Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Many forks in the path: cycling with FoxO

Abstract

FoxO transcription factors are an evolutionary conserved subfamily of the forkhead transcription factors, characterized by the forkhead DNA-binding domain. FoxO factors regulate a number of cellular processes involved in cell-fate decisions in a cell-type- and environment-specific manner, including metabolism, differentiation, apoptosis and proliferation. A key mechanism by which FoxO determines cell fate is through regulation of the cell cycle machinery, and as such the cellular consequence of FoxO deregulation is often manifested through perturbation of the cell cycle. Consequently, the deregulation of FoxO factors is implicated in the development of numerous proliferative diseases, in particular cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA . (2007). The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology 132: 1434–1446.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Martinez AC, Burgering BM, Carrera AC . (2001). Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature 413: 744–747.

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Nakajima Y, Eto K, Ikeda MA . (2003). Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter. Oncogene 22: 7632–7641.

    Article  CAS  PubMed  Google Scholar 

  • Bandara LR, Lam EW, Sorensen TS, Zamanian M, Girling R, La Thangue NB . (1994). DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J 13: 3104–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C et al. (1994). CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 9: 71–79.

    CAS  PubMed  Google Scholar 

  • Baugh LR, Sternberg PW . (2006). DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C.elegans L1 arrest. Curr Biol 16: 780–785.

    Article  CAS  PubMed  Google Scholar 

  • Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D et al. (2006a). DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem 281: 8675–8685.

    Article  CAS  PubMed  Google Scholar 

  • Bhonde MR, Hanski ML, Notter M, Gillissen BF, Daniel PT, Zeitz M et al. (2006b). Equivalent effect of DNA damage-induced apoptotic cell death or long-term cell cycle arrest on colon carcinoma cell proliferation and tumour growth. Oncogene 25: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Birkenkamp KU, Essafi A, van der Vos KE, da Costa M, Hui RC, Holstege F et al. (2007). FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J Biol Chem 282: 2211–2220.

    Article  CAS  PubMed  Google Scholar 

  • Boxem M, van den Heuvel S . (2001). lin-35 Rb and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C.elegans. Development 128: 4349–4359.

    CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME . (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21: 952–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Burgering BM, Kops GJ . (2002). Cell cycle and death control: long live forkheads. Trends Biochem Sci 27: 352–360.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J . (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT . (2000a). Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. (2000b). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J et al. (2000). Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 275: 21960–21968.

    Article  CAS  PubMed  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton S . (1992). Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delpuech O, Griffiths B, East P, Essafi A, Lam EW, Burgering B et al. (2007). Induction of Mxi1-SR{alpha} by FOXO3a contributes to repression of Myc-dependent gene expression. Mol Cell Biol 27: 4917–4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . (2000a). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  • Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. (2000b). Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20: 9138–9148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. (2005). Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24: 2317–2329.

    Article  CAS  PubMed  Google Scholar 

  • Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC . (2005). Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184.

    Article  CAS  PubMed  Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL et al. (2004). FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23: 4802–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS et al. (2004). FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 24: 10058–10071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruehauf JP, Meyskens Jr FL . (2007). Reactive oxygen species: a breath of life or death? Clin Cancer Res 13: 789–794.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa Y, Terui Y, Sakoe K, Ohta M, Saito M . (1994). The role of cellular transcription factor E2F in the regulation of cdc2 mRNA expression and cell cycle control of human hematopoietic cells. J Biol Chem 269: 26249–26258.

    CAS  PubMed  Google Scholar 

  • Giacinti C, Giordano A . (2006). RB and cell cycle progression. Oncogene 25: 5220–5227.

    Article  CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L . (2004). Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305: 361.

    Article  CAS  PubMed  Google Scholar 

  • Giles GI . (2006). The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des 12: 4427–4443.

    Article  CAS  PubMed  Google Scholar 

  • Gille H, Downward J . (1999). Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 274: 22033–22040.

    Article  CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A et al. (2006). A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 103: 12747–12752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Brunet A . (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Holz GG, Chepurny OG . (2005). Diabetes outfoxed by GLP-1? Sci STKE 2005: pe2.

    PubMed  PubMed Central  Google Scholar 

  • Huang H, Regan KM, Lou Z, Chen J, Tindall DJ . (2006). CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314: 294–297.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Tindall DJ . (2007). Dynamic FoxO transcription factors. J Cell Sci 120: 2479–2487.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP . (2003). FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278: 35959–35967.

    Article  CAS  PubMed  Google Scholar 

  • Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. (2006). Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66: 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM et al. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 18: 830–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama K, Nakamura A, Sugimoto Y, Tsuruo T, Fujita N . (2007). FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene [e-pub ahead of print: 17 September 2007; doi:10.1038/sj.onc1210813].

  • Kaufmann WK . (1995). Cell cycle checkpoints and DNA repair preserve the stability of the human genome. Cancer Metastasis Rev 14: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV et al. (2006). The forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66: 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K et al. (2005). SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16: 237–243.

    CAS  PubMed  Google Scholar 

  • Kokkinakis DM, Brickner AG, Kirkwood JM, Liu X, Goldwasser JE, Kastrama A et al. (2006). Mitotic arrest, apoptosis, and sensitization to chemotherapy of melanomas by methionine deprivation stress. Mol Cancer Res 4: 575–589.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al. (2002a). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ et al. (2002b). Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 22: 2025–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer JM, Davidge JT, Lockyer JM, Staveley BE . (2003). Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol 3: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC et al. (2007). The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther 6: 3169–3179.

    Article  CAS  PubMed  Google Scholar 

  • Krupczak-Hollis K, Wang X, Dennewitz MB, Costa RH . (2003). Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1b. Hepatology 38: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  • Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY et al. (2005). Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25: 3752–3762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam EW, Francis RE, Petkovic M . (2006). FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 34: 722–726.

    Article  CAS  PubMed  Google Scholar 

  • Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Leevers SJ, Vanhaesebroeck B, Waterfield MD . (1999). Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11: 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF et al. (2006). FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66: 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  • Lobrich M, Jeggo PA . (2007). The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7: 861–869.

    Article  CAS  PubMed  Google Scholar 

  • Lukas J, Lukas C, Bartek J . (2004). Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3: 997–1007.

    Article  CAS  Google Scholar 

  • Luscher-Firzlaff JM, Lilischkis R, Luscher B . (2006). Regulation of the transcription factor FOXM1c by cyclin E/CDK2. FEBS Lett 580: 1716–1722.

    Article  CAS  PubMed  Google Scholar 

  • Macaluso M, Montanari M, Giordano A . (2006). Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25: 5263–5267.

    Article  CAS  PubMed  Google Scholar 

  • Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM et al. (2006). The forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 281: 25167–25176.

    Article  CAS  PubMed  Google Scholar 

  • Maiyar AC, Huang AJ, Phu PT, Cha HH, Firestone GL . (1996). p53 stimulates promoter activity of the sgk. serum/glucocorticoid-inducible serine/threonine protein kinase gene in rodent mammary epithelial cells. J Biol Chem 271: 12414–12422.

    Article  CAS  PubMed  Google Scholar 

  • Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, Permutt MA . (2006). Glucose regulates Foxo1 through insulin receptor signaling in the pancreatic islet beta-cell. Diabetes 55: 1581–1591.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gac L, Marques M, Garcia Z, Campanero MR, Carrera AC . (2004). Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol 24: 2181–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF et al. (1992). Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Meyerson M, Harlow E . (1994). Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14: 2077–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaki M, Kuroki T . (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 306: 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Modur V, Nagarajan R, Evers BM, Milbrandt J . (2002). FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277: 47928–47937.

    Article  CAS  PubMed  Google Scholar 

  • Molinari M . (2000). Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N . (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 273: 29864–29872.

    Article  CAS  PubMed  Google Scholar 

  • Myatt SS, Lam EW . (2007a). Promiscuous and lineage-specific roles of cell cycle regulators in haematopoiesis. Cell Div 2: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myatt SS, Lam EW . (2007b). The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR . (2000). Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20: 8969–8982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR . (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, Woodruff TK et al. (2005). Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad. J Biol Chem 280: 9135–9148.

    Article  CAS  PubMed  Google Scholar 

  • Pinkston-Gosse J, Kenyon C . (2007). DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39: 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR . (2002). A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M . (1995). Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res 55: 1639–1642.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Ericson K . (2006). Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW et al. (2002). Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22: 7842–7852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt E, Beauchemin M, Bertrand R . (2007). Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint. Oncogene 26: 5851–5865.

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K et al. (1995). Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 92: 11264–11268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ . (2001). Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J Biol Chem 276: 33554–33560.

    Article  CAS  PubMed  Google Scholar 

  • Sears R, Ohtani K, Nevins JR . (1997). Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol Cell Biol 17: 5227–5235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Shan B, Chang CY, Jones D, Lee WH . (1994). The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol Cell Biol 14: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (1995). Mammalian G1 cyclins and cell cycle progression. Proc Assoc Am Physicians 107: 181–186.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY et al. (1996). Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384: 470–474.

    Article  CAS  PubMed  Google Scholar 

  • Soeiro I, Mohamedali A, Romanska HM, Lea NC, Child ES, Glassford J et al. (2006). p27Kip1 and p130 cooperate to regulate hematopoietic cell proliferation in vivo. Mol Cell Biol 26: 6170–6184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark GR, Taylor WR . (2006). Control of the G2/M transition. Mol Biotechnol 32: 227–248.

    Article  CAS  PubMed  Google Scholar 

  • Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278: 49795–49805.

    Article  CAS  PubMed  Google Scholar 

  • Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ et al. (2006). Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 66: 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Swarbrick A, Akerfeldt MC, Lee CS, Sergio CM, Caldon CE, Hunter LJ et al. (2005). Regulation of cyclin expression and cell cycle progression in breast epithelial cells by the helix-loop-helix protein Id1. Oncogene 24: 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Lu Z, Goto T, Fusi L, Higham J, Francis J et al. (2007). Transcriptional cross-talk between the forkhead transcription factor FOXO1 and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol 21: 2334–2349.

    Article  CAS  PubMed  Google Scholar 

  • Tang TT, Dowbenko D, Jackson A, Toney L, Lewin DA, Dent AL et al. (2002). The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem 277: 14255–14265.

    Article  CAS  PubMed  Google Scholar 

  • Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG . (2002). FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 62: 4773–4780.

    CAS  PubMed  Google Scholar 

  • Teyssier F, Bay JO, Dionet C, Verrelle P . (1999). [Cell cycle regulation after exposure to ionizing radiation]. Bull Cancer 86: 345–357.

    CAS  PubMed  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128: 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ., DiStefano PS et al. (2002). DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296: 530–534.

    Article  CAS  PubMed  Google Scholar 

  • van der Heide LP, Smidt MP . (2005). Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30: 81–86.

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, Burgering BM . (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440–450.

    Article  CAS  PubMed  Google Scholar 

  • Vogt PK, Jiang H, Aoki M . (2005). Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4: 908–913.

    Article  CAS  PubMed  Google Scholar 

  • Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. (2005). Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25: 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bhattacharyya D, Dennewitz MB, Kalinichenko VV, Zhou Y, Lepe R et al. (2003). Rapid hepatocyte nuclear translocation of the forkhead box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr 11: 149–162.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gorospe M, Huang Y, Holbrook NJ . (1997). p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 15: 2991–2997.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kiyokawa H, Dennewitz MB, Costa RH . (2002a). The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 99: 16881–16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Krupczak-Hollis K, Tan Y, Dennewitz MB, Adami GR, Costa RH . (2002b). Increased hepatic forkhead box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J Biol Chem 277: 44310–44316.

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H . (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645–658.

    Article  CAS  PubMed  Google Scholar 

  • Wierstra I, Alves J . (2006). Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol Chem 387: 949–962.

    CAS  PubMed  Google Scholar 

  • Wonsey DR, Follettie MT . (2005). Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65: 5181–5189.

    Article  CAS  PubMed  Google Scholar 

  • Woods YL, Rena G, Morrice N, Barthel A, Becker W, Guo S et al. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355: 597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Shen ZZ, Lu JS, Jiang M, Han QX, Fontana JA et al. (1999). Prognostic role of p27Kip1 and apoptosis in human breast cancer. Br J Cancer 79: 1572–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WS . (2006). The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25: 695–705.

    Article  CAS  PubMed  Google Scholar 

  • Wymann MP, Marone R . (2005). Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA . (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541–5552.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhao R, Yang HY, Lee MH . (2005). Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene 24: 1924–1935.

    Article  CAS  PubMed  Google Scholar 

  • Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M et al. (1996). Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med 2: 1140–1143.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Wang IC, Yoder HM, Davidson NO, Costa RH . (2007). The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology 132: 1420–1431.

    Article  CAS  PubMed  Google Scholar 

  • Zhao HH, Herrera RE, Coronado-Heinsohn E, Yang MC, Ludes-Meyers JH, Seybold-Tilson KJ et al. (2001). Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem 276: 27907–27912.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E W-F Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, K., Myatt, S. & Lam, EF. Many forks in the path: cycling with FoxO. Oncogene 27, 2300–2311 (2008). https://doi.org/10.1038/onc.2008.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.23

Keywords

Search

Quick links