Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway

Abstract

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activated and deactivated WNT pathway.
Fig. 2: WNT pathway inhibition in OCD.
Fig. 3: Cannabidiol interactions with oxidative stress, inflammation, and glutamatergic pathways.
Fig. 4: Circadian clock genes mechanism.

Similar content being viewed by others

References

  1. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15:53–63.

    Article  CAS  PubMed  Google Scholar 

  2. Bokor G, Anderson PD. Obsessive-compulsive disorder. J Pharm Pract. 2014;27:116–30.

    Article  PubMed  Google Scholar 

  3. Bloch MH, Bartley CA, Zipperer L, Jakubovski E, Landeros-Weisenberger A, Pittenger C, et al. Meta-analysis: hoarding symptoms associated with poor treatment outcome in obsessive-compulsive disorder. Mol Psychiatry. 2014;19:1025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alici D, Bulbul F, Virit O, Unal A, Altindag A, Alpak G, et al. Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci. 2016;70:109–15.

    Article  CAS  PubMed  Google Scholar 

  5. Attwells S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74:833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grassi G, Pallanti S. Current and up-and-coming pharmacotherapy for obsessive-compulsive disorder in adults. Expert Opin Pharmacother. 2018;19:1541–50.

    Article  CAS  PubMed  Google Scholar 

  7. Fineberg NA, Reghunandanan S, Simpson HB, Phillips KA, Richter MA, Matthews K, et al. Obsessive-compulsive disorder (OCD): Practical strategies for pharmacological and somatic treatment in adults. Psychiatry Res. 2015;227:114–25.

    Article  CAS  PubMed  Google Scholar 

  8. Pallanti S, Grassi G, Cantisani A. Emerging drugs to treat obsessive-compulsive disorder. Expert Opin Emerg Drugs. 2014;19:67–77.

    Article  CAS  PubMed  Google Scholar 

  9. Apergis-Schoute AM, Gillan CM, Fineberg NA, Fernandez-Egea E, Sahakian BJ, Robbins TW. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc Natl Acad Sci USA. 2017;114:3216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rouhani N, Wimmer GE, Schneier FR, Fyer AJ, Shohamy D, Simpson HB. Impaired generalization of reward but not loss in obsessive-compulsive disorder. Depress Anxiety. 2019;36:121–9.

    Article  PubMed  Google Scholar 

  11. Dougherty DD, Brennan BP, Stewart SE, Wilhelm S, Widge AS, Rauch SL. Neuroscientifically informed formulation and treatment planning for patients with obsessive-compulsive disorder: a review. JAMA Psychiatry. 2018;75:1081–7.

    Article  PubMed  Google Scholar 

  12. Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci. 2009;30:515–27.

    Article  CAS  PubMed  Google Scholar 

  13. Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimarães FS. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci. 2012;367:3364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Mello Schier AR, de Oliveira Ribeiro NP, de Oliveira e Silva AC, Hallak JEC, Crippa JAS, Nardi AE, et al. Cannabidiol, a Cannabis sativa constituent, as an anxiolytic drug. Rev Bras Psiquiatr Sao Paulo Braz 1999. 2012;34 Suppl 1:S104–10.

    Google Scholar 

  15. Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol Ther. 2013;138:18–37.

    Article  CAS  PubMed  Google Scholar 

  16. de Mello Schier AR, de Oliveira Ribeiro NP, Coutinho DS, Machado S, Arias-Carrión O, Crippa JA, et al. Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa. CNS Neurol Disord Drug Targets. 2014;13:953–60.

    Article  PubMed  Google Scholar 

  17. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296:678–82.

    Article  CAS  PubMed  Google Scholar 

  18. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silvestri C, Di, Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;17:475–90.

    Article  CAS  PubMed  Google Scholar 

  20. Kayser RR, Snorrason I, Haney M, Lee FS, Simpson HB. The endocannabinoid system: a new treatment target for obsessive compulsive disorder? Cannabis Cannabinoid Res. 2019;4:77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan R, Naveed S, Mian N, Fida A, Raafey MA, Aedma KK. The therapeutic role of Cannabidiol in mental health: a systematic review. J Cannabis Res. 2020;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Allsop DJ, Copeland J, Lintzeris N, Dunlop AJ, Montebello M, Sadler C, et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry. 2014;71:281–91.

    Article  CAS  PubMed  Google Scholar 

  23. Crippa JaS, Hallak JEC, Machado-de-Sousa JP, Queiroz RHC, Bergamaschi M, Chagas MHN, et al. Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report. J Clin Pharm Ther. 2013;38:162–4.

    Article  CAS  PubMed  Google Scholar 

  24. Trigo JM, Lagzdins D, Rehm J, Selby P, Gamaleddin I, Fischer B, et al. Effects of fixed or self-titrated dosages of Sativex on cannabis withdrawal and cravings. Drug Alcohol Depend. 2016;161:298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trigo JM, Soliman A, Quilty LC, Fischer B, Rehm J, Selby P, et al. Nabiximols combined with motivational enhancement/cognitive behavioral therapy for the treatment of cannabis dependence: a pilot randomized clinical trial. PloS ONE. 2018;13:e0190768.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Solowij N, Broyd SJ, Beale C, Prick J-A, Greenwood L-M, van Hell H, et al. Therapeutic effects of prolonged cannabidiol treatment on psychological symptoms and cognitive function in regular cannabis users: a pragmatic open-label clinical trial. Cannabis Cannabinoid Res. 2018;3:21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schindler F, Anghelescu I, Regen F, Jockers-Scherubl M. Improvement in refractory obsessive compulsive disorder with dronabinol. Am J Psychiatry. 2008;165:536–7.

    Article  PubMed  Google Scholar 

  28. Cooper JJ, Grant J. Refractory OCD due to thalamic infarct with response to dronabinol. J Neuropsychiatry Clin Neurosci. 2017;29:77–8.

    Article  PubMed  Google Scholar 

  29. Kayser RR, Raskin M, Snorrason I, Hezel DM, Haney M, Simpson HB. Cannabinoid augmentation of exposure-based psychotherapy for obsessive-compulsive disorder. J Clin Psychopharmacol. 2020;40:207–10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kayser RR, Haney M, Raskin M, Arout C, Simpson HB. Acute effects of cannabinoids on symptoms of obsessive-compulsive disorder: a human laboratory study. Depress Anxiety. 2020;37:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duracková Z. Some current insights into oxidative stress. Physiol Res. 2010;59:459–69.

    Article  PubMed  Google Scholar 

  32. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol. 1999;57:231–45.

    Article  CAS  PubMed  Google Scholar 

  33. Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018;9:745.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31:1117–29.

    Article  CAS  PubMed  Google Scholar 

  35. Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61:210–4.

    Article  CAS  PubMed  Google Scholar 

  36. Simon RH, Scoggin CH, Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J Biol Chem. 1981;256:7181–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D, et al. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53.

    Article  CAS  PubMed  Google Scholar 

  38. Rana SVS, Allen T, Singh R. Inevitable glutathione, then and now. Indian J Exp Biol. 2002;40:706–16.

    CAS  PubMed  Google Scholar 

  39. Pellmar TC. Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro. Neuroscience. 1987;23:447–56.

    Article  CAS  PubMed  Google Scholar 

  40. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1:358–64.

    Article  CAS  PubMed  Google Scholar 

  41. Pellmar TC, Neel KL, Lee KH. Free radicals mediate peroxidative damage in guinea pig hippocampus in vitro. J Neurosci Res. 1989;24:437–44.

    Article  CAS  PubMed  Google Scholar 

  42. Paul LA, Fulton AM, Heppner GH. Reactive oxygen-mediated damage to murine mammary tumor cells. Mutat Res. 1989;215:223–34.

    Article  CAS  PubMed  Google Scholar 

  43. Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14:633–43.

    CAS  PubMed  Google Scholar 

  44. Yao JK, Reddy R, van Kammen DP. Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res. 1998;80:29–39.

    Article  CAS  PubMed  Google Scholar 

  45. Kuloglu M, Atmaca M, Tezcan E, Gecici O, Tunckol H, Ustundag B. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology. 2002;46:27–32.

    Article  CAS  PubMed  Google Scholar 

  46. Beech H, Vaughan C. The behavioral treatment of obsessional states. London: Wiley; 1970.

  47. Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, et al. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev. 1990;51:283–97.

    Article  CAS  PubMed  Google Scholar 

  48. Khandaker GM, Dantzer R, Jones PB. Immunopsychiatry: important facts. Psychol Med. 2017;47:2229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chiarello F, Spitoni S, Hollander E, Matucci Cerinic M, Pallanti S. An expert opinion on PANDAS/PANS: highlights and controversies. Int J Psychiatry Clin Pract. 2017;21:91–8.

    Article  PubMed  Google Scholar 

  50. Rodríguez N, Morer A, González-Navarro EA, Serra-Pages C, Boloc D, Torres T, et al. Inflammatory dysregulation of monocytes in pediatric patients with obsessive-compulsive disorder. J Neuroinflammation. 2017;14:261.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mataix-Cols D, Frans E, Pérez-Vigil A, Kuja-Halkola R, Gromark C, Isomura K, et al. A total-population multigenerational family clustering study of autoimmune diseases in obsessive-compulsive disorder and Tourette’s/chronic tic disorders. Mol Psychiatry. 2018;23:1652–8.

    Article  CAS  PubMed  Google Scholar 

  52. Pearlman DM, Vora HS, Marquis BG, Najjar S, Dudley LA. Anti-basal ganglia antibodies in primary obsessive-compulsive disorder: systematic review and meta-analysis. Br J Psychiatry J Ment Sci. 2014;205:8–16.

    Article  Google Scholar 

  53. Rao NP, Venkatasubramanian G, Ravi V, Kalmady S, Cherian A, Yc JR. Plasma cytokine abnormalities in drug-naïve, comorbidity-free obsessive-compulsive disorder. Psychiatry Res. 2015;229:949–52.

    Article  CAS  PubMed  Google Scholar 

  54. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43.

    Article  CAS  PubMed  Google Scholar 

  55. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol. 2013;2013:608654.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Greer JM, Capecchi MR. Hoxb8 is required for normal grooming behavior in mice. Neuron. 2002;33:23–34.

    Article  CAS  PubMed  Google Scholar 

  58. Ting JT, Feng G. Neurobiology of obsessive-compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol. 2011;21:842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marinova Z, Chuang D-M, Fineberg N. Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr Neuropharmacol. 2017;15:977–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K, et al. Translating glutamate: from pathophysiology to treatment. Sci Transl Med. 2011;3:102mr2.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008;7:426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63:769–76.

    Article  CAS  PubMed  Google Scholar 

  63. Daikhin Y, Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr. 2000;130:1026S–31S.

    Article  CAS  PubMed  Google Scholar 

  64. Scimemi A, Tian H, Diamond JS. Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci. 2009;29:14581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu K, Hanna GL, Rosenberg DR, Arnold PD. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav. 2012;100:726–35.

    Article  CAS  PubMed  Google Scholar 

  66. Kim M-S, Shutov LP, Gnanasekaran A, Lin Z, Rysted JE, Ulrich JD, et al. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J Biol Chem. 2014;289:31349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ting JT, Feng G. Glutamatergic synaptic dysfunction and obsessive-compulsive disorder. Curr Chem Genom. 2008;2:62–75.

    Article  CAS  Google Scholar 

  68. Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30:1735–40.

    Article  CAS  PubMed  Google Scholar 

  69. Starck G, Ljungberg M, Nilsson M, Jönsson L, Lundberg S, Ivarsson T, et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm Vienna Austria 1996. 2008;115:1051–62.

    Google Scholar 

  70. Pauls DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15:410–24.

    Article  CAS  PubMed  Google Scholar 

  71. McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ. Functional anatomy of obsessive-compulsive phenomena. Br J Psychiatry. 1994;164:459–68.

    Article  CAS  PubMed  Google Scholar 

  72. van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, et al. Brain circuitry of compulsivity. Eur Neuropsychopharmacol. 2016;26:810–27.

    Article  PubMed  Google Scholar 

  73. Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci. 2019;50:2322–45.

    Article  PubMed  Google Scholar 

  74. Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology. 2017;124:52–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mechoulam R, Hanuš LO, Pertwee R, Howlett AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci. 2014;15:757–64.

    Article  CAS  PubMed  Google Scholar 

  76. Rueda-Orozco PE, Montes-Rodriguez CJ, Soria-Gomez E, Méndez-Díaz M, Prospéro-García O. Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats. Neuropharmacology. 2008;55:55–62.

    Article  CAS  PubMed  Google Scholar 

  77. Lu H-C, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–25.

    Article  CAS  PubMed  Google Scholar 

  78. Blessing EM, Steenkamp MM, Manzanares J, Marmar CR. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics. 2015;12:825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. García-Gutiérrez MS, Navarrete F, Gasparyan A, Austrich-Olivares A, Sala F, Manzanares J. Cannabidiol: a potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules. 2020;10:1575.

    Article  PubMed Central  Google Scholar 

  80. Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015;16:705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abrams DI. The therapeutic effects of Cannabis and cannabinoids: an update from the National Academies of Sciences, Engineering and Medicine report. Eur J Intern Med. 2018;49:7–11.

    Article  CAS  PubMed  Google Scholar 

  82. Meyer HC, Lee FS, Gee DG. The role of the endocannabinoid system and genetic variation in adolescent brain development. Neuropsychopharmacology. 2018;43:21–33.

    Article  PubMed  Google Scholar 

  83. García C, Palomo-Garo C, Gómez-Gálvez Y, Fernández-Ruiz J. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol. 2016;173:2069–79.

    Article  PubMed  Google Scholar 

  84. Szejko N, Fremer C, Müller-Vahl KR. Cannabis improves obsessive-compulsive disorder-case report and review of the literature. Front Psychiatry. 2020;11:681.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pava MJ, Makriyannis A, Lovinger DM. Endocannabinoid signaling regulates sleep stability. PloS ONE. 2016;11:e0152473.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lupica CR, Hu Y, Devinsky O, Hoffman AF. Cannabinoids as hippocampal network administrators. Neuropharmacology. 2017;124:25–37.

    Article  CAS  PubMed  Google Scholar 

  87. Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses. 2006;66:234–46.

    Article  CAS  PubMed  Google Scholar 

  88. Pertwee RG. Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol. 2015;231:1–37.

    Article  CAS  PubMed  Google Scholar 

  89. Bergamaschi MM, Queiroz RHC, Zuardi AW, Crippa JAS. Safety and side effects of cannabidiol, a cannabis sativa constituent. Curr Drug Saf. 2011;6:237–49.

    Article  CAS  PubMed  Google Scholar 

  90. Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017;2:139–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, et al. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol. 2013;75:323–33.

    Article  PubMed  Google Scholar 

  92. Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ayati Z, Sarris J, Chang D, Emami SA, Rahimi R. Herbal medicines and phytochemicals for obsessive-compulsive disorder. Phytother Res PTR. 2020;34:1889–901.

  94. Breuer A, Haj CG, Fogaça MV, Gomes FV, Silva NR, Pedrazzi JF, et al. Fluorinated cannabidiol derivatives: enhancement of activity in mice models predictive of anxiolytic, antidepressant and antipsychotic effects. PloS ONE. 2016;11:e0158779.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Casarotto PC, Gomes FV, Resstel LBM, Guimarães FS. Cannabidiol inhibitory effect on marble-burying behaviour: involvement of CB1 receptors. Behav Pharmacol. 2010;21:353–8.

    Article  CAS  PubMed  Google Scholar 

  96. Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, et al. Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front Psychiatry. 2020;11:595584.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2:e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev. 2017;76:56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Emamian ES. AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci. 2012;5:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Renard J, Norris C, Rushlow W, Laviolette SR. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci Biobehav Rev. 2017;75:157–65.

    Article  CAS  PubMed  Google Scholar 

  102. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin. 2017;49:853–66.

    Article  PubMed  Google Scholar 

  103. Appiah-Kusi E, Petros N, Wilson R, Colizzi M, Bossong MG, Valmaggia L, et al. Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology. 2020;237:1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Woelfl T, Rohleder C, Mueller JK, Lange B, Reuter A, Schmidt AM, et al. Effects of cannabidiol and Delta-9-tetrahydrocannabinol on emotion, cognition, and attention: a double-blind, placebo-controlled, randomized experimental trial in healthy volunteers. Front Psychiatry. 2020;11:576877.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wilson R, Bossong MG, Appiah-Kusi E, Petros N, Brammer M, Perez J, et al. Cannabidiol attenuates insular dysfunction during motivational salience processing in subjects at clinical high risk for psychosis. Transl Psychiatry. 2019;9:203.

    Article  PubMed  PubMed Central  Google Scholar 

  106. McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry. 2018;175:225–31.

    Article  PubMed  Google Scholar 

  107. Rodrigues da Silva N, Gomes FV, Sonego AB, Silva NR, da, Guimarães FS. Cannabidiol attenuates behavioral changes in a rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2 receptors. Pharmacol Res. 2020;156:104749.

    Article  CAS  PubMed  Google Scholar 

  108. Silvestro S, Mammana S, Cavalli E, Bramanti P, Mazzon E. Use of cannabidiol in the treatment of epilepsy: efficacy and security in clinical trials. Molecules. 2019;24:1459.

    Article  CAS  PubMed Central  Google Scholar 

  109. Husnain M, Imran M, Ibrahim M, Assiri MA, Wattoo NZ, Irfan A. Pharmacological analysis of cannabis sativa: a potent herbal plant. Mini Rev Med Chem. 2020. https://doi.org/10.2174/1389557520666200628031644.

  110. Loh KM, van Amerongen R, Nusse R. Generating cellular diversity and spatial form: wnt signaling and the evolution of multicellular animals. Dev Cell. 2016;38:643–55.

    Article  CAS  PubMed  Google Scholar 

  111. Oren O, Smith BD. Eliminating cancer stem cells by targeting embryonic signaling pathways. Stem Cell Rev. 2017;13:17–23.

    Article  CAS  Google Scholar 

  112. Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 2012;7:725–30.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marchetti B, Pluchino S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med. 2013;19:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in neurodegenerative diseases: interplay between canonical WNT/beta-catenin pathway-PPAR gamma, energy metabolism and circadian rhythms. Neuromolecular Med. 2018;20:174–204.

    Article  PubMed  Google Scholar 

  115. Lecarpentier Y, Claes V, Duthoit G, Hébert J-L. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol. 2014;5:429.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lecarpentier Y, Vallée A. Opposite Interplay between PPAR gamma and canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol. 2016;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Vallée A, Lecarpentier Y. Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci. 2016;10:459.

    Article  PubMed  PubMed Central  Google Scholar 

  118. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  CAS  PubMed  Google Scholar 

  119. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1999;96:5522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009. https://doi.org/10.1038/nrm2717.

  121. Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem. 2004;279:35583–94.

    Article  CAS  PubMed  Google Scholar 

  122. Rosi MC, Luccarini I, Grossi C, Fiorentini A, Spillantini MG, Prisco A, et al. Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem. 2010;112:1539–51.

    Article  CAS  PubMed  Google Scholar 

  123. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  124. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J NeuroImmune Pharmacol. 2012;7:788–807.

    Article  PubMed  Google Scholar 

  125. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vallée A, Lecarpentier Y, Vallée J-N. Hypothesis of opposite interplay between the canonical WNT/beta-catenin pathway and PPAR gamma in primary central nervous system lymphomas. Curr Issues Mol Biol. 2019;31:1–20.

    Article  PubMed  Google Scholar 

  127. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 1997;16:3797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161–8.

    Article  CAS  PubMed  Google Scholar 

  129. Hur E-M, Zhou F-Q. GSK3 signalling in neural development. Nat Rev Neurosci. 2010;11:539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS, Cregan SP. The JNK- and AKT/GSK3β-signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS ONE. 2012;7:e46885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orellana AMM, Vasconcelos AR, Leite JA, de Sá Lima L, Andreotti DZ, Munhoz CD, et al. Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/ β-CATENIN signaling in rat hippocampus. Aging. 2015;7:1094–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J-M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.

    Article  CAS  PubMed  Google Scholar 

  133. Motamedi S, Karimi I, Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab Brain Dis. 2017;32:651–65.

    Article  CAS  PubMed  Google Scholar 

  134. Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 2020;21:7777.

    Article  PubMed Central  Google Scholar 

  135. Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, et al. Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci. 2009;29:14185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang J-W, Ru J, Ma W, Gao Y, Liang Z, Liu J, et al. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides. 2015;54:35–46.

    Article  CAS  PubMed  Google Scholar 

  137. Tayyab M, Shahi MH, Farheen S, Mariyath MPM, Khanam N, Castresana JS, et al. Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res. 2018;96:53–62.

    Article  CAS  PubMed  Google Scholar 

  138. Hall D, Dhilla A, Charalambous A, Gogos JA, Karayiorgou M. Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am J Hum Genet. 2003;73:370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Timpano KR, Schmidt NB, Wheaton MG, Wendland JR, Murphy DL. Consideration of the BDNF gene in relation to two phenotypes: hoarding and obesity. J Abnorm Psychol. 2011;120:700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wendland JR, Kruse MR, Cromer KR, Cromer KC, Murphy DL. A large case-control study of common functional SLC6A4 and BDNF variants in obsessive-compulsive disorder. Neuropsychopharmacology. 2007;32:2543–51.

