Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model

Abstract

Lysosomal cysteine cathepsins contribute to proteolytic events promoting tumor growth and metastasis. Their enzymatic activity, however, is tightly regulated by endogenous inhibitors. To investigate the role of cathepsin inhibitor stefin B (Stfb) in mammary cancer, Stfb null mice were crossed with transgenic polyoma virus middle T oncogene (PyMT) breast cancer mice. We show that ablation of Stfb resulted in reduced size of mammary tumors but did not affect their rate of metastasis. Importantly, decrease in tumor growth was correlated with an increased incidence of dead cell islands detected in tumors of Stfb-deficient mice. Ex vivo analysis of primary PyMT tumor cells revealed no significant effects of ablation of Stfb expression on proliferation, angiogenesis, migration and spontaneous cell death as compared with control cells. However, upon treatment with the lysosomotropic agent Leu-Leu-OMe, cancer cells lacking Stfb exhibited a significantly higher sensitivity to apoptosis. Moreover, Stfb-ablated tumor cells were significantly more prone to cell death under increased oxidative stress. These results indicate an in vivo role for Stfb in protecting cancer cells by promoting their resistance to oxidative stress and to apoptosis induced through the lysosomal pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gocheva V, Joyce JA . Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007; 6: 60–64.

    Article  CAS  Google Scholar 

  2. Mohamed MM, Sloane BF . Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6: 764–775.

    Article  CAS  Google Scholar 

  3. Turk V, Kos J, Turk B . Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell 2004; 5: 409–410.

    Article  CAS  Google Scholar 

  4. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B . Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 2007; 13: 387–403.

    Article  CAS  Google Scholar 

  5. Turk B, Turk V . Lysosomes as ‘suicide bags’ in cell death: myth or reality? J Biol Chem 2009; 284: 21783–21787.

    Article  CAS  Google Scholar 

  6. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 2012; 1824: 68–88.

    Article  CAS  Google Scholar 

  7. Vasiljeva O, Turk B . Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion. Biochimie 2008; 90: 380–386.

    Article  CAS  Google Scholar 

  8. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006; 20: 543–556.

    Article  CAS  Google Scholar 

  9. Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci USA 2010; 107: 2497–2502.

    Article  CAS  Google Scholar 

  10. Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 2006; 66: 5242–5250.

    Article  CAS  Google Scholar 

  11. Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA . Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 2007; 67: 7378–7385.

    Article  CAS  Google Scholar 

  12. Gopinathan A, Denicola GM, Frese KK, Cook N, Karreth FA, Mayerle J et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 2012; 61: 877–884.

    Article  CAS  Google Scholar 

  13. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004; 5: 443–453.

    Article  CAS  Google Scholar 

  14. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 2011; 6: 594–602.

    Article  CAS  Google Scholar 

  15. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011; 25: 2465–2479.

    Article  CAS  Google Scholar 

  16. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004; 279: 3578–3587.

    Article  CAS  Google Scholar 

  17. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of Bid and antiapoptotic Bcl-2 homologues. J Biol Chem 2008; 283: 19140–19150.

    Article  CAS  Google Scholar 

  18. Stoka V, Turk V, Turk B . Lysosomal cysteine cathepsins: signaling pathways in apoptosis. Biol Chem 2007; 388: 555–560.

    Article  CAS  Google Scholar 

  19. Turk B, Turk D, Salvesen GS . Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 2002; 8: 1623–1637.

    Article  CAS  Google Scholar 

  20. Turk V, Stoka V, Turk D . Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 2008; 13: 5406–5420.

    Article  CAS  Google Scholar 

  21. Turk B, Turk V, Turk D . Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 1997; 378: 141–150.

    CAS  PubMed  Google Scholar 

  22. Alakurtti K, Weber E, Rinne R, Theil G, Haan G-Jd, Lindhout D et al. Loss of lysosomal association of cystatin B proteins representing progressive myoclonus epilepsy, EPM1, mutations. Eur J Hum Genet 2004; 13: 208–215.

    Article  Google Scholar 

  23. Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996; 271: 1731–1734.

    Article  CAS  Google Scholar 

  24. Jedeszko C, Sloane BF . Cysteine cathepsins in human cancer. Biol Chem 2004; 385: 1017–1027.

    Article  CAS  Google Scholar 

  25. Kos J, Krasovec M, Cimerman N, Nielsen HJ, Christensen IJ, Brunner N . Cysteine proteinase inhibitors stefin A, stefin B, and cystatin C in sera from patients with colorectal cancer: relation to prognosis. Clin Cancer Res 2000; 6: 505–511.

    CAS  PubMed  Google Scholar 

  26. Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM . Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 1998; 20: 251–258.

    Article  CAS  Google Scholar 

  27. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  Google Scholar 

  28. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 2001; 276: 3149–3157.

    Article  CAS  Google Scholar 

  29. Bojič L, Petelin A, Stoka V, Reinheckel T, Peters C, Turk V et al. Cysteine cathepsins are not involved in Fas/CD95 signalling in primary skin fibroblasts. FEBS Lett 2007; 581: 5185–5190.

    Article  Google Scholar 

  30. Lehtinen MK, Tegelberg S, Schipper H, Su H, Zukor H, Manninen O et al. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J Neurosci 2009; 29: 5910–5915.

    Article  CAS  Google Scholar 

  31. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P . Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 2004; 53: 209–219.

    Article  CAS  Google Scholar 

  32. Rygiel TP, Mertens AE, Strumane K, van der Kammen R, Collard JG . The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 2008; 121: 1183–1192.

    Article  CAS  Google Scholar 

  33. Repnik U, Turk B . Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 2010; 10: 662–669.

    Article  CAS  Google Scholar 

  34. Goldman R, Kaplan A . Rupture of rat liver lysosomes mediated by L-amino acid esters. Biochim Biophys Acta 1973; 318: 205–216.

    Article  CAS  Google Scholar 

  35. Uchimoto T, Nohara H, Kamehara R, Iwamura M, Watanabe N, Kobayashi Y . Mechanism of apoptosis induced by a lysosomotropic agent, L-Leucyl-L-Leucine methyl ester. Apoptosis 1999; 4: 357–362.

    Article  CAS  Google Scholar 

  36. Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojič L, Krüger A et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 2008; 27: 4191–4199.

    Article  CAS  Google Scholar 

  37. Antunes F, Cadenas E, Brunk UT . Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 2001; 356: 549–555.

    Article  CAS  Google Scholar 

  38. Ishisaka R, Utsumi K, Utsumi T . Involvement of lysosomal cysteine proteases in hydrogen peroxide-induced apoptosis in HL-60 cells. Biosci Biotechnol Biochem 2002; 66: 1865–1872.

    Article  CAS  Google Scholar 

  39. Takahashi T, Kitaoka K, Ogawa Y, Kobayashi T, Seguchi H, Tani T et al. Lysosomal dysfunction on hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes. Int J Mol Med 2004; 14: 197–200.

    CAS  PubMed  Google Scholar 

  40. Yin L, Stearns R, Gonzalez-Flecha B . Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. J Cell Biochem 2005; 94: 433–445.

    Article  CAS  Google Scholar 

  41. Brown NS, Bicknell R . Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 2001; 3: 323–327.

    Article  CAS  Google Scholar 

  42. Szatrowski TP, Nathan CF . Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51: 794–798.

    CAS  Google Scholar 

  43. Toyokuni S, Okamoto K, Yodoi J, Hiai H . Persistent oxidative stress in cancer. FEBS Lett 1995; 358: 1–3.

    Article  CAS  Google Scholar 

  44. Datta K, Babbar P, Srivastava T, Sinha S, Chattopadhyay P . p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol 2002; 34: 148–157.

    Article  CAS  Google Scholar 

  45. Mao Y, Song G, Cai Q, Liu M, Luo H, Shi M et al. Hydrogen peroxide-induced apoptosis in human gastric carcinoma MGC803 cells. Cell Biol Int 2006; 30: 332–337.

    Article  CAS  Google Scholar 

  46. Zuliani T, Denis V, Noblesse E, Schnebert S, Andre P, Dumas M et al. Hydrogen peroxide-induced cell death in normal human keratinocytes is differentiation dependent. Free Radic Biol Med 2005; 38: 307–316.

    Article  CAS  Google Scholar 

  47. Kariya S, Sawada K, Kobayashi T, Karashima T, Shuin T, Nishioka A et al. Combination treatment of hydrogen peroxide and X-rays induces apoptosis in human prostate cancer PC-3 cells. Int J Radiat Oncol Biol Phys 2009; 75: 449–454.

    Article  CAS  Google Scholar 

  48. Kopitar-Jerala N, Schweiger A, Myers RM, Turk V, Turk B . Sensitization of stefin B-deficient thymocytes towards staurosporin-induced apoptosis is independent of cysteine cathepsins. FEBS Lett 2005; 579: 2149–2155.

    Article  CAS  Google Scholar 

  49. Yang F, Tay KH, Dong L, Thorne RF, Jiang CC, Yang E et al. Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIP(L) from degradation by the E3 ligase itch in human melanoma cells. Cell Death Differ 2010; 17: 1354–1367.

    Article  CAS  Google Scholar 

  50. Feldman AS, Banyard J, Wu CL, McDougal WS, Zetter BR . Cystatin B as a tissue and urinary biomarker of bladder cancer recurrence and disease progression. Clin Cancer Res 2009; 15: 1024–1031.

    Article  CAS  Google Scholar 

  51. Yu W, Liu J, Shi MA, Wang J, Xiang M, Kitamoto S et al. Cystatin C deficiency promotes epidermal dysplasia in K14-HPV16 transgenic mice. PLoS ONE 2010; 5: e13973.

    Article  Google Scholar 

  52. Kuopio T, Kankaanranta A, Jalava P, Kronqvist P, Kotkansalo T, Weber E et al. Cysteine proteinase inhibitor cystatin A in breast cancer. Cancer Res 1998; 58: 432–436.

    CAS  PubMed  Google Scholar 

  53. Turk B, Turk D, Turk V . Protease signalling: the cutting edge. EMBO J 2012; 31: 1630–1643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Richard Myers and Len Pennacchio, formerly of Stanford University, for providing with Stfb knockout mouse strain, Georgy Mikhaylov and Matej Vizovisek for their technical and methodological assistance, Eva Zerovnik for valuable discussions and Roger H. Pain for critical reading of the manuscript. This work was supported by the European Commission FP7 grant 201279 (Microenvimet: CP, TR, AK, BT and OV), the Slovenian Research Agency (research grants no. J3-4267 to OV and P1-0140 to BT) and Deutsche Forschungsgemeinschaft SFB 850 project B7 (CP and TR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Vasiljeva.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butinar, M., Prebanda, M., Rajković, J. et al. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 33, 3392–3400 (2014). https://doi.org/10.1038/onc.2013.314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.314

Keywords

This article is cited by

Search

Quick links