threshold cut offs. We
observe that the hexanucleotide cut off values of <0.3 bal-
ance the need to reduce false positives while maintaining
the detection of meaningful host-virus pairs (Supplemental
Figure 5).

The contextualized virus–host associations (Fig. 3) and
CRISPR spacer analysis (Fig. 3, Supplemental Tables 8)
provide complementary information on the realized and
potential host range of viruses, respectively. By combining
these two lines of evidence we asked: what is the host range
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Fig. 3 Ubiquitous interaction of multiple viruses with cells. The
heatmap indicates the detection frequency of 47 viral groups detected
by BLASTn analysis or the matching of CRISPR spacer sequences.
Viral groups are arranged from least frequently detected to the most
frequently detected. Numbers below the heatmap are viral group
numbers taken from [16] and numbers in parenthesis indicate the
number of species and cells that a group was detected in. The number
after the species name on the right hand side is the number of cells

classified as members of that species. Partial length 16S sequences
from representative genomes were used to make a ML tree and nodes
with greater than 0.95 posterior probability are bolded. The scale bar is
in substitutions per base. Detected viral groups with described mem-
bers are: group 0= SIRV1,2, group 23=ASV1, SSV1,2, 4–9, group
26=ATV, group 28=AFV1, group 29= STIV1,2 and group 32=
STST1,2 and ARSV1
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of individual virus types? Twenty-four viruses infected only
a single cellular clade. In contrast, 23 virus types were
detected in >2 host genera within the Sulfolobaceae family.
Every previously characterized virus detected was found in
at least one new host species. For example, STIV previously
shown to infect S. solfataricus [42], was also detected in
Acidocryptum cells. These results demonstrate that culture-
independent approaches can be used to investigate the host
range of uncultured viruses across the entire microbial
community. Despite finding multiple new associations, it is
important to recognize that reported host ranges remain
lower bounds, i.e., increased depth of sampling could reveal
even more virus types within classified SAGs.

The inference methods in the present analysis are made
possible by network-based analytics that determine viral
groups but also limited by relatively low SAG coverage
(∼9%). As a consequence, we cannot easily distinguish
actively replicating viruses within individual SAGs, define
their viral lifestyles (lytic, lysogenic, or chronic) or define
individual viruses at the species level. Despite these lim-
itations, it is remarkable that we detect in situ the majority
of host and viral types—currently identifiable from whole
community sequencing projects—and their associations
within a relatively low number of SAGs.

This work shows the benefits of combining single-cell
genomics with metagenomics to establish a comprehensive
understanding of virus-host associations in a focal envir-
onment. Unlike previous studies of virus–microbe interac-
tions, we are able to contextualize virus–host infection
networks and link the identity of viruses found in different
cells. Guided by the knowledge of the overall virus com-
munity, the incorporation of SAG analysis—including
contextualized community network mapping and CRISPR
detection—allows for the identification of individual hosts
and the host range of an individual virus type in a culture-
independent fashion. This study shows that (nearly) all cells
in the NL01 hot spring interact with viruses, that multiple,
concurrent interactions are common, and that a broad
spectrum of virus types from specialists to generalists
coexist in a relatively low-diversity community. These
results should encourage the development of more robust
empirical methods and theoretical models to assess the
relevance of superinfection and a diversity of viral lifestyles
in shaping natural communities.
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