    Article  CAS  PubMed  Google Scholar 

  141. Ren-Patterson RF, Cochran LW, Holmes A, Sherrill S, Huang S-J, Tolliver T, et al. Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res. 2005;79:756–71.

    Article  CAS  PubMed  Google Scholar 

  142. Dodman NH, Karlsson EK, Moon-Fanelli A, Galdzicka M, Perloski M, Shuster L, et al. A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol Psychiatry. 2010;15:8–10.

    Article  CAS  PubMed  Google Scholar 

  143. Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009;1:a003053.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Shapiro L, Love J, Colman DR. Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci. 2007;30:451–74.

    Article  CAS  PubMed  Google Scholar 

  145. Bozdagi O, Wang X, Nikitczuk JS, Anderson TR, Bloss EB, Radice GL, et al. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J Neurosci. 2010;30:9984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron. 2010;67:588–602.

    Article  CAS  PubMed  Google Scholar 

  147. Nuriya M, Huganir RL. Regulation of AMPA receptor trafficking by N-cadherin. J Neurochem. 2006;97:652–61.

    Article  CAS  PubMed  Google Scholar 

  148. Oyama T, Kanai Y, Ochiai A, Akimoto S, Oda T, Yanagihara K, et al. A truncated beta-catenin disrupts the interaction between E-cadherin and alpha-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res. 1994;54:6282–7.

    CAS  PubMed  Google Scholar 

  149. Huber O, Kemler R, Langosch D. Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J Cell Sci. 1999;112:4415–23.

    Article  CAS  PubMed  Google Scholar 

  150. Moya PR, Dodman NH, Timpano KR, Rubenstein LM, Rana Z, Fried RL, et al. Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet. 2013;21:850–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schambony A, Kunz M, Gradl D. Cross-regulation of Wnt signaling and cell adhesion. Differ Res Biol Divers. 2004;72:307–18.

    CAS  Google Scholar 

  152. Bienz M. beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol. 2005;15:R64–7.

    Article  CAS  PubMed  Google Scholar 

  153. Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev. 2006;16:51–9.

    Article  CAS  PubMed  Google Scholar 

  154. Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol. 2001;13:600–3.

    Article  CAS  PubMed  Google Scholar 

  155. Marie PJ, Haÿ E. Cadherins and Wnt signalling: a functional link controlling bone formation. BoneKEy Rep. 2013;2:330.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Thompson SL, Dulawa SC. Dissecting the roles of β-arrestin2 and GSK-3 signaling in 5-HT1BR-mediated perseverative behavior and prepulse inhibition deficits in mice. PloS ONE. 2019;14:e0211239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life. 2009;61:516–21.

    Article  CAS  PubMed  Google Scholar 

  158. Vallée A, Vallée J-N, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0131-4.

  159. Vallée A, Lecarpentier Y, Vallée J-N. Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 2019;8:726.

    Article  PubMed Central  Google Scholar 

  160. Vallée A, Vallée J-N. Warburg effect hypothesis in autism spectrum disorders. Mol Brain. 2018;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88.

    Article  CAS  PubMed  Google Scholar 

  162. Libro R, Diomede F, Scionti D, Piattelli A, Grassi G, Pollastro F, et al. Cannabidiol modulates the expression of Alzheimer’s disease-related genes in mesenchymal stem cells. Int J Mol Sci. 2016;18.

  163. Giacoppo S, Pollastro F, Grassi G, Bramanti P, Mazzon E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia. 2017;116:77–84.

    Article  CAS  PubMed  Google Scholar 

  164. Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J. GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol. 2010;223:322–5.

    Article  PubMed  Google Scholar 

  165. Ozaita A, Puighermanal E, Maldonado R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem. 2007;102:1105–14.

    Article  CAS  PubMed  Google Scholar 

  166. Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, Ciani E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem. 2010;285:10098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16:183–9.

    Article  CAS  PubMed  Google Scholar 

  168. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Essers MAG, de Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181–4.

    Article  CAS  PubMed  Google Scholar 

  170. Hoogeboom D, Essers MAG, Polderman PE, Voets E, Smits LMM, Burgering BMT. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem. 2008;283:9224–30.

    Article  CAS  PubMed  Google Scholar 

  171. Reif K, Burgering BM, Cantrell DA. Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem. 1997;272:14426–33.

    Article  CAS  PubMed  Google Scholar 

  172. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  173. Stahl M, Dijkers PF, Kops GJPL, Lens SMA, Coffer PJ, Burgering BMT, et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 2002;168:5024–31.

    Article  CAS  PubMed  Google Scholar 

  174. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJPL, Lam EW-F, et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22:7842–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fernández de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS, et al. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol. 2004;24:10058–71.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Manolopoulos KN, Klotz L-O, Korsten P, Bornstein SR, Barthel A. Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry. 2010;15:1046–52.

    Article  CAS  PubMed  Google Scholar 

  177. Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal. 2010;22:1317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H, et al. WNT signaling in activated microglia is proinflammatory. Glia. 2011;59:119–31.

    Article  PubMed  Google Scholar 

  179. L’episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, et al. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 2011;6:49.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol. 2016;7:378.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8:227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Deng J, Miller SA, Wang H-Y, Xia W, Wen Y, Zhou BP, et al. beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002;2:323–34.

    Article  CAS  PubMed  Google Scholar 

  183. Liu J, Liao Y, Ma K, Wang Y, Zhang G, Yang R, et al. PI3K is required for the physical interaction and functional inhibition of NF-κB by β-catenin in colorectal cancer cells. Biochem Biophys Res Commun. 2013;434:760–6.

    Article  CAS  PubMed  Google Scholar 

  184. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang Y-C, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329:849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cho HH, Song JS, Yu JM, Yu SS, Choi SJ, Kim DH, et al. Differential effect of NF-kappaB activity on beta-catenin/Tcf pathway in various cancer cells. FEBS Lett. 2008;582:616–22.

    Article  CAS  PubMed  Google Scholar 

  187. Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol. 2008;320:60–71.

    Article  CAS  PubMed  Google Scholar 

  188. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406:86–90.

    Article  CAS  PubMed  Google Scholar 

  189. Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010;31:24–31.

    Article  CAS  PubMed  Google Scholar 

  190. Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016;13:242.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, Al-Harthi L. Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol. 2012;86:1911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lecarpentier Y, Schussler O, Hébert J-L, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep. 2020;22:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants. 2019;9:21.

    Article  PubMed Central  Google Scholar 

  194. Borges RS, Batista J, Viana RB, Baetas AC, Orestes E, Andrade MA, et al. Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules. 2013;18:12663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Drel VR, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol. 2007;293:H610–9.

    Article  CAS  PubMed  Google Scholar 

  196. Pan H, Mukhopadhyay P, Rajesh M, Patel V, Mukhopadhyay B, Gao B, et al. Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J Pharmacol Exp Ther. 2009;328:708–14.

    Article  CAS  PubMed  Google Scholar 

  197. Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ Toxicol Pharmacol. 2013;36:347–57.

    Article  CAS  PubMed  Google Scholar 

  198. Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL. Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther. 2005;314:780–8.

    Article  CAS  PubMed  Google Scholar 

  199. Campos AC, Fogaça MV, Sonego AB, Guimarães FSCannabidiol. neuroprotection and neuropsychiatric disorders. Pharmacol Res. 2016;112:119–27.

    Article  CAS  PubMed  Google Scholar 

  200. da Silva VK, de Freitas BS, Garcia RCL, Monteiro RT, Hallak JE, Zuardi AW, et al. Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload. Transl Psychiatry. 2018;8:176.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18:2772.

    Article  PubMed Central  Google Scholar 

  202. Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56:2115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Costa B, Trovato AE, Comelli F, Giagnoni G, Colleoni M. The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur J Pharmacol. 2007;556:75–83.

    Article  CAS  PubMed  Google Scholar 

  204. Wu H-Y, Jan T-R. Cannabidiol hydroxyquinone-induced apoptosis of splenocytes is mediated predominantly by thiol depletion. Toxicol Lett. 2010;195:68–74.

    Article  CAS  PubMed  Google Scholar 

  205. Gęgotek A, Ambrożewicz E, Jastrząb A, Jarocka-Karpowicz I, Skrzydlewska E. Rutin and ascorbic acid cooperation in antioxidant and antiapoptotic effect on human skin keratinocytes and fibroblasts exposed to UVA and UVB radiation. Arch Dermatol Res. 2019;311:203–19.

    Article  PubMed  Google Scholar 

  206. Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes. 2006;30 Suppl 1:S13–8.

    Article  CAS  Google Scholar 

  207. Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 2002;277:36527–33.

    Article  PubMed  Google Scholar 

  208. Molina-Holgado E, Vela JM, Arévalo-Martín A, Almazán G, Molina-Holgado F, Borrell J, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci. 2002;22:9742–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang S, Xu Q, Shu G, Wang L, Gao P, Xi Q, et al. N-Oleoyl glycine, a lipoamino acid, stimulates adipogenesis associated with activation of CB1 receptor and Akt signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun. 2015;466:438–43.

    Article  CAS  PubMed  Google Scholar 

  210. Wang Y, Mukhopadhyay P, Cao Z, Wang H, Feng D, Haskó G, et al. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci Rep. 2017;7:12064.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Hou Y, Moreau F, Chadee K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat Commun. 2012;3:1300.

    Article  PubMed  Google Scholar 

  212. Lee C-H, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003;144:2201–7.

    Article  CAS  PubMed  Google Scholar 

  213. Marx N, Duez H, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res. 2004;94:1168–78.

    Article  CAS  PubMed  Google Scholar 

  214. Cunard R, Ricote M, DiCampli D, Archer DC, Kahn DA, Glass CK, et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol. 2002;168:2795–802.

    Article  CAS  PubMed  Google Scholar 

  215. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82.

    Article  CAS  PubMed  Google Scholar 

  216. Giannini S, Serio M, Galli A. Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity. J Endocrinol Investig. 2004;27:982–91.

    Article  CAS  Google Scholar 

  217. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in gliomas: interactions between the canonical WNT/Beta-catenin pathway and PPAR gamma. Front Physiol. 2017;8:352.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Demyelination in multiple sclerosis: reprogramming energy metabolism and potential PPARγ agonist treatment approaches. Int J Mol Sci. 2018;19:1212.

    Article  PubMed Central  Google Scholar 

  219. Park KS, Lee RD, Kang S-K, Han SY, Park KL, Yang KH, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res. 2004;297:424–33.

    Article  CAS  PubMed  Google Scholar 

  220. Vallée A, Lecarpentier Y, Vallée J-N. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int J Mol Sci. 2017;18:2537.

    Article  PubMed Central  Google Scholar 

  221. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci. 2018;193:141–52.

    Article  PubMed  Google Scholar 

  222. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.

    Article  CAS  PubMed  Google Scholar 

  223. Jeon M, Rahman N, Kim Y-S. Wnt/β-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem Biophys Res Commun. 2016;479:22–7.

    Article  CAS  PubMed  Google Scholar 

  224. Gustafson B, Eliasson B, Smith U. Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia. 2010;53:536–40.

    Article  CAS  PubMed  Google Scholar 

  225. Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang X-F, et al. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109666.

    Article  CAS  PubMed  Google Scholar 

  226. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4:873–84.

    Article  CAS  PubMed  Google Scholar 

  227. Campos AC, Fogaça MV, Scarante FF, Joca SRL, Sales AJ, Gomes FV, et al. Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders. Front Pharmacol. 2017;8:269.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Viveros MP, Llorente R, Suarez J, Llorente-Berzal A, López-Gallardo M, de Fonseca FR. The endocannabinoid system in critical neurodevelopmental periods: sex differences and neuropsychiatric implications. J Psychopharmacol. 2012;26:164–76.

    Article  CAS  PubMed  Google Scholar 

  229. McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172:4790–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mackey SR, Golden SS, Ditty JL. The itty-bitty time machine genetics of the cyanobacterial circadian clock. Adv Genet. 2011;74:13–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–90.

    Article  CAS  PubMed  Google Scholar 

  233. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    Article  CAS  PubMed  Google Scholar 

  234. Hastings MH, Maywood ES, Brancaccio M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology. 2019;8:13.

    Article  CAS  PubMed Central  Google Scholar 

  235. Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front Endocrinol. 2017;8:42.

    Article  Google Scholar 

  236. Johnson CH, Elliott JA, Foster R. Entrainment of circadian programs. Chronobiol Int. 2003;20:741–74.

    Article  PubMed  Google Scholar 

  237. Carneiro BTS, Araujo JF. Food entrainment: major and recent findings. Front Behav Neurosci. 2012;6:83.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bloch G, Herzog ED, Levine JD, Schwartz WJ. Socially synchronized circadian oscillators. Proc Biol Sci. 2013;280:20130035.

    PubMed  PubMed Central  Google Scholar 

  239. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005;6:544–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    Article  CAS  PubMed  Google Scholar 

  242. Wirz-Justice A, Terman M. Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. Handb Clin Neurol. 2012;106:697–713.

    Article  PubMed  Google Scholar 

  243. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11:589–99.

    Article  CAS  PubMed  Google Scholar 

  244. Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA. 1998;95:5474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–9.

    Article  CAS  PubMed  Google Scholar 

  246. Goldbeter A. A model for circadian oscillations in the drosophila period protein (PER). Proc Biol Sci. 1995;261:319–24.

    Article  CAS  PubMed  Google Scholar 

  247. Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell. 2002;111:919–22.

    Article  CAS  PubMed  Google Scholar 

  248. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15 Spec No 2:R271–7.

  249. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26:R432–43.

    Article  CAS  PubMed  Google Scholar 

  250. Taylor BJ, Hasler BP. Chronotype and mental health: recent advances. Curr Psychiatry Rep. 2018;20:59.

    Article  PubMed  Google Scholar 

  251. McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013;74:242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Nota JA, Sharkey KM, Coles ME. Sleep, arousal, and circadian rhythms in adults with obsessive-compulsive disorder: a meta-analysis. Neurosci Biobehav Rev. 2015;51:100–7.

    Article  PubMed  Google Scholar 

  253. Cox RC, Olatunji BO. Circadian rhythms in obsessive-compulsive disorder: recent findings and recommendations for future research. Curr Psychiatry Rep. 2019;21:54.

    Article  PubMed  Google Scholar 

  254. Schubert JR, Coles ME. Obsessive-compulsive symptoms and characteristics in individuals with delayed sleep phase disorder. J Nerv Ment Dis. 2013;201:877–84.

    Article  PubMed  Google Scholar 

  255. Kluge M, Schüssler P, Künzel HE, Dresler M, Yassouridis A, Steiger A. Increased nocturnal secretion of ACTH and cortisol in obsessive compulsive disorder. J Psychiatr Res. 2007;41:928–33.

    Article  PubMed  Google Scholar 

  256. Cox RC, Olatunji BO. A systematic review of sleep disturbance in anxiety and related disorders. J Anxiety Disord. 2016;37:104–29.

    Article  PubMed  Google Scholar 

  257. Alvaro PK, Roberts RM, Harris JK. The independent relationships between insomnia, depression, subtypes of anxiety, and chronotype during adolescence. Sleep Med. 2014;15:934–41.

    Article  PubMed  Google Scholar 

  258. Cox RC, Tuck B, Olatunji BO. The role of eveningness in obsessive-compulsive symptoms: cross-sectional and prospective approaches. J Affect Disord. 2018;235:448–55.

    Article  PubMed  Google Scholar 

  259. Nota JA, Gibb BE, Coles ME. Obsessions and time of day: a self-monitoring study in individuals with obsessive-compulsive disorder. J Cogn Psychother. 2014;28:134–44.

    Article  PubMed  Google Scholar 

  260. Kenardy J, Fried L, Kraemer HC, Taylor CB. Psychological precursors of panic attacks. Br J Psychiatry. 1992;160:668–73.

    Article  CAS  PubMed  Google Scholar 

  261. Willis TA, O’Connor DB, Smith L. The influence of morningness-eveningness on anxiety and cardiovascular responses to stress. Physiol Behav. 2005;85:125–33.

    Article  CAS  PubMed  Google Scholar 

  262. English T, Carstensen LL. Emotional experience in the mornings and the evenings: consideration of age differences in specific emotions by time of day. Front Psychol. 2014;5:185.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Boland EM, Ross RJ. Recent advances in the study of sleep in the anxiety disorders, obsessive-compulsive disorder, and posttraumatic stress disorder. Psychiatr Clin North Am. 2015;38:761–76.

    Article  PubMed  Google Scholar 

  264. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al. Epidemiology of the human circadian clock. Sleep Med Rev. 2007;11:429–38.

    Article  PubMed  Google Scholar 

  265. Coles ME, Wirshba CJ, Nota J, Schubert J, Grunthal BA. Obsessive compulsive disorder prevalence increases with latitude. J Obsessive Compuls Relat Disord. 2018;18:25–30.

    Article  Google Scholar 

  266. Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC, et al. Circadian regulation of glutathione levels and biosynthesis in drosophila melanogaster. PloS ONE. 2012;7:e50454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Krishnan N, Davis AJ, Giebultowicz JM. Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun. 2008;374:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz JM. The circadian clock gene period extends healthspan in aging drosophila melanogaster. Aging. 2009;1:937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Musiek ES. Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol. 2015;6:29.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Segal JP, Tresidder KA, Bhatt C, Gilron I, Ghasemlou N. Circadian control of pain and neuroinflammation. J Neurosci Res. 2018;96:1002–20.

    Article  CAS  PubMed  Google Scholar 

  271. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci USA. 2012;109:E2457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA. 2012;109:12662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Biello SM, Bonsall DR, Atkinson LA, Molyneux PC, Harrington ME, Lall GS. Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol Aging. 2018;66:75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Colwell CS, Ralph MR, Menaker M. Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res. 1990;523:117–20.

    Article  CAS  PubMed  Google Scholar 

  275. Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93:1420–35.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chen TL. Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone. 2004;35:83–95.

    Article  CAS  PubMed  Google Scholar 

  278. Soták M, Sumová A, Pácha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46:221–32.

    Article  PubMed  Google Scholar 

  279. Matsu-Ura T, Moore SR, Hong CI. WNT takes two to tango: molecular links between the circadian clock and the cell cycle in adult stem cells. J Biol Rhythms. 2018;33:5–14.

    Article  CAS  PubMed  Google Scholar 

  280. Guo B, Chatterjee S, Li L, Kim JM, Lee J, Yechoor VK, et al. The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J Publ Fed Am Soc Exp Biol. 2012;26:3453–63.

    CAS  Google Scholar 

  281. Yasuniwa Y, Izumi H, Wang K-Y, Shimajiri S, Sasaguri Y, Kawai K, et al. Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway. PloS ONE. 2010;5:e15330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 2011;480:209–14.

    Article  CAS  PubMed  Google Scholar 

  283. Lin F, Chen Y, Li X, Zhao Q, Tan Z. Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem Funct. 2013;31:166–72.

    Article  CAS  PubMed  Google Scholar 

  284. Sahar S, Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer. 2009;9:886–96.

    Article  CAS  PubMed  Google Scholar 

  285. Yang X, Wood PA, Ansell CM, Ohmori M, Oh E-Y, Xiong Y, et al. Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem. 2009;145:289–97.

    Article  CAS  PubMed  Google Scholar 

  286. Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002;12:551–7.

    Article  CAS  PubMed  Google Scholar 

  287. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  288. Chen L, Yang G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res. 2014;2014:653017.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126:801–10.

    Article  CAS  PubMed  Google Scholar 

  290. Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab. 2008;8:482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM, Yang T. Systemic PPARγ deletion impairs circadian rhythms of behavior and metabolism. PloS ONE. 2012;7:e38117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wang H-M, Zhao Y-X, Zhang S, Liu G-D, Kang W-Y, Tang H-D, et al. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis. 2010;20:1189–99.

    Article  CAS  PubMed  Google Scholar 

  293. Fontaine C, Dubois G, Duguay Y, Helledie T, Vu-Dac N, Gervois P, et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J Biol Chem. 2003;278:37672–80.

    Article  CAS  PubMed  Google Scholar 

  294. Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci USA. 2007;104:9888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Murillo-Rodríguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, et al. The endocannabinoid system may modulate sleep disorders in aging. Curr Neuropharmacol. 2020;18:97–108.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Santucci V, Storme JJ, Soubrié P, Le Fur G. Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci. 1996;58:PL103–10.

    Article  CAS  PubMed  Google Scholar 

  297. Lafaye G, Desterke C, Marulaz L, Benyamina A. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addict Biol. 2019;24:921–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this review and approved the final paper.

Corresponding author

Correspondence to Alexandre Vallée.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

AV, JNV, and YL consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, A., Lecarpentier, Y. & Vallée, JN. Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 27, 230–248 (2022). https://doi.org/10.1038/s41380-021-01086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01086-1

This article is cited by

Search

Quick links