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Abstract
Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism
underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV)
neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse
model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice
were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of
striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the
open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to
manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular
mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen’s d= 2.5) and locomotor activity.
These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-
limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and
hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace
amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced
the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in
mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine
neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel
therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of
ketamine relevant to its therapeutic use for treating major depression.

Introduction

Schizophrenia is a severe mental disorder and a significant
global health burden, highlighting the need to better
understand its neurobiology in order to develop improved
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treatments [1]. Dopaminergic hyperactivity in the striatum
is thought to underlie the symptoms of schizophrenia,
particularly psychosis [2–5]. Supporting this, 3,4-dihy-
droxy-6-18F-fluoro-l-phenylalanine ([18F]-FDOPA) posi-
tron emission tomography (PET) imaging studies have
revealed higher striatal dopamine synthesis capacity in
patients with schizophrenia [6–9]. Furthermore, increased
dopamine synthesis capacity is associated with both the
development of psychosis [10] and the severity of
symptoms [11]. Currently available antipsychotics are all
dopamine receptor blockers, which are inadequate and
poorly tolerated in many patients, and do not address the
mechanism underlying the dopamine dysfunction
[12, 13]. In addition to dopaminergic dysfunction, the
glutamate hypothesis of schizophrenia has developed
from the observations that N-methyl-D-aspartate receptor
(NMDAR) antagonists such as ketamine induce psychotic
symptoms in healthy humans and exacerbate symptoms in
patients [14, 15]. Furthermore, schizophrenia is associated
with a reduction in parvalbumin (PV)-expressing
GABAergic interneurons, which are regulated by
NMDARs in the cortex and hippocampus [16–18]. It has
been suggested that impaired PV neuronal function in the
cortex and hippocampus may lead to disinhibition of
mesostriatal dopamine neuron activity via a polysynaptic
pathway [19]. However, it is not clear if it is possible
to develop a pre-clinical model of the increased dopamine
synthesis capacity seen in patients using an NMDAR
antagonist, and whether it is possible to reverse this
by targeting PV-expressing interneurons or other
mechanisms.

To address this, we tested the effect of sub-chronic
ketamine administration on dopamine synthesis capacity in
mice using the same [18F]-FDOPA PET imaging technique
that previously demonstrated elevation in dopamine synth-
esis capacity in patients [6–9], and also tested the potential
of activating PV-interneurons to reverse the effects of
ketamine on striatal dopamine synthesis capacity. We also
tested the translational potential of a novel psychotropic
agent, SEP-0363856 (SEP-856), to reverse striatal dopa-
minergic alterations based on evidence that it inhibits ven-
tral tegmental area (VTA) neuronal firing [20]. Our
objective was to develop a chemogenetics/PET approach
that is translationally relevant and provides novel insights
into the pathophysiology of schizophrenia.

Methods and materials

All experiments were approved by the UK Home Office
under the Animal (Scientific Procedures) Act (ASPA) 1986
and Regulation 7 of the Genetically Modified Organisms
(Contained Use) Regulations 2000. All procedures were

performed in accordance with the ASPA 1986 and EU
directive 2010/63/EU as well as being approved by Imperial
College Animal Welfare and Ethical Review Body.

Subjects

Male mice were 6–8 weeks of age at the time of stereotaxic
surgeries and 8–10 weeks of age at the start of the experi-
ments. C57BL/6 wild-type, dopamine transporter (DAT)
Cre (DAT::Cre) and parvalbumin (PV) Cre (PV::Cre) mice
maintained on a C57BL/6 background were used.

Sub-chronic ketamine regime

Ketamine hydrochloride solid (Sigma-Aldrich) was dissolved
in 0.9% saline solution to 6 mg/ml and injected at a volume of
5ml/kg of body weight, thus administered at a dose of 30mg/
kg (i.p) once daily for 5 consecutive days (Fig. 1a, Supple-
mentary Figs. 1a, 2a, 3a, 4) [21]. Control mice received an
equivalent volume of 0.9% saline vehicle.

Chemogenetics model

In DAT::Cre mice adeno-associated virus (AAV) vectors
were stereortaxically targeted to the ventral tegmental area
(VTA: anteroposterior [AP] −3.15 mm, mediolateral [ML]
±0.40 mm, dorsoventral [DV] −4.30 mm) and the sub-
stantia nigra pars compacta (SNc: AP −3.15 mm, ML
±1.50 mm, DV −4.30 mm) (Fig. 2b). In PV::Cre mice
viruses were stereotaxically injected in pre-limbic cortex
(PLc: AP +1.94, ML ±0.45, DV −2.20) and in the ventral
subiculum (vSub) of the hippocampus (vSub: AP −3.20,
ML ±2.80, DV −4.30) (Figs. 3a, 4b, Supplementary Fig. 5).
Both the PLc and vSub regions were targeted concurrently
for the following reasons. In schizophrenia there are deficits
in PV interneuron markers in both the prefrontal cortex and
in the hippocampus [16, 22–25]. In addition, acute and
chronic ketamine administration is associated with deficits
in PV interneuron markers in both regions [16, 17, 26–29].
The needle was left in place for 3 min post injection. Fol-
lowing injections, the wound was sutured (Mersilk, 3–1
Ethicon). Two weeks following the surgeries, clozapine N-
oxide (CNO) (0.1 and 0.5 mg/kg, i.p) or saline was admi-
nistered 30 min before the injection of ketamine or saline
(Figs. 2a, 4a). See Supplementary Methods for further
details.

Open-field test

Mice were placed into the open-field arena for a 20 min
habituation period, then injected i.p with either ketamine or
saline and placed back in the arena for a further 60 min.
Total distance travelled was recorded using the Ethovision
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XT video tracking software system (Noldus Information
Technologies, Leesburg, VA, USA). Locomotor activity
was assessed on days 1, 5 and 7 of drug treatment (Sup-
plementary Fig. 1). For the chemogenetic experiments, mice
were placed in the open-field arenas for 20 min habituation,
they then received an injection of CNO or saline and
activity was recorded for 30 min. Then, mice received an
injection of ketamine or saline, in line with the treatment
schedule, and their activity recorded for 60 min. Locomotor
activity was assessed on days 1 and 5 of drug treatment
(Supplementary Figs. 2–4).

Positron emission tomography (PET) imaging

One hour prior to scanning, mice were anaesthetised with
isoflurane and underwent external jugular vein cannulation.
During scanning, the respiration rate was monitored using
the BioVet physiological monitoring software system
(Biovet software; m2m Imaging Corp, Cleveland, OH,
USA) and body temperature was maintained at 37 °C. Mice
received 40 mg/kg (i.p) entacapone (SML0654, Sigma-
Aldrich), a catechol-O-methyl-transferase inhibitor, and 10
mg/kg (i.p) benserazide hydrochloride (B7283, Sigma-
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Fig. 1 Sub-chronic ketamine increases dopamine synthesis capacity
and locomotor activity. a Schematic showing the drug treatment
schedule used to study the effect of sub-chronic ketamine administration
on striatal dopamine synthesis capacity and locomotor activity in the
mouse. b [18F]-FDOPA PET brain image coregistered to a computed
tomography (CT) scan demonstrating high signal to noise ratio in striatal
uptake from representative mice treated with saline or ketamine, and
showing increased uptake in ketamine-treated mice. Standardised uptake
value (SUV) is presented as summed activity over the timeframe
(20–90min) used to measure dopamine synthesis capacity. c Striatal
dopamine synthesis capacity (Ki

mod/min) is significantly increased in the
ketamine-treated (n= 8) group versus control (n= 7) group (***P <
0.001, two-tailed, Cohen’s d= 2.5, t13= 4.74). d Total distance

travelled during 30min post drug administration. There was a sig-
nificant effect of group (F(1, 26)= 46.21, P < 0.0001), day (F(1, 26)=
23.27, P < 0.0001) and group × time interaction (F(1, 26)= 20.79, P <
0.001; Bonferroni post hoc (asterisks indicate p-values for saline vs
ketamine on the same day; hash indicates p-values for day 1 vs day 5),
showing that ketamine induces hyperlocomotion. e Sub-chronic keta-
mine induces locomotor sensitisation (***P < 0.001). f Locomotor
sensitization is sustained following a 2-day washout of ketamine.
Ketamine induced significantly higher locomotor activity in mice that
had received sub-chronic ketamine as compared with mice that had
received saline for 5 days (***P < 0.001). Data represent mean ± S.E.M.
****P < 0.0001; *** P < 0.001; #### P < 0.0001. PET positron
emission tomography, CT computed tomography.
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Aldrich), an aromatic amino acid decarboxylase inhibitor, at
45 and 30 min before the [18F]-FDOPA respectively. This
improves brain uptake [18F]-FDOPA by reducing peripheral
metabolism of the radiotracer [30]. SEP-363856 (3 mg/kg,
i.p), a TAAR1/5HT1A agonist, was provided by Sunovion
Pharmaceuticals and administered 30 min prior to the [18F]-

FDOPA injection. Following cannulation, mice were
transferred to the bore of an Inveon µPET/CT scanner
(Siemens, Surrey, UK). Mice underwent a 20 min CT scan
for attenuation correction, and then received a bolus injec-
tion of ~4.5 MBq [18F]-FDOPA via the external jugular vein
cannula at the start of the 120 min dynamic PET scan.
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Fig. 2 Midbrain dopamine neuron firing is necessary for
ketamine-induced increases in dopamine synthesis capacity and
locomotor activity. a Experimental timeline and drug treatment
paradigm used to assess the effect of midbrain dopamine neuron
inhibition on the sub-chronic ketamine-induced increase in striatal
dopamine synthesis capacity and locomotor activity. Two weeks after
stereotaxic injection of AAV-hM4Di-mCherry, mice received 0.1 mg/
kg CNO or vehicle followed by ketamine (30 mg/kg) or vehicle 30 min
later for 5 consecutive days. Mice underwent a dynamic PET/CT scan
2 days after the last drug administration. b Bilateral infusion of AAV-
hM4Di-mCherry into the VTA and SNc of DAT::Cre mice was used to
selectively express DREADD receptors in dopamine neurons. c
Fluorescence confocal images of representative midbrain fields
depicting co-expression (white) of mCherry (magenta) and TH (green)
immunofluorescence. d Percentage of TH+ neurons co-expressing
mCherry (47 out of total 65 TH+ neurons; 71.7 ± 11%) and percentage
of mCherry+ which do not express TH (1 out of total 48 mCherry+

neurons, 1.5 ± 1.5%) in the VTA. Percentage of TH+ neurons co-
expressing mCherry (47 out of total 52 TH+ neurons; 89.6% ± 5.4)
and percentage of mCherry+ which do not express TH (1 out of total
48 mCherry+ neurons, 1.5 ± 1.5%) in the SNc. e Striatal dopamine
synthesis capacity (Ki

mod/min) is significantly reduced in CNO/Ket
compared with Sal/Ket group (***P < 0.001) (Sal/Sal (n= 12), CNO/
Sal (n= 13), Sal/Ket (n= 12) and CNO/Ket-treated (n= 11) groups).
f Total distance travelled during 30 min post drug administration. Sub-
chronic ketamine treatment induced locomotor sensitization that was
prevented by inhibition of midbrain dopamine neuron firing prior
to ketamine treatment. g Percentage locomotor sensitization between
day 1 and day 5. Data represent mean ± S.E.M. ****P < 0.0001;
***P < 0.001; **P < 0.01; *P < 0.05. Sal saline, Ket ketamine, CNO
clozapine N-oxide, TH tyrosine hydroxylase, PET positron emission
tomography, CT computed tomography, VTA ventral tegmental area,
SNc substantia nigra pas compacta.
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PET analysis

Inveon Research Workplace software (Siemens USA) was
used to draw 3D regions of interest manually on summation
radioactivity images at the level of the striatum (right and
left) (0.07 cm3) and the cerebellum (0.1 cm3) to extract time
activity curves (Supplementary Figs. 6, 7) [31]. Dopamine
synthesis capacity was indexed as the rate constant for the
uptake and conversion of [18F]-FDOPA to [18F]-dopamine,
Ki

mod (min−1), and determined using a modified Patlak plot
accounting for the loss of radioactive metabolites, kloss
[30, 32]. The cerebellum was used as the reference region,
in line with the approach used in human studies, to account
for non-specific uptake as it has negligible dopaminergic
projections [33, 34].

RNA sequencing (RNA Seq)

Two days following 5 days of ketamine or saline injections,
brains were rapidly removed and the PLc was dissected and
frozen in isopentane on dry ice. Total RNA was isolated
using the TriZol reagent (Invitrogen) and purified using

RNAeasy micro kits from Qiagen. RNA integrity was
assessed using the Agilent Bioanalyser and all RNA
integrity number values were above 8. Then, the cDNA
library was prepared using the NEB Next Ultra II Library
Prep kit (New England Biolabs, USA). Sequencing was
conducted on an Illumina HiSeq 2500 system with 100 base
pair paired-end reads (London, UK). Raw reads were
aligned to mm9 genome using Tophat version (2.0.11) [35].
Gene based counting was performed using the HTSeq
counts module. Gene expression analysis was performed
using the DESeq2 Bioconductor package. All genes with
adjusted p value of 0.05 or less (calculated from the raw p
values using the Benjamini and Hochberg algorithm) were
considered statistically significant. The RNA seq data are
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE138802.

Statistical analysis

Statistical analyses were performed using Prism 7.00 soft-
ware (GraphPad Software, La Jolla, California, USA).
Normality of distributions was assessed using the
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Fig. 3 Sub-chronic ketamine reduces parvalbumin interneuron
function. a Schematics of the location of the PLc and vSub of the
hippocampus in the brain. Representative fluorescence confocal ima-
ges of PLc and vSub of the hippocampus fields respectively depicting
PV interneuron (green) and DAPI (blue) immunofluorescence in
saline-treated (Saline) and ketamine-treated (Ketamine) mice. PV
immunofluorescence in the PLc and vSub of the hippocampus is
significantly reduced in the ketamine versus saline group (Two-way
repeated-measures ANOVA significant effect of treatment, F1, 8=

47.28, p < 0.001, η2 effect size= 0.86; followed by Bonferroni post
hoc tests (P < 0.05); n= 5 mice per group). b Differential expression
of the PV gene in ketamine-treated mice vs. saline treated controls.
Differential expression of RASGRP2 and MAPK3 genes in ketamine-
treated mice vs. saline treated controls. Log2 fold change is shown in
each respective bar. c Increased activity in the calcium signalling and
cAMP-mediated signalling pathways in ketamine-treated vs. control
group. Data represent mean ± S.E.M. *P < 0.05. PLc pre-limbic cortex,
vSub ventral subiculum of the hippocampus, PV parvalbumin.
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Fig. 4 In vivo parvalbumin interneuron activation attenuates the
effects of sub-chronic ketamine-induced increase in dopamine
synthesis capacity and locomotor activity. a Experimental timeline
and drug treatment schedule used to study the effect of PV neuron
activation on the sub-chronic ketamine-induced increase in striatal
presynaptic dopamine synthesis capacity. Two weeks following ste-
reotaxic injection of AAV-hM3Dq-mCherry, mice received 0.5 mg/kg
CNO or vehicle, followed by ketamine (30 mg/kg) or vehicle treatment
30 min later for 5 consecutive days. Mice underwent a dynamic PET/
CT scan 2 days following the last drug administration. b Bilateral
infusion of AAV-hM3Dq-mCherry into the PLc and vSub of PV::Cre
mice was used to selectively express DREADD receptors in PV
interneurons. c Representative fluorescence confocal images of PLc
and vSub fields depicting co-expression (white) of mCherry (magenta)
and PV (green) immunofluorescence. d Percentage of PV+ neurons
co-expressing mCherry (120 out of total 177 PV+ neurons; 65 ± 4.4%)
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PV (5 out of total 59 mCherry+ neurons, 7.8 ± 5.2%) in the vSub.

e Effect of 5 microM CNO on membrane potential measured in voltage
clamp configuration from a whole-cell recording of PV interneuron
within the vSub from a PV::Cre mouse injected with AAV-hM3Dq-
mCherry. f Change in membrane potential with positive showing
increase relative to the baseline indicative of PV neuron depolarisation
upon CNO application. g Striatal dopamine synthesis capacity (Ki

mod/
min) is significantly reduced in CNO/ketamine-treated (n= 11) (pur-
ple) versus SAL/Ket (n= 11) (red) group, unpaired t-test (**P < 0.01,
t19= 3.51, two-tailed, effect size= 1.59). h Total distance travelled
during a 30 min test period post drug administration. Sub-chronic
ketamine treatment induced locomotor sensitization, which was not
prevented by activation of PV interneuron firing prior to ketamine
treatment (F1, 44= 15.51, *** P < 0.001, Bonferroni post hoc test
**P < 0.01 ***P < 0.001= day 1 vs. day 5). On day 5 activation of PV
interneuron firing prevented the effects of sub-chronic ketamine on
locomotor activity (F3, 44= 9.283, ***P < 0.001, Bonferroni post hoc
test ***P < 0.001 Sal/Ket vs. all other groups). Data represent mean ±
S.E.M. ****P < 0.001; **P < 0.01. Sal saline, Ket ketamine, CNO
clozapine N-oxide, PET positron emission tomography, CT computed
tomography, PLc pre-limbic cortex, vSub ventral subiculum of the
hippocampus, PV parvalbumin.
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Kolmogorov–Smirnov test and Levene’s test for equality of
variance to guide the choice of statistic. Between-group
comparisons were made with two-tailed independent
samples t tests for normally distributed data, and
Mann–Whitney U tests were used for non-parametric data.
Two-way analysis of variance (ANOVA) was used to test
the difference in outcome measure between the four
experimental groups. Locomotor sensitization was analysed
with a two-way repeated-measures ANOVA, with the days
as the repeated measure and experimental group as the
cofactor. Outliers in the data were identified using the
Grubbs’s test. Post hoc comparisons were Bonferroni cor-
rected. Cohen’s d effect sizes were calculated using the
online calculator (http://www.uccs.edu/~lbecker/). Data are
expressed as mean ± s.e.m. and statistical significance was
defined as p < 0.05 (two tailed).

Results

Sub-chronic ketamine increases dopamine synthesis
capacity and locomotor activity

To test the hypothesis that sub-chronic ketamine admin-
istration leads to increased dopamine synthesis capacity,
mice were injected once daily with ketamine (30 mg/kg)
or saline for 5 consecutive days. Two days after the last
ketamine or saline injection in vivo [18F]-FDOPA PET
imaging was performed. Sub-chronic ketamine treatment
significantly increased striatal dopamine synthesis
capacity compared to controls, with an effect size of d=
2.5 (P < 0.001, t13 = 4.74) (Fig. 1b, c, Supplementary
Table 1). We also examined locomotor sensitization,
which has been used as a behavioural model of the
dopaminergic dysfunction seen in psychosis [36]. Acute
ketamine administration (day 1) induced locomotor
hyperactivity in the open-field test. Repeated ketamine
administration (day 5) induced locomotor sensitization, an
effect that was sustained following 2-day washout
of ketamine (day 7) (Fig. 1d–f; Supplementary Fig. 1).
Collectively, these findings indicate that sub-chronic
ketamine administration induces both an increase in
dopamine synthesis capacity and behavioural changes
relevant to schizophrenia.

Midbrain dopamine neuron firing is necessary for
ketamine-induced increases in dopamine synthesis
capacity and locomotor activity

To test if the reported ketamine-induced firing activity of
dopamine neurons [37–39] underlies the increase in
dopamine synthesis capacity we observed, we employed a
chemogenetic approach to selectively suppress dopamine

neuron activity in vivo. We injected an adeno-associated
virus (AAV) containing a Cre-dependent hM4Di-mCherry
fusion protein (AAV1-DIO-hM4Di-mCherry) into the
VTA and the substantia nigra pars compacta (SNc) of
DAT::Cre mice. Cre-dependent expression of hM4Di-
mCherry showed ~98% specificity for dopamine neurons,
and CNO-treatment silenced dopamine neuron firing in
slice electrophysiology recordings, consistent with our
previous findings (Fig. 2b–d) [40]. Administration of
CNO prior to ketamine dosing prevented the elevation in
striatal dopamine synthesis capacity (Fig. 2e, Supple-
mentary Table 2) and the ketamine-induced locomotor
sensitization compared to the relevant control groups
(Fig. 2f, g, Supplementary Fig. 2). It has recently been
shown that clozapine, converted from CNO, may have
off-target effects at endogenous receptors rather than at
the DREADDs exclusively [41]. Importantly, CNO
administration in transgenic mice expressing a control
construct had no effect on the ketamine-induced increase
in dopamine synthesis capacity and locomotor activity
(Supplementary Fig. 4), indicating that DREADD-
mediated silencing of dopaminergic neurons is respon-
sible for the observed effects. Taken together, these
findings suggest that sub-chronic ketamine increases
dopamine synthesis capacity and locomotor sensitization
through a mechanism that drives firing activity of mid-
brain dopamine neurons.

The effect of sub-chronic ketamine on PV expression
and function

Lower levels of PV neurons in the cortex and hippocampus
have been observed in schizophrenia patients and following
acute ketamine treatment [16, 17, 27, 42]. In addition, it is
believed that reduced PV neuron function may lead to
changes in dopamine neuron activity [19]. Therefore, we
examined the effects of ketamine on various elements of PV
interneuron function including PV expression. We found
that sub-chronic ketamine treatment reduced PV inter-
neuron immunofluorescence in the pre-limbic cortex (PLc)
and the ventral subiculum (vSub) of the hippocampus (P <
0.05, η2 effect size= 0.86) relative to saline controls
(Fig. 3a).

To investigate the molecular mechanisms underlying the
effects of sub-chronic ketamine on dopamine synthesis we
performed RNA Seq on PLc tissue. We hypothesised that
sub-chronic ketamine would result in reduced PV expres-
sion, and changes in signalling pathways downstream of the
NMDA receptor such as calcium signalling and the acti-
vation of brain-derived neurotrophic factor (BDNF) sig-
nalling. Consistent with our a priori hypotheses, RNA Seq
data on PLc tissue revealed reductions in the expression of
PV (Fig. 3b). Moreover, consistent with the hypothesis that

2568 M. Kokkinou et al.

http://www.uccs.edu/~lbecker/


blocking NMDAR activity increases BDNF signalling [43],
we observed a significant increase in the expression of
genes involved in the pathway downstream of BDNF sig-
nalling, specifically upregulation of mitogen-activated pro-
tein kinase 3 (MAPK3) and RAS guanyl releasing protein 2
(Rasgrp2) (Fig. 3b). In addition, cAMP-mediated signalling
and calcium signalling pathways were significantly acti-
vated in ketamine vs. saline conditions (Fig. 3c). Further-
more, using Ingenuity-pathway analysis (IPA, QUIAGEN
Redwood City, https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/) L-DOPA was the
significant upstream regulator of the differentially expressed
genes in ketamine vs. saline conditions (z-score= 2.961,
P < 0.05, in cortex). Collectively, these data support the
hypothesis that sub-chronic ketamine increases dopamine
synthesis capacity via a pathway that involves the inhibition
of PV interneuron function. Furthermore, RNA Seq data on
PLc tissue did not reveal changes in the expression of
cholecystokinin (p > 0.05), nitric oxide synthase 1 (p > 0.05)
and somatostatin (p > 0.05), which are proteins expressed in
other GABAergic interneurons. Interestingly, consistent
with a previous study, vasoactive intestinal peptide receptor
2 (VIPR2) expression was significantly increased suggest-
ing that other GABAergic interneurons may be affected by
sub-chronic ketamine administration.

The role of PV interneuron activity in mediating the
effects of sub-chronic ketamine

Given that ketamine reduced PV expression levels, and the
hypothesised role of PV interneuron hypofunction in schi-
zophrenia [44, 45], we aimed to determine if activating PV
interneurons in the PLc and vSub of the hippocampus was
able to counter the ketamine-induced increase in dopamine
synthesis capacity. To test this, AAVs expressing a Cre-
dependent hM3Dq-mCherry fusion protein were stereo-
taxically injected into the PLc and vSub of the hippocampus
of PV::Cre mice (Fig. 4a, b). Immunohistochemistry
revealed co-localisation of mCherry with PV immunor-
eactive neurons and a successful transduction with over
92% specificity in the PLc and vSub (Fig. 4c, d). In ex vivo
slice electrophysiology studies, application of CNO depo-
larised vSub PV neurons expressing mCherry (Fig. 4e, f).
Using this system, we found that in vivo activation of PV
interneurons in the PLc and vSub, prior to ketamine
administration, significantly reduced both the elevation in
striatal dopamine synthesis capacity (P < 0.01, t19= 3.51,
two-tailed, effect size= 1.59) (Fig. 4g; Supplementary
Table 3) and the locomotor effects of acute and sub-chronic
ketamine (Fig. 4h; Supplementary Fig. 3). Therefore, our
results suggest that ketamine increases dopamine synthesis
capacity and locomotor activity via its actions on cortical/
hippocampal PV interneurons.

A novel TAAR1/5-HT1A agonist counteracts the
ketamine-induced increase in dopamine synthesis
capacity

Our findings suggest that targeting dopamine neuron firing
activity may present a viable therapeutic target for the
increase in dopamine synthesis capacity seen in schizo-
phrenia. One potential candidate mechanism is trace amine
receptor 1 (TAAR1) agonism. TAAR1 is a G-protein-
coupled receptor that is expressed throughout mono-
aminergic brain nuclei including dopamine neurons [46].
TAAR1 agonists have been shown to reduce dopamine
firing rates and release [47–49]. In view of this, we tested
whether SEP-0363856 (SEP-856), a novel psychotropic
agent with agonism at TAAR1 and 5HT1A receptors [20],
counteracts the effect of sub-chronic ketamine treatment on
dopamine synthesis capacity. Ketamine-treated mice that
received SEP-856 (3 mg/kg, i.p) showed significantly lower
striatal dopamine synthesis capacity compared to vehicle
controls (P < 0.05, t29= 2.839) (Fig. 5). Post hoc analyses
showed that Kmod

i in ketamine-treated mice that received
SEP-856 was not significantly different from Kmod

i in mice
not exposed to ketamine (Fig. 5).

Discussion

Our results demonstrate that sub-chronic ketamine admin-
istration leads to elevated striatal dopamine synthesis
capacity, and that this requires the activation of midbrain
dopamine neurons. The ketamine-induced increase in
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dopamine synthesis capacity was attenuated by the activa-
tion of PV interneurons in the PLc and vSub, as well as by a
novel TAAR1/5HT1A agonist, SEP-856. Our study
demonstrates for the first time to our knowledge that an
experimental model induces the same dopaminergic phe-
notype seen in patients with psychosis, and the potential of
targeting PV interneurons and a novel TAAR1/5HT1A

agonist to reverse the dopaminergic phenotype.
The majority of studies show that acute ketamine sig-

nificantly increases striatal dopamine levels [50–53], and
elevates VTA dopamine neuron firing [38, 39, 54]. Our
results extend these findings to show that sub-chronic
ketamine induces a persistent elevation of dopamine
synthesis capacity through a mechanism that requires mid-
brain dopamine neuron firing. These results are in line with
the increased striatal dopamine synthesis capacity observed
in schizophrenia patients and were acquired using an
equivalent PET imaging technique. It should be noted that
we investigated dopamine synthesis capacity in the striatum
and, although it includes nucleus accumbens, most of the
signal is from dorsal regions (caudate and putamen) [34].
Therefore, inferences about the dopamine system elsewhere
(e.g. in cortical regions) cannot be made. In addition, we
extend prior findings of reductions in PV levels in the
hippocampus and prefrontal cortex following acute or sub-
chronic ketamine administration [27, 42], to show that
ketamine also leads to persistent reductions in PV levels and
that activation of PV interneurons can attenuate ketamine-
induced increases in striatal dopamine synthesis capacity.

Proposed mechanism of action of ketamine on
dopamine synthesis capacity

Ketamine is a non-competitive NMDAR antagonist that
binds with high affinity (Ki= 3.1 µM) to the same binding
site as MK801 and PCP [55–57]. PV interneurons are
activated upon glutamate binding to NMDAR, and subse-
quently inhibit the activity of cortical pyramidal neurons
[58–60]. Therefore, by blocking NMDARs, ketamine is
thought to reduce the activity of PV interneurons and
thereby disinhibit cortical pyramidal neurons, including
neurons that project to subcortical regions to ultimately
disinhibit midbrain dopamine neuron firing [19, 38, 61–
63]. In line with this model of the mechanism of action of
ketamine on the dopaminergic system, ketamine has been
associated with a reduction in PV interneuron function,
excessive glutamate release [64–67] and an increase in
dopamine neuron firing [38, 39, 54]. In addition, lower
GABAergic neural activity leads to a reduction in PV
expression [68, 69] and lower PV expression has been
correlated with a reduction in coordinated neuronal activity
during task performance in rodents [70]. Specifically, PV
may modulate GABA transmitter release by acting as an

antifacilitation factor [71], where at lower PV concentra-
tions, PV is acting as a buffer and at higher concentrations
the free form of PV may become functionally relevant to
have an effect on synaptic dynamics [72–74]. Our findings
that ketamine’s effects can be reduced by activating PV
interneurons and inhibiting midbrain dopamine neurons is
consistent with this model. However, it remains possible
that ketamine has actions on other neuronal populations
that contribute to its effects on striatal dopamine synthesis
capacity. Given the evidence of lower PV levels in the
frontal cortex and hippocampus in schizophrenia [22–25]
and that acute and chronic ketamine administration leads to
lower PV levels in the frontal cortex and hippocampus
[16, 17, 26–29], we targeted both regions in our chemo-
genetics experiment. However, a limitation of targeting
both regions is that we are not able to distinguish the
relative contribution of each region to the effects we
observe. Future work targeting each region separately
would be useful to determine this. In addition, we inves-
tigated the effect of ketamine on PV-positive GABAergic
interneurons because this subtype has been specifically
implicated in schizophrenia pathophysiology [16, 17].
Notwithstanding this, alterations in other interneurons,
particularly somatostatin-positive interneurons, have also
been associated with schizophrenia [75]. However, we did
not see expression changes in cholecystokinin (p > 0.05),
nitric oxide synthase 1 (p > 0.05) or somatostatin (p > 0.05)
in our RNA seq data, suggesting that ketamine does not
have major effects on these interneurons in the PLc,
although we cannot exclude effects in other brain regions.
In contrast, our RNA seq data revealed a significant
increase in the expression of VIPR2 in the PLc. This
extends a previous finding showing this following acute
ketamine administration [76], to indicate that VIPR2
expression is also increased after sub-chronic ketamine
administration. VIPR2 is expressed in somatostatin-
positive interneurons and increases excitability of these
interneurons [76]. This finding highlights that other
GABAergic interneurons may be affected by sub-chronic
ketamine treatment and the need for further work to
determine if expression changes in these interneurons, or
others that we were not able to measure such as calretinin
positive interneurons, contribute to ketamine’s effects on
dopamine regulation and behaviour.

Moreover, there is evidence of direct glutamatergic
projections from the PLc and other frontal regions to the
substantia nigra/VTA that activate dopamine neurons and
increase locomotor behaviour in an NMDAR dependent
manner [77, 78]. The PLc also projects to the lateral
habenula [79, 80], which is another major source of gluta-
matergic projections to the rostromedial tegmental nucleus
[81]. In addition, both the PLc and the vSub activate neu-
rons in the amygdala and related regions including the bed
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nucleus of stria terminalis, which project to and may acti-
vate VTA dopamine neurons [82, 83]. Glutamatergic pro-
jections from the vSub to the nucleus accumbens also
activate midbrain dopamine neurons in an NMDAR
dependent manner through a pathway involving the ventral
pallidum [84]. Furthermore, glutamatergic projections from
the pedunculopontine tegmentum to the VTA also activate
dopamine neurons [85, 86]. Thus, our findings could be
mediated by direct projections from the PLc to midbrain
dopamine neurons and/or one or more indirect pathways.
Whilst this was outside the translational aims of our study,
further work is required to test whether pyramidal neuron
activity is altered in our ketamine model and to characterise
the circuit linking cortical and hippocampal PV inter-
neurons to midbrain dopamine neurons.

Ketamine’s action on receptors other than the NMDAR,
could also contribute to the observed effects [87]. Evidence
suggests that ketamine’s antidepressant effects could be
independent from NMDA receptors expressed in PV inter-
neurons [87] and that deletion of dopamine D2 receptors
from PV interneurons induces hyperlocomotion [88]. In
addition, recent findings indicate that activation of dopa-
mine D1 receptors on pyramidal cells in the prefrontal
cortex and/or the action of a metabolite of ketamine
on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors might contribute to its long-lasting
antidepressant effects [89, 90]. However, ketamine’s affi-
nities at other receptors (range of Ki values= 19–131 μM)
are considerably lower than its affinity for the NMDAR, and
it is not clear if ketamine exhibits significant dopamine
receptor occupancy in vivo at behaviourally relevant doses
[91, 92]. We suggest that the effects of ketamine in our
model likely involve NMDAR blockade, but a contribution
from binding to other receptors cannot be excluded.

Ketamine has a short half-life (13 min) in mice [93] and
brain levels of its main metabolite (2R, 6R)-hydro-
xynorketamine (HNK), are not detectable 4 h post admin-
istration in mice [90, 94, 95]. Our PET and RNASeq
measures were acquired ~48 h following the last ketamine
treatment. Thus, it is unlikely that the observed effects are a
consequence of direct ketamine or HNK action. Previous
studies have shown that ketamine induces a release of
BDNF to increase synaptogenesis [95] and elevates MAPK
signalling [96, 97]. This could present a potential mechan-
ism by which ketamine contributes to the sustained effects
observed in our model.

Interestingly, whilst CNO significantly reduced loco-
motor activity compared with baseline, it had no effect on
dopamine synthesis capacity. It should be noted that loco-
motor activity was measured shortly after CNO adminis-
tration whilst dopamine synthesis capacity was measured
2 days following CNO administration. Electrophysiology

recordings show that dopamine neurons recover quickly
upon washout of CNO from solution [40]. Thus, our find-
ings indicate that CNO does not induce lasting changes in
dopamine synthesis capacity, but is able to block the effects
of ketamine on dopamine synthesis capacity.

A strength of our study is that it utilised a PET imaging
approach that parallels the technique used in human studies
[6, 30, 33], supporting the translational relevance of the
findings. One consideration for chemogenetic approaches is
the cell-type and regional specificity of expression. Injec-
tion of viral constructs in wild-type mice revealed no
detectable expression (Supplementary Fig. 5), and CNO
administration in transgenic mice expressing a control
construct had no effect on the ketamine-induced increase in
dopamine synthesis capacity and locomotor activity. Lim-
itations include that we did not measure other aspects of
dopamine function or investigate other brain regions.
Moreover, we did not test whether the effects of SEP-856
are predominately mediated via TAAR1 agonism and its
action on dopamine neuron firing, or also driven by the
compound’s activities at other receptors [20]. To date SEP-
856 has been tested for binding and/or functional activity
against multiple panels of known molecular targets (ion
channels, G-protein-coupled receptors and enzymes),
demonstrating a range of activities at several receptors [20].
While the most notable functional activity is full agonism
at TAAR1 (EC50 of 0.14 μM), SEP-856 also exhibits
binding and agonist activity at the 5-HT1A receptor (5-
HT1AR), although with lower potency than for TAAR1
(EC50 of 2.3 μM) [20]. Notwithstanding this, attenuation
of PCP induced hyperlocomotion by SEP-856 is partially
blocked by a 5HT1AR antagonist [20], suggesting that its
effects in our ketamine model could be partly mediated by
5HT1AR. Following our translational work, future phar-
macology studies will help elucidate the molecular and
circuit mechanisms by which SEP-856 attenuates the
ketamine-induced increase in striatal dopamine synthesis
capacity.

Implications for understanding the pathophysiology
of schizophrenia and the antidepressant mode of
action of ketamine

PET imaging studies have repeatedly shown elevated
dopamine synthesis and release capacity in schizophrenia
(e.g. [7, 98] and see review [6]), and suggested that this is
linked to the development of psychosis [99, 100] and
changes in cortical glutamate levels [101]. Moreover, cor-
tical and hippocampal PV interneuron density and PV
protein levels have been shown to be reduced in schizo-
phrenia (see meta-analysis [25] and [102]). Ketamine
induces psychotic symptoms in healthy volunteers, and
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worsens symptoms in patients with schizophrenia [14, 15].
Our findings indicate that ketamine’s effect on dopamine
synthesis capacity involves PV-positive interneurons in
regions implicated in schizophrenia. These findings suggest
that inhibition of midbrain dopamine neurons and/or acti-
vation of cortical PV interneurons could represent novel
therapeutic strategies for schizophrenia. Furthermore, our
finding that SEP-856, a novel TAAR1/5HT1A agonist,
reduces sub-chronic ketamine-induced elevation in striatal
dopamine synthesis capacity provides a proof-of-concept
for pharmacological attenuation of presynaptic dopamine
dysfunction. The reduction in PV levels following ketamine
in our model was large (Hedge’s g=−2.29), which com-
pares to a moderate-large effect size (Hedge’s g=−0.61)
reduction in PV-positive neuron immunoreactivity reported
post-mortem in schizophrenia [102]. Thus, our ketamine
model likely induces more marked effects on PV than are
typically seen in schizophrenia.

Lastly, our data may also have implications for
understanding ketamine’s antidepressant actions and its
abuse potential. There is some evidence that major
depression is associated with blunted dopaminergic
function, including reduced levels of dopamine metabo-
lites post-mortem and reduced dopamine synthesis capa-
city [103, 104]. Moreover, animal models mimicking the
neurochemical changes seen in depression exhibit reduced
dopamine neuron population activity [38]. Our findings
that sub-chronic ketamine administration elevates striatal
dopamine synthesis capacity, which persists for several
days post dosing, suggest that this could contribute to
ketamine’s antidepressant actions [48]. The majority of
pre-clinical studies investigating the antidepressant effects
of ketamine used a 10 mg/kg dose of ketamine, but doses
as high as 50 mg/kg have also been used to show
antidepressant-like effects [105–110]. In human studies
the optimal therapeutic dose for ketamine is debated, with
0.5 mg/kg having dissociative, psychotomimetic and
antidepressant effects [111, 112], whilst 0.2 mg/kg is
generally considered sub-therapeutic, although one study
reported positive therapeutic effects with 0.1 mg/kg
[14, 111, 113]. Thus, it would be useful to determine if
lower ketamine doses than we used also result in persis-
tent increases in dopamine synthesis capacity. It should
also be noted that other mechanisms, such as augmenting
ERK1/MAPK signalling and AMPA activity, are also
implicated ketamine’s antidepressant actions [114]. In line
with this and previous findings, we show that sub-chronic
ketamine administration leads to the increase in
the expression of genes involved in the pathway down-
stream of BDNF signalling, such as upregulation of
MAPK3 suggesting this could contribute to ketamine’s
antidepressant effects [96, 97].

Conclusion

We demonstrate that sub-chronic ketamine leads to an
increase in striatal dopamine synthesis capacity in the
mouse, resembling the dopaminergic alteration seen in
patients with schizophrenia. Our data suggest that keta-
mine’s effects on dopamine synthesis capacity are mediated
by inhibition of PV interneurons in the cortex and vSub as
well as activation of midbrain dopamine neurons, and that
these alterations can be attenuated by a TAAR1 agonist
with 5-HT1A activity.
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