Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin and hnRNP U cooperate for productive transcription by RNA polymerase II

Abstract

To determine the role of actin–ribonucleoprotein complexes in transcription, we set out to identify novel actin-binding proteins associated with RNA polymerase II (Pol II). Using affinity chromatography on fractionated HeLa cells, we found that hnRNP U binds actin through a short amino acid sequence in its C-terminal domain. Post-transcriptional gene silencing of hnRNP U and nuclear microinjections of a short peptide encompassing the hnRNP U actin-binding sequence inhibited BrUTP incorporation in vivo. In living cells, we found that both actin and hnRNP U are associated with the phosphorylated C-terminal domain of Pol II, and antibodies to actin and hnRNP U blocked Pol II–mediated transcription. Taken together, our results indicate that a general actin-based mechanism is implicated in the transcription of most Pol II genes. Actin in complex with hnRNP U may carry out its regulatory role during the initial phases of transcription activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin binds the C-terminal domain of hnRNP U.
Figure 2: The actin-hnRNP U interaction takes place through a conserved motif located in the C-terminal domain of hnRNP U.
Figure 3: Post-transcriptional gene silencing of hnRNP U produces a considerable decrease in BrUTP incorporation.
Figure 4: In vivo disruption of the actin-hnRNP U interaction inhibits transcription.
Figure 5: Actin and hnRNP U are associated with the Pol II phosphoCTD in living cells.

Similar content being viewed by others

References

  1. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  Google Scholar 

  2. Hahn, S. Structure and mechanism of the RNA polymerase II machinery. Nat. Struct. Mol. Biol. 11, 394–403 (2004).

    Article  CAS  Google Scholar 

  3. Sims III, R.J., Mandal, S.S. & Reinberg, D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263–271 (2004).

    Article  CAS  Google Scholar 

  4. Green, M.R. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25, 59–63 (2000).

    Article  CAS  Google Scholar 

  5. O'Brien, T., Hardin, S., Greenleaf, A. & Lis, J.T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75–77 (1994).

    Article  CAS  Google Scholar 

  6. Lu, H., Zawel, L., Fisher, L., Egly, J.M. & Reinberg, D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358, 641–645 (1992).

    Article  CAS  Google Scholar 

  7. Marshall, N.F., Peng, J., Xie, Z. & Price, D.H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996).

    Article  CAS  Google Scholar 

  8. Orphanides, G. & Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–475 (2000).

    Article  CAS  Google Scholar 

  9. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  10. Shilatifard, A., Conaway, R.C. & Conaway, J.W. The RNA polymerase II elongation complex. Annu. Rev. Biochem. 72, 693–715 (2003).

    Article  CAS  Google Scholar 

  11. Arndt, K.M. & Kane, C.M. Running with RNA polymerase: eukaryotic transcript elongation. Trends Genet. 19, 543–550 (2003).

    Article  CAS  Google Scholar 

  12. Hager, G.L, Nagaich, A.K., Johnson, T.A., Walker, D.A. & John, S. Dynamics of nuclear receptor movement and transcription. Biochim. Biophys. Acta 1677, 46–51 (2004).

    Article  CAS  Google Scholar 

  13. Bentley, D. The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell Biol. 14, 336–342 (2002).

    Article  CAS  Google Scholar 

  14. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  Google Scholar 

  15. Carty, S.M. & Greenleaf, A. Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing. Mol. Cell Proteomics 8, 598–610 (2002).

    Article  Google Scholar 

  16. Shav-Tal, Y. & Zipori, D. PSF and p54nrb/NonO—multifunctional nuclear proteins. FEBS Lett. 531, 109–114 (2002).

    Article  CAS  Google Scholar 

  17. Emili, A. et al. Splicing and transcription-associated proteins PSF and p54nrb/NonO bind to the RNA polymerase II CTD. RNA 8, 1102–1111 (2002).

    Article  CAS  Google Scholar 

  18. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  Google Scholar 

  19. Kiledjian, M. & Dreyfuss, G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 11, 2655–2664 (1992).

    Article  CAS  Google Scholar 

  20. Martens, J.H.A., Verlaan, M., Kalkhoven, E., Dorsman, J.C. & Zantema, A. scaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes. Mol. Cell. Biol. 22, 2598–2606 (2002).

    Article  CAS  Google Scholar 

  21. Romig, H., Fackelmayer, F.O., Renz, A., Ramsperger, U. & Richter, A. Characterization of SAF-A, a novel nuclear DNA-binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J. 11, 3431–3440 (1992).

    Article  CAS  Google Scholar 

  22. Fackelmayer, F.O., Dahm, K., Renz, A., Ramsperger, U. & Richter, A. Nucleic-acid-binding properties of hnRNP U/SAF-A, a nuclear matrix protein which binds DNA and RNA in vivo and in vitro. Eur. J. Biochem. 221, 749–757 (1994).

    Article  CAS  Google Scholar 

  23. Olave, I.A., Reck-Peterson, S.L. & Crabtree, G. Nuclear actin and actin-related proteins in chromatin remodelling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  Google Scholar 

  24. Bettinger, B.T., Gilbert, D.M. & Amberg, D.C. Actin up in the nucleus. Nat. Rev. Mol. Cell Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  25. Percipalle, P. et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229–235 (2001).

    Article  CAS  Google Scholar 

  26. Percipalle, P. et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 30, 1725–1734 (2002).

    Article  CAS  Google Scholar 

  27. Scheer, U., Hinssen, H., Franke, W.W. & Jockusch, B.M. Microinjections of actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111–122 (1984).

    Article  CAS  Google Scholar 

  28. Egly, J.M., Miyamoto, N.G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371 (1984).

    Article  CAS  Google Scholar 

  29. Zhu, X., Zeng, X., Huang, B. & Hao, S. Actin is closely associated with RNA polymerase II and involved in activation of gene transcription. Biochem. Biophys. Res. Commun. 321, 623–630 (2004).

    Article  CAS  Google Scholar 

  30. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  31. Kim, M.K. & Nikodem, V.M. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol. Cell. Biol. 19, 6833–6844 (1999).

    Article  CAS  Google Scholar 

  32. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  33. Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    Article  CAS  Google Scholar 

  34. Maldonado, E. et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86–89 (1996).

    Article  CAS  Google Scholar 

  35. Mortillaro, M.J. & Berezney, R. Matrin CYP, an SR-rich cyclophilin that associates with the nuclear matrix and splicing factors. J. Biol. Chem. 273, 8183–8192 (1998).

    Article  CAS  Google Scholar 

  36. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    Article  CAS  Google Scholar 

  37. Wada, T. et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol. Cell 5, 1067–1072 (2000).

    Article  CAS  Google Scholar 

  38. Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol. 140, 3–9 (2003).

    Article  Google Scholar 

  39. Andrin, C. & Hendzel, M.J. F-actin dependent insolubility of chromatin modifying components. J. Biol. Chem. 279, 25017–25023 (2004).

    Article  CAS  Google Scholar 

  40. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signalling. Cell 95, 625–636 (1998).

    Article  CAS  Google Scholar 

  41. Mattern, K.A., van Goetherm, R.E., de Jong, L. & van Driel, R. Major internal nuclear matrix proteins are common to different human cell types. J. Cell. Biochem. 65, 42–52 (1997).

    Article  CAS  Google Scholar 

  42. Mortillaro, M.J. et al. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93, 8253–8257 (1996).

    Article  CAS  Google Scholar 

  43. Jonsson, A.P. et al. Recovery of gel-separated proteins for in-solution digestion and mass spectrometry. Anal. Chem. 73, 5370–5377 (2001).

    Article  CAS  Google Scholar 

  44. Fomproix, N. & Percipalle, P. An actin–myosin complex on actively transcribing genes. Exp. Cell Res. 294, 140–148 (2004).

    Article  CAS  Google Scholar 

  45. Haukenes, G., Szilvay, A.M., Brokstad, K.A., Kanestrom, A. & Kalland, K.H. Labeling of RNA transcripts of eukaryotic cells in culture with BrUTP using a liposome transfection reagent (DOTAP). Biotechniques 22, 308–312 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Daneholt, N. Visa and D. Nashchekin for critically reading this manuscript. This work was supported by grants from the Swedish Research Council, the Swedish Cancer Society (project 4159), the Lars Hiertas Minne Foundation and the Jeansson Foundation to P.P. A.K. is a recipient of a doctoral fellowship from the Swedish Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Percipalle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Post-transcriptional gene silencing of hnRNP U by RNAi. (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukalev, A., Nord, Y., Palmberg, C. et al. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12, 238–244 (2005). https://doi.org/10.1038/nsmb904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing