Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SALL4, a novel marker for human gastric carcinogenesis and metastasis

Abstract

SALL4, a zinc-finger transcriptional factor for embryonic stem cell self-renewal and pluripotency, has been suggested to be involved in tumorigenesis. The role of SALL4 in human gastric cancer, however, remains largely unknown. In this study, we demonstrated that SALL4 was aberrantly expressed at both mRNA and protein levels in human gastric cancer tissues, and SALL4 level was highly correlated with lymph node metastasis. Enforced expression of SALL4 enhanced the proliferation and migration of human gastric cancer cells, whereas knockdown of SALL4 by siRNA led to the opposite effects. In addition, SALL4 overexpression promoted the growth and metastasis of gastric xenograft tumor in vivo. SALL4 overexpression induced epithelial–mesenchymal transition (EMT) in gastric cancer cells, with increased expression of Twist1, N-cadherin and decreased expression of E-cadherin. Moreover, SALL4 promoted the acquirement of stemness in gastric cancer cells through the induction of Bmi-1 and Lin28B. Taken together, our findings indicate that SALL4 has oncogenic roles in gastric cancer through the modulation of EMT and cell stemness, suggesting SALL4 as a novel target for human gastric cancer diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brenner H, Rothenbacher D, Arndt V . Epidemiology of stomach cancer. Methods Mol Biol 2009; 472: 467–477.

    Article  Google Scholar 

  2. Desai AM, Pareek M, Nightingale PG, Fielding JW . Improving outcomes in gastric cancer over 20 years. Gastric Cancer 2004; 7: 196–201.

    Article  Google Scholar 

  3. Crew KD, Neugut AI . Epidemiology of gastric cancer. World J Gastroenterol 2006; 12: 354–362.

    Article  Google Scholar 

  4. Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel KP et al. A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis 2007; 45: 51–58.

    Article  CAS  Google Scholar 

  5. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006; 444: 364–368.

    Article  CAS  Google Scholar 

  6. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006; 8: 1114–1123.

    Article  CAS  Google Scholar 

  7. Elling U, Klasen C, Eisenberger T, Anlag K, Treier M . Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci USA 2006; 103: 16319–16324.

    Article  CAS  Google Scholar 

  8. Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem 2006; 281: 24090–24094.

    Article  CAS  Google Scholar 

  9. Lim CY, Tam WL, Zhang J, Ang HS, Jia H, Lipovich L et al. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 2008; 3: 543–554.

    Article  CAS  Google Scholar 

  10. Zhou Q, Chipperfield H, Melton DA, Wong WH . A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci USA 2007; 104: 16438–16443.

    Article  CAS  Google Scholar 

  11. Yang J, Gao C, Chai L, Ma Y . A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One 2010; 5: e10766.

    Article  Google Scholar 

  12. Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM et al. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006; 108: 2726–2735.

    Article  CAS  Google Scholar 

  13. Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci USA 2007; 104: 10494–10499.

    Article  CAS  Google Scholar 

  14. Cao D, Humphrey PA, Allan RW . SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer 2009; 115: 2640–2651.

    Article  CAS  Google Scholar 

  15. Kobayashi D, Kuribayshi K, Tanaka M, Watanabe N . SALL4 is essential for cancer cell proliferation and is overexpressed at early clinical stages in breast cancer. Int J Oncol 2011; 38: 933–939.

    CAS  PubMed  Google Scholar 

  16. Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 2013; 57: 1469–1483.

    Article  CAS  Google Scholar 

  17. Ushiku T, Shinozaki A, Shibahara J, Iwasaki Y, Tateishi Y, Funata N et al. SALL4 represents fetal gut differentiation of gastric cancer, and is diagnostically useful in distinguishing hepatoid gastric carcinoma from hepatocellular carcinoma. Am J Surg Pathol 2010; 34: 533–540.

    Article  Google Scholar 

  18. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  Google Scholar 

  19. Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS et al. Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells 2012; 30: 2088–2099.

    Article  CAS  Google Scholar 

  20. Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 2012; 72: 2879–2888.

    Article  CAS  Google Scholar 

  21. Chen Z, Xu WR, Qian H, Zhu W, Bu XF, Wang S et al. Oct4, a novel marker for human gastric cancer. J Surg Oncol 2009; 99: 414–419.

    Article  CAS  Google Scholar 

  22. Lin T, Ding YQ, Li JM . Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol 2012; 29: 878–885.

    Article  CAS  Google Scholar 

  23. Matsuoka J, Yashiro M, Sakurai K, Kubo N, Tanaka H, Muguruma K et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res 2012; 174: 130–135.

    Article  CAS  Google Scholar 

  24. Lee JM, Dedhar S, Kalluri R, Thompson EW . The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973–981.

    Article  CAS  Google Scholar 

  25. Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF et al. BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer 2010; 9: 40.

    Article  CAS  Google Scholar 

  26. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  27. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  28. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823–835.

    Article  CAS  Google Scholar 

  29. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 11154–11159.

    Article  CAS  Google Scholar 

  30. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    Article  CAS  Google Scholar 

  31. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK et al. Identification of local and circulating cancer stem cell in human liver cancer. Hepatology 2008; 47: 919–928.

    Article  CAS  Google Scholar 

  32. Takaishi S, Okumura T, Wang TC . Gastric cancer stem cells. J Clin Oncol 2008; 26: 2876–2882.

    Article  Google Scholar 

  33. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ . Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005; 5: 899–904.

    Article  CAS  Google Scholar 

  34. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  Google Scholar 

  35. Kopper L, Hajdu M . Tumor stem cells. Pathol Oncol Res 2004; 10: 69–73.

    Article  Google Scholar 

  36. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H et al. Sall4 is a key regulator of survival and apoptosis in human leukemic cells. Blood 2008; 112: 805–813.

    Article  CAS  Google Scholar 

  37. Lu J, Jeong H, Kong N, Yang Y, Carroll J, Luo HR et al. Stem cell factor Sall4 represses the transcriptions of Pten and Sall1 through an epigenetic repressor complex. PLoS One 2009; 4: e5577.

    Article  Google Scholar 

  38. Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R . Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J 2009; 23: 1405–1414.

    Article  CAS  Google Scholar 

  39. Giraud AS, Menheniott TR, Judd LM . Targeting STAT3 in gastric cancer. Expert Opin Ther Targets 2012; 16: 889–901.

    Article  CAS  Google Scholar 

  40. Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T et al. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 2004; 23: 4921–4929.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (Grant no. 91129718), the National Natural Science Foundation of China (Grant no. 81071421), the Natural Science Foundation of the Jiangsu Province (Grant no. BK2012709), Jiangsu Province’s Project of Scientific and Technological Innovation and Achievements Transformation (Grant no. BL2012055), Jiangsu Province’s Outstanding Medical Academic Leader and Sci-tech Innovation Team Program (Grant no. LJ201117), Jiangsu Province Doctoral Innovation Fund (Grant no. CXLX12_0678) and Doctoral Program Foundation of State Education Ministry (Grant no. 20113227110011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Qian or W Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Xu, Z., Xu, X. et al. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene 33, 5491–5500 (2014). https://doi.org/10.1038/onc.2013.495

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.495

Keywords

This article is cited by

Search

Quick links