Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion

Abstract

The archaeal/eukaryotic tyrosyl-tRNA synthetase (TyrRS)–tRNATyr pairs do not cross-react with their bacterial counterparts. This 'orthogonal' condition is essential for using the archaeal pair to expand the bacterial genetic code. In this study, the structure of the Methanococcus jannaschii TyrRS–tRNATyrL-tyrosine complex, solved at a resolution of 1.95 Å, reveals that this archaeal TyrRS strictly recognizes the C1-G72 base pair, whereas the bacterial TyrRS recognizes the G1-C72 in a different manner using different residues. These diverse tRNA recognition modes form the basis for the orthogonality. The common tRNATyr identity determinants (the discriminator, A73 and the anticodon residues) are also recognized in manners different from those of the bacterial TyrRS. Based on this finding, we created a mutant TyrRS that aminoacylates the amber suppressor tRNA with C34 65 times more efficiently than does the wild-type enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the sequences of tRNATyr species and TyrRSs among the three primary kingdoms of life.
Figure 2: Structure of the M. jannaschii TyrRS–tRNATyr–tyrosine complex.
Figure 3: Comparison of the overall structures of TyrRSs.
Figure 4: Acceptor arm recognition by TyrRSs.
Figure 5: Anticodon recognition by TyrRSs.
Figure 6: Protein residues proximal to the side chain of L-tyrosine.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Koide, H. et al. Biosynthesis of a protein containing a nonprotein amino acid by Escherichia coli: L-2-aminohexanoic acid at position 21 in human epidermal growth factor. Proc. Natl. Acad. Sci. USA 85, 6237–6241 (1988).

    Article  CAS  Google Scholar 

  2. Nowak, M.W. et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268, 439–442 (1995).

    Article  CAS  Google Scholar 

  3. Short, G.F. III et al. Probing the S1/S1′ substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues. Biochemistry 39, 8768–8781 (2000).

    Article  CAS  Google Scholar 

  4. Chin, J.W. et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  5. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    Article  CAS  Google Scholar 

  6. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  7. Yabuki, T. et al. Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J. Biomol. NMR 11, 295–306 (1998).

    Article  CAS  Google Scholar 

  8. Lu, W., Gong, D., Bar-Sagi, D. & Cole, P.A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769 (2001).

    Article  CAS  Google Scholar 

  9. Wang, L. & Schultz, P.G. Expanding the genetic code. Chem. Commun. (Camb.) 1, 1–11 (2002).

    Article  Google Scholar 

  10. Furter, R. Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci. 7, 419–426 (1998).

    Article  CAS  Google Scholar 

  11. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  12. Wang, L., Brock, A. & Schultz, P.G. Adding L-3-(2-naphthyl)alanine to the genetic code of E. coli. J. Am. Chem. Soc. 124, 1836–1837 (2002).

    Article  CAS  Google Scholar 

  13. Santoro, S.W., Wang, L., Herberich, B., King, D.S. & Schultz, P.G. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20, 1044–1048 (2002).

    Article  CAS  Google Scholar 

  14. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  Google Scholar 

  15. Kiga, D. et al. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc. Natl. Acad. Sci. USA 99, 9715–9720 (2002).

    Article  CAS  Google Scholar 

  16. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    Article  CAS  Google Scholar 

  17. Chow, C.M. & RajBhandary, U.L. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis. J. Biol. Chem. 268, 12855–12863 (1993).

    CAS  PubMed  Google Scholar 

  18. Quinn, C.L., Tao, N. & Schimmel, P. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair. Biochemistry 34, 12489–12495 (1995).

    Article  CAS  Google Scholar 

  19. Fechter, P., Rudinger-Thirion, J., Tukalo, M. & Giegé, R. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNATyr are conserved but expressed differently. Eur. J. Biochem. 268, 761–767 (2001).

    Article  CAS  Google Scholar 

  20. Wang, L., Magliery, T.J, Liu, D.R. & Schultz, P.G. A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. J. Am. Chem. Soc. 122, 5010–5011 (2000).

    Article  CAS  Google Scholar 

  21. Giegé, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  Google Scholar 

  22. Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of eukarya, archaea, and bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002).

    Article  CAS  Google Scholar 

  23. Himeno, H., Hasegawa, T., Ueda, T., Watanabe, K. & Shimizu, M. Conversion of aminoacylation specificity from tRNATyr to tRNASerin vitro. Nucleic Acids Res. 18, 6815–6819 (1990).

    Article  CAS  Google Scholar 

  24. Lee, C.P. & RajBhandary, U.L. Mutants of Escherichia coli initiator tRNA that are aminoacylated with tyrosine by yeast extracts. Proc. Natl. Acad. Sci. USA 88, 11378–11382 (1991).

    Article  CAS  Google Scholar 

  25. Fechter, P., Rudinger-Thirion, J., Théobald-Dietrich, A. & Giegé, R. Identity of tRNA for yeast tyrosyl-tRNA synthetase: tyrosylation is more sensitive to identity nucleotides than to structural features. Biochemistry 39, 1725–1733 (2000).

    Article  CAS  Google Scholar 

  26. Brick, P., Bhat, T.N. & Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208, 83–98 (1989).

    Article  CAS  Google Scholar 

  27. Qiu, X. et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 10, 2008–2016 (2001).

    Article  CAS  Google Scholar 

  28. Yaremchuk, A., Kriklivyi, I., Tukalo, M. & Cusack, S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 21, 3829–3840 (2002).

    Article  CAS  Google Scholar 

  29. Yang, X.L., Skene, R.J., McRee, D.E. & Schimmel, P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc. Natl. Acad. Sci. USA 99, 15369–15374 (2002).

    Article  CAS  Google Scholar 

  30. Steer, B.A. & Schimmel, P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. J. Biol. Chem. 274, 35601–35606 (1999).

    Article  CAS  Google Scholar 

  31. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  Google Scholar 

  32. Starzyk, R.M., Webster, T.A. & Schimmel, P. Evidence for dispensable sequences inserted into a nucleotide fold. Science 237, 1614–1618 (1987).

    Article  CAS  Google Scholar 

  33. Ruff, M. et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  34. Rould, M.A., Perona, J.J., Söll, D. & Steitz, T.A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science 246, 1135–1142 (1989).

    Article  CAS  Google Scholar 

  35. Wakasugi, K., Quinn, C.L., Tao, N. & Schimmel, P. Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. EMBO J. 17, 297–305 (1998).

    Article  CAS  Google Scholar 

  36. Steer, B.A. & Schimmel, P. Domain-domain communication in a miniature archaebacterial tRNA synthetase. Proc. Natl. Acad. Sci. USA 96, 13644–13649 (1999).

    Article  CAS  Google Scholar 

  37. van Tol, H., Stange, N., Gross, H.J. & Beier, H. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6, 35–41 (1987).

    Article  CAS  Google Scholar 

  38. Brick, P. & Blow, D.M. Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine. J. Mol. Biol. 194, 287–297 (1987).

    Article  CAS  Google Scholar 

  39. Zhang, D., Vaidehi, N., Goddard, W.A. III, Danzer, J.F. & Debe, D. Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine. Proc. Natl. Acad. Sci. USA 99, 6579–6584 (2002).

    Article  CAS  Google Scholar 

  40. Fechter, P., Rudinger, J., Giegé, R. & Théobald-Dietrich, A. Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett. 436, 99–103 (1998).

    Article  CAS  Google Scholar 

  41. LeMaster, D.M. & Richards, F.M. 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24, 7263–7268 (1985).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collection in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Weeks, C.M. & Miller, R. Optimizing Shake-and-Bake for proteins. Acta Crystallogr. D 55, 492–500 (1999).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  45. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  46. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  47. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  48. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  49. Gouet, P., Courcelle, E., Stuart, D.I. & Métoz, F. ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of M. Kawamoto and H. Sakai for the synchrotron data collection at BL41XU in SPring-8 (Harima, Japan). We thank D. Kiga for helpful advice on the steady-state kinetics of the aminoacylation. We also thank K. Ohtake and M. Takahashi for help in the construction of the TyrRS expression system and R. Ishii for help in the data collection at BL41XU in SPring-8. This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (S.Y. and O.N.) and by the National Project on Protein Structural and Functional Analyses of MEXT (S.Y.) and the Human Frontier Science Program (O.N. and S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Nureki, O., Ishitani, R. et al. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat Struct Mol Biol 10, 425–432 (2003). https://doi.org/10.1038/nsb934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing