Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Haemophilus influenzae Fe+3-binding protein reveals convergent evolution within a superfamily

Abstract

The first crystal structure of the iron-transporter ferric ion-binding protein from Haemophilus influenzae (hFBP), at 1.6 Å resolution, reveals the structural basis for iron uptake and transport required by several important bacterial pathogens. Paradoxically, although hFBP belongs to a protein superfamily which includes human transferrin, iron binding in hFBP and transferrin appears to have developed independently by convergent evolution. Structural comparison of hFBP with other prokaryotic periplasmic transport proteins and the eukaryotic transferrins suggests that these proteins are related by divergent evolution from an anion-binding common ancestor, not from an iron-binding ancestor. The iron binding site of hFBP incorporates a water and an exogenous phosphate ion as iron ligands and exhibits nearly ideal octahedral metal coordination. FBP is highly conserved, required for virulence, and is a nodal point for free iron uptake in several Gram-negative pathogenic bacteria, thus providing a potential target for broad-spectrum antibacterial drug design against human pathogens such as H. influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crosa, J.H. The relationship of plasmid-mediated iron transport and bacterial virulence. Annu. Rev. Microbiol. 38, 69–89 (1984).

    Article  CAS  Google Scholar 

  2. Weinberg, E.D. Iron withholding: A defense against infection and neoplasia. Physiol. Rev. 64(1), 65–102 (1984).

    Article  CAS  Google Scholar 

  3. Mietzner, T.A., Tencza, S.B., Vaughan, K.G., Adhikari, P.A. & Nowalk, A.J. Iron(III) periplasm-to-cytosol transporters of gram-negative pathogens. Curr. Topics Microbiol. Immunol. in the press (1997).

  4. Adhikari, P. et al. Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J. Biol. Chem. 270, 25142–25149 (1995).

    Article  CAS  Google Scholar 

  5. Tam, R. & Saier, M.H.J. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57, 320–346 (1993).

    Article  CAS  Google Scholar 

  6. Anderson, B.F. et al. Structure of human lactoferrin at 3.2 Å resolution. Proc. Natl. Acad. Sci, USA 84, 1769–1773 (1987).

    Article  CAS  Google Scholar 

  7. Bailey, S. et al. Molecular structure of serum transferrin at 3.3 Å resolution. Biochemistry 27, 5804–5812 (1988).

    Article  CAS  Google Scholar 

  8. Pflugrath, J. & Quiocho, F. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985).

    Article  CAS  Google Scholar 

  9. Adams, M.D. & Oxender, D.L. Bacterial periplasmic binding protein tertiary structures. J. Biol. Chem. 264(27), 15739–15742 (1989).

    CAS  PubMed  Google Scholar 

  10. Quiocho, F.A. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Phil. Trans, Royal Soc. London B326(1236), 341–351 (1990).

    Google Scholar 

  11. Nowalk, A.J., Tencza, S.B. & Mietzner, T.A. Coordination of iron by the ferric iron-binding protein of pathogenic Neisseria is homologous to the transferrins. Biochemistry. 33(43), 12769–12775 (1994).

    Article  CAS  Google Scholar 

  12. Morse, S., Chen, C., Le Faou, A. & Mietzner, T.A potential role for the major iron regulated protein expressed by pathogenic Neisseria spp. Rev. Infect. Dis. 10(supp), 306–310 (1988).

    Article  Google Scholar 

  13. Luecke, H. & Quiocho, F.A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347, 402–406 (1990).

    Article  CAS  Google Scholar 

  14. Wang, Z., Choudhary, A., Ledvina, P.S. & Quiocho, F.A. Fine tuning the specificity of the periplasmic phosphate transport receptor: site-directed mutagenesis, ligand binding, and crystallographic studies. J. Biol. Chem. 269, 25091–25094 (1994).

    CAS  PubMed  Google Scholar 

  15. Baker, E.N., Rumball, S.V. & Anderson, B.F. Transferrins: insights into structure and function from studies on lactoferrin. TIBS 12, 350–353 (1987).

    CAS  Google Scholar 

  16. Mietzner, T.A., Barnes, R.C., Jeanlouis, Y.A., Shafer, W.M. & Morse, S.A. Distribution of an antigenically related iron-regulated protein among the Neisseria-spp. Infection and Immunity. 51, 60–68 (1986).

    Article  CAS  Google Scholar 

  17. Dewan, J.C., Mikami, B., Hirose, M. & Sacchettini, J.C. Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications for transferrin iron release. Biochemistry. 32, 11963–11968 (1993).

    Article  CAS  Google Scholar 

  18. Berkowitz, F. Antibiotic resistance in bacteria. Southern Medical Journal 88, 797–804 (1995).

    Article  CAS  Google Scholar 

  19. Knapp, J., Fox, K., Trees, D. & Wittington, W. Fluoroquinolone resistance in Neisseria gonorrhoeae. Emerging Infectious Diseases 3, 33–40 (1997).

    Article  CAS  Google Scholar 

  20. Ho, S., Hunt, H., Horton, R., Pullen, J. & Pease, L. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  21. McRee, D.E. A visual protein crystallographic software system for X11/Xview. J. Mol. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  22. Furey, W. & Swaminathan, S. Phases: A program package for the processing and analysis of diffraction data from macromolecules. In: ACA Meeting Abstracts (1990).

    Google Scholar 

  23. Cowtan, K.D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D52, 43–48 (1996).

    CAS  Google Scholar 

  24. Tronrud, D., Ten Eyck, L. & Matthews, B. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A48, 912–916 (1987).

    Google Scholar 

  25. Brünger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D49, 24–36 (1993).

    Google Scholar 

  26. Anderson, B., Baker, H., Norris, G., Rice, D. & Baker, E. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 Å resolution. J. Mol. Biol. 209, 711–734 (1989).

    Article  CAS  Google Scholar 

  27. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  28. Day, C.L., Anderson, B.F., Tweedie, J.W. & Baker, E.N. Structure of the recombinant N-terminal lobe of human lactoferrin at 2.0 Å resolution. J. Mol. Biol. 232, 1084–1100 (1993).

    Article  CAS  Google Scholar 

  29. Sarra, R., Garratt, R., Gorinsky, B., Jhoti, H. & Lindley, P. High resolution X-ray studies on rabbit serum transferrin. Preliminary structure analysis of the amino-terminal half-molecule at 2.3 Å resolution. Acta Crystallogr. B46, 763–771 (1990).

    Article  CAS  Google Scholar 

  30. Bacon, D. & Anderson, W. A fast algorithm of rendering space-filling molecule pictures. Journal of Molecular Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  31. Merritt, E. & Murphy, M. Raster3d version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan E. McRee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruns, C., Nowalk, A., Arvai, A. et al. Structure of Haemophilus influenzae Fe+3-binding protein reveals convergent evolution within a superfamily. Nat Struct Mol Biol 4, 919–924 (1997). https://doi.org/10.1038/nsb1197-919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing