Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Star-PAP controls HPV E6 regulation of p53 and sensitizes cells to VP-16

Abstract

Cervical cancer is the most common genital malignancy and the high-risk human papillomaviruses (HPV type 16, 18 and 31, and so on) are major agents for its cause. A key switch for the onset of cervical cancers by HPVs is the cellular degradation of the tumor-suppressor p53 that is mediated by the HPV-generated E6 protein. E6 forms a complex with the E3 ubiquitin-ligase E6-associated protein (E6AP) leading to p53 degradation. The components that control E6 expression and the mechanisms for regulation of the expression in host cells remain undefined. Here we show that the nuclear noncanonical poly(A) polymerase (PAP) speckle targeted PIPKIα regulated PAP (Star-PAP) controls E6 mRNA polyadenylation and expression and modulates wild-type p53 levels as well as cell cycle profile in high-risk HPV-positive cells. In the absence of Star-PAP, treatment of cells with the chemotherapeutic drug VP-16 dramatically reduced E6 and increased p53 levels. This diminished both cell proliferation and anchorage-independent growth required for cancer progression, indicating a synergism between VP-16 treatment and the loss of Star-PAP. This identifies Star-PAP as a potential drug target for the treatment of HPV-positive cancer cells. These data provide a mechanistic basis for increasing the sensitivity and efficiency of chemotherapy in the treatment of cancers that have low levels of wild-type p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T et al. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest 2011; 121: 893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sigal A, Rotter V . Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 2000; 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  3. Munger K, Howley PM . Human papillomavirus immortalization and transformation functions. Virus Res 2002; 89: 213–228.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider-Gadicke A, Schwarz E . Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J 1986; 5: 2285–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinther J, Rosenstierne MW, Kristiansen K, Norrild B . The 3' region of human papillomavirus type 16 early mRNAs decrease expression. BMC Infect Dis 2005; 5: 83.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA 1993; 90: 3988–3992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, McKalip A, Herman B . Human papillomavirus type 16 E6 and HPV-16 E6/E7 sensitize human keratinocytes to apoptosis induced by chemotherapeutic agents: roles of p53 and caspase activation. J Cell Biochem 2000; 78: 334–349.

    Article  CAS  PubMed  Google Scholar 

  8. Wesierska-Gadek J, Schloffer D, Kotala V, Horky M . Escape of p53 protein from E6-mediated degradation in HeLa cells after cisplatin therapy. Int J Cancer 2002; 101: 128–136.

    Article  CAS  PubMed  Google Scholar 

  9. Martins CP, Brown-Swigart L, Evan GI . Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006; 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  10. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  12. Sauter ER, Takemoto R, Litwin S, Herlyn M . p53 alone or in combination with antisense cyclin D1 induces apoptosis and reduces tumor size in human melanoma. Cancer Gene Ther 2002; 9: 807–812.

    Article  CAS  PubMed  Google Scholar 

  13. Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C et al. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 2008; 451: 1013–1017.

    Article  CAS  PubMed  Google Scholar 

  14. Laishram RS, Anderson RA . The poly A polymerase Star-PAP controls 3'-end cleavage by promoting CPSF interaction and specificity toward the pre-mRNA. EMBO J 2010; 29: 4132–4145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li W, Laishram RS, Ji Z, Barlow CA, Tian B, Anderson RA . Star-PAP control of BIK expression and apoptosis is regulated by nuclear PIPKIalpha and PKCdelta signaling. Mol Cell 2012; 45: 25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laishram RS, Barlow CA, Anderson RA . CKI isoforms alpha and epsilon regulate Star-PAP target messages by controlling Star-PAP poly(A) polymerase activity and phosphoinositide stimulation. Nucleic Acids Res 2011; 39: 7961–7973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gonzales ML, Mellman DL, Anderson RA . CKIalpha is associated with and phosphorylates star-PAP and is also required for expression of select star-PAP target messenger RNAs. J Biol Chem 2008; 283: 12665–12673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M . Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 2001; 98: 1218–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koivusalo R, Krausz E, Helenius H, Hietanen S . Chemotherapy compounds in cervical cancer cells primed by reconstitution of p53 function after short interfering RNA-mediated degradation of human papillomavirus 18 E6 mRNA: opposite effect of siRNA in combination with different drugs. Mol Pharmacol 2005; 68: 372–382.

    CAS  PubMed  Google Scholar 

  20. Tang S, Tao M, McCoy JP, Zheng ZM . The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol 2006; 80: 4249–4263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sotlar K, Stubner A, Diemer D, Menton S, Menton M, Dietz K et al. Detection of high-risk human papillomavirus E6 and E7 oncogene transcripts in cervical scrapes by nested RT-polymerase chain reaction. J Med Virol 2004; 74: 107–116.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng ZM, Baker CC . Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 2006; 11: 2286–2302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fiedler M, Muller-Holzner E, Viertler HP, Widschwendter A, Laich A, Pfister G et al. High level HPV-16 E7 oncoprotein expression correlates with reduced pRb-levels in cervical biopsies. FASEB J 2004; 18: 1120–1122.

    Article  CAS  PubMed  Google Scholar 

  24. Lappalainen K, Pirila L, Jaaskelainen I, Syrjanen K, Syrjanen S . Effects of liposomal antisense oligonucleotides on mRNA and protein levels of the HPV 16 E7 oncogene. Anticancer Res 1996; 16: 2485–2492.

    CAS  PubMed  Google Scholar 

  25. Oh KJ, Kalinina A, Park NH, Bagchi S . Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein. J Virol 2006; 80: 7079–7088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reinstein E, Scheffner M, Oren M, Ciechanover A, Schwartz A . Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 2000; 19: 5944–5950.

    Article  CAS  PubMed  Google Scholar 

  27. Kanduc D . Translational regulation of human papillomavirus type 16 E7 mRNA by the peptide SEQIKA, shared by rabbit alpha(1)-globin and human cytokeratin 7. J Virol 2002; 76: 7040–7048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salles FJ, Strickland S . Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl 1995; 4: 317–321.

    Article  CAS  PubMed  Google Scholar 

  29. Murray EL, Schoenberg DR . Assays for determining poly(A) tail length and the polarity of mRNA decay in mammalian cells. Methods Enzymol 2008; 448: 483–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  31. Skladanowski A, Larsen AK . Expression of wild-type p53 increases etoposide cytotoxicity in M1 myeloid leukemia cells by facilitated G2 to M transition: implications for gene therapy. Cancer Res 1997; 57: 818–823.

    CAS  PubMed  Google Scholar 

  32. Clifford B, Beljin M, Stark GR, Taylor WR . G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 2003; 63: 4074–4081.

    CAS  PubMed  Google Scholar 

  33. Li W, Kotoshiba S, Berthet C, Hilton MB, Kaldis P . Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G1/S transition. Proc Natl Acad Sci USA 2009; 106: 486–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R . Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res 2007; 100: 79–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Anderson laboratory for discussion and comments, and thank Dr Paul F Lambert’s laboratory at UW-Madison for SiHa and CaSki cell lines. This work was supported by a grant (GM051968) from the US National Institutes of Health and a Scientist Development Grant (12SDG12100035) from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Anderson, R. Star-PAP controls HPV E6 regulation of p53 and sensitizes cells to VP-16. Oncogene 33, 928–932 (2014). https://doi.org/10.1038/onc.2013.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.14

Keywords

This article is cited by

Search

Quick links