Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MRI for men undergoing active surveillance or with rising PSA and negative biopsies

Abstract

The role of imaging in treatment decision-making for patients with prostate cancer is to characterize the cancer already diagnosed on biopsy, to determine tumor location, to assess tumor volume, and to exclude more-extensive disease. MRI is currently the most established imaging modality for this purpose, with the highest sensitivity and specificity for detection and staging of prostate tumors. The development and wider adoption of active surveillance and focal treatment approaches would also benefit from accurate localization of cancer. As such, 3 T MRI and multiparametric approaches are being developed as tools for the localization and staging of prostate cancer. Men wishing to commence or remain on active surveillance might benefit by having larger cancers identified before embarking on this management strategy. MRI might have its greatest role in patients where there is a discrepancy between PSA and biopsy results suggesting a potential missed prostate tumor.

Key Points

  • 3 T MRI and multiparametric approaches are being developed as tools for localization and staging of prostate cancer

  • The increased accuracy of MRI for prostate cancer detection has been critical for appropriate patient selection to active surveillance and focal therapy for low-risk disease, thus avoiding overtreatment

  • Men wishing to commence or remain on active surveillance might benefit from having larger cancers identified before embarking on this approach

  • MRI might have its greatest role in patients where there is a discrepancy between PSA and biopsy results suggesting a potential missed prostate tumor

  • A cost–benefit analysis must be performed in all cases where MRI is under consideration, to ensure that the relatively small pool of resources is used appropriately

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Staging prostate cancer with MRI.
Figure 2: Prostate cancer localization using multiparametric MRI in a patient on active surveillance.
Figure 3: Multiparametric MRI of a small Gleason 7 (3 + 4) tumor in the left peripheral zone of the prostate.

Similar content being viewed by others

References

  1. Biondetti, P. R., Lee, J. K., Ling, D. & Catalona, W. J. Clinical stage B prostate carcinoma: staging with MR imaging. Radiology 162, 325–329 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Bockisch, A. et al. Magnetic resonance (MR) imaging of prostatic tumours, a comparison with X-ray CT and transrectal sonography (TRS). Eur. J. Radiol. 8, 54–49 (1988).

    CAS  PubMed  Google Scholar 

  3. Steyn, J. H. & Smith, F. W. Nuclear magnetic resonance (NMR) imaging of the prostate. Br. J. Urol. 56, 679–681 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Weinreb, J. C. et al. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy--results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251, 122–133 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gofrit, O. N., Zorn, K. C., Steinberg, G. D., Zagaja, G. P. & Shalhav, A. L. The Will Rogers phenomenon in urological oncology. J. Urol. 179, 28–33 (2008).

    Article  PubMed  Google Scholar 

  6. Kirkham, A. P., Emberton, M. & Allen, C. How good is MRI at detecting and characterising cancer within the prostate? Eur. Urol. 50, 1163–1174 (2006).

    Article  PubMed  Google Scholar 

  7. Augustin, H., Fritz, G. A., Ehammer, T., Auprich, M. & Pummer, K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol. 50, 562–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Fütterer, J. J. et al. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest. Radiol. 39, 671–680 (2004).

    Article  PubMed  Google Scholar 

  9. The National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Prostate Cancer-v.3.2010 [online], (2010).

  10. Shukla-Dave, A., Hricak, H. & Scardino, P. T. Imaging low-risk prostate cancer. Curr. Opin. Urol. 18, 78–86 (2008).

    Article  PubMed  Google Scholar 

  11. Mullerad, M. et al. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J. Urol. 174, 2158–2163 (2005).

    Article  PubMed  Google Scholar 

  12. Turkbey, B. et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology 255, 89–99 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kurhanewicz, J., Vigneron, D., Carroll, P. & Coakley, F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr. Opin. Urol. 18, 71–77 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lindner, U. et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J. Urol. 182, 1371–1377 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Scheidler, J. et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging--clinicopathologic study. Radiology 213, 473–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nogueira, L. et al. Focal treatment or observation of prostate cancer: pretreatment accuracy of transrectal ultrasound biopsy and T2-weighted MRI. Urology 75, 472–477 (2009).

    Article  PubMed  Google Scholar 

  17. Mullerad, M. et al. Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology 232, 140–146 (2004).

    Article  PubMed  Google Scholar 

  18. Wang, L. et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology 232, 133–139 (2004).

    Article  PubMed  Google Scholar 

  19. Wang, L. et al. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology 238, 597–603 (2006).

    Article  PubMed  Google Scholar 

  20. Dhingsa, R. et al. Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230, 215–220 (2004).

    Article  PubMed  Google Scholar 

  21. Casciani, E. et al. Prostate cancer: evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiol. Med. 108, 530–541 (2004).

    PubMed  Google Scholar 

  22. Fütterer, J. J. et al. Prostate cancer: local staging at 3-T endorectal MR imaging—early experience. Radiology 238, 184–191 (2006).

    Article  PubMed  Google Scholar 

  23. Miao, H., Fukatsu, H. & Ishigaki, T. Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur. J. Radiol. 61, 297–302 (2007).

    Article  PubMed  Google Scholar 

  24. Girouin, N. et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur. Radiol. 17, 1498–1509 (2007).

    Article  PubMed  Google Scholar 

  25. Hara, N., Okuizumi, M., Koike, H., Kawaguchi, M. & Bilim, V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62, 140–147 (2005).

    Article  PubMed  Google Scholar 

  26. Ito, H., Kamoi, K., Yokoyama, K., Yamada, K. & Nishimura, T. Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br. J. Radiol. 76, 617–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Heijmink, S. W. et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T—comparison of image quality, localization, and staging performance. Radiology 244, 184–195 (2007).

    Article  PubMed  Google Scholar 

  28. Zakian, K. L. et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234, 804–814 (2005).

    Article  PubMed  Google Scholar 

  29. Tofts, P. S. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10, 223–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Furman-Haran, E., Margalit, R., Grobgeld, D. & Degani, H. Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proc. Natl Acad. Sci. USA 93, 6247–6251 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choyke, P. L., Dwyer, A. J. & Knopp, M. V. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 17, 509–520 (2003).

    Article  PubMed  Google Scholar 

  32. Brix, G. et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr. 15, 621–628 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Wefer, A. E. et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J. Urol. 164, 400–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shukla-Dave, A. et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int. 99, 786–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Poulakis, V. et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and gleason score for predicting prostate cancer biochemical recurrence after radical prostatectomy. Urology 64, 1165–1170 (2004).

    Article  PubMed  Google Scholar 

  36. Kozlowski, P. et al. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis--correlation with biopsy and histopathology. J. Magn. Reson. Imaging 24, 108–113 (2006).

    Article  PubMed  Google Scholar 

  37. Issa, B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J. Magn. Reson. Imaging 16, 196–200 (2002).

    Article  PubMed  Google Scholar 

  38. Hosseinzadeh, K. & Schwarz, S. D. Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J. Magn. Reson. Imaging 20, 654–661 (2004).

    Article  PubMed  Google Scholar 

  39. Mazaheri, Y. et al. Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252, 449–457 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haider, M. A. et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am. J. Roentgenol. 189, 323–328 (2007).

    Article  PubMed  Google Scholar 

  41. Gibbs, P., Tozer, D. J., Liney, G. P. & Turnbull, L. W. Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate. Magn. Reson. Med. 46, 1054–1058 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Noworolski, S. M., Vigneron, D. B., Chen, A. P. & Kurhanewicz, J. Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn. Reson. Imaging 26, 1071–1080 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Concato, J. et al. Molecular markers and mortality in prostate cancer. BJU Int. 100, 1259–1263 (2007).

    Article  PubMed  Google Scholar 

  44. Schmuecking, M. et al. Dynamic MRI and CAD vs. choline MRS: where is the detection level for a lesion characterisation in prostate cancer? Int. J. Radiat. Biol. 85, 814–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, C. K., Park, B. K. & Kim, B. Localization of prostate cancer using 3T MRI: comparison of T2-weighted and dynamic contrast-enhanced imaging. J. Comput. Assist. Tomogr. 30, 7–11 (2006).

    Article  PubMed  Google Scholar 

  46. Ocak, I. et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am. J. Roentgenol. 189, 849 (2007).

    Article  PubMed  Google Scholar 

  47. Jackson, A. S. et al. Dynamic contrast-enhanced MRI for prostate cancer localization. Br. J. Radiol. 82, 148–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Zelhof, B., Lowry, M., Rodrigues, G., Kraus, S. & Turnbull, L. Description of magnetic resonance imaging-derived enhancement variables in pathologically confirmed prostate cancer and normal peripheral zone regions. BJU Int. 104, 621–627 (2009).

    Article  PubMed  Google Scholar 

  49. Yakar, D. et al. Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest. Radiol. 45, 121–125 (2010).

    Article  PubMed  Google Scholar 

  50. Tokuda, J. et al. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput. Med. Imaging Graph. 34, 3–8 (2010).

    Article  PubMed  Google Scholar 

  51. Yakar, D., Hambrock, T., Hoeks, C., Barentsz, J. O. & Fütterer, J. J. Magnetic resonance-guided biopsy of the prostate: feasibility, technique, and clinical applications. Top. Magn. Reson. Imaging 19, 291–295 (2008).

    Article  PubMed  Google Scholar 

  52. Tarone, R. E., Chu, K. C. & Brawley, O. W. Implications of stage-specific survival rates in assessing recent declines in prostate cancer mortality rates. Epidemiology 11, 167–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Hussain, S. et al. Secular trends in prostate cancer mortality, incidence and treatment: England and Wales, 1975–2004. BJU Int. 101, 547–555 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Collin, S. M. et al. Prostate-cancer mortality in the USA and UK in 1975–2004: an ecological study. Lancet Oncol. 9, 445–452 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hankey, B. F. et al. Cancer surveillance series: interpreting trends in prostate cancer--part I: Evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. J. Natl Cancer Inst. 91, 1017–1024 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Rohde, V., Weidner, W. & Katalinic, A. Decrease in prostate cancer incidence and mortality in Germany—effects of opportunistic PSA screening or more? Urol. Int. 83, 134–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Chu, K. C., Tarone, R. E. & Freeman, H. P. Trends in prostate cancer mortality among black men and white men in the United States. Cancer 97, 1507–1516 (2003).

    Article  PubMed  Google Scholar 

  58. Choo, R. et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 167, 1664–1669 (2002).

    Article  PubMed  Google Scholar 

  59. Ploussard, G. et al. The role of biopsy core number in selecting prostate cancer patients for active surveillance. Eur. Urol. 56, 891–898 (2009).

    Article  PubMed  Google Scholar 

  60. Barocas, D. A., Cowan, J. E., Smith, J. A. Jr & Carroll, P. R. What percentage of patients with newly diagnosed carcinoma of the prostate are candidates for surveillance? An analysis of the CaPSURE database. J. Urol. 180, 1330–1334 (2008).

    Article  PubMed  Google Scholar 

  61. Lawrentschuk, N. et al. 'Prostatic evasive anterior tumours': the role of magnetic resonance imaging. BJU Int. 105, 1231–1236 (2010).

    Article  PubMed  Google Scholar 

  62. Bastian, P. J. et al. Insignificant prostate cancer and active surveillance: from definition to clinical implications. Eur. Urol. 55, 1321–1330 (2009).

    Article  PubMed  Google Scholar 

  63. Cabrera, A. R. et al. Prostate cancer: is inapparent tumor at endorectal MR and MR spectroscopic imaging a favorable prognostic finding in patients who select active surveillance? Radiology 247, 444–450 (2008).

    Article  PubMed  Google Scholar 

  64. van As, N. J. et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur. Urol. 56, 981–988 (2008).

    Article  PubMed  Google Scholar 

  65. deSouza, N. M. et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin. Radiol. 63, 774–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Franiel, T. et al. Pharmacokinetic MRI of the prostate: parameters for differentiating low-grade and high-grade prostate cancer [German]. Rofo 181, 536–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Hambrock, T. et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J. Urol. 183, 520–527 (2009).

    Article  PubMed  Google Scholar 

  68. Beyersdorff, D. et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology 224, 701–706 (2002).

    Article  PubMed  Google Scholar 

  69. Cirillo, S. et al. Value of endorectal MRI and MRS in patients with elevated prostate-specific antigen levels and previous negative biopsies to localize peripheral zone tumours. Clin. Radiol. 63, 871–879 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Perrotti, M. et al. Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study. J. Urol. 162, 1314–1317 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Villeirs, G. M. et al. Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: a single-institution experience of 356 patients. Eur. J. Radiol. doi:10.1016/j.ejrad.2009.08.007.

    Article  PubMed  Google Scholar 

  72. Yuen, J. S. et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J. Urol. 171, 1482–1486 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Prando, A., Kurhanewicz, J., Borges, A. P., Oliveira, E. M. Jr & Figueiredo, E. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology 236, 903–910 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O. Raz and N. Lawrentschuk researched data, discussed content, wrote the article and reviewed the manuscript. M. Haider, J. Trachtenberg and D. Leibovici made substantial contributions to the researching, discussion and reviewing of the manuscript.

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raz, O., Haider, M., Trachtenberg, J. et al. MRI for men undergoing active surveillance or with rising PSA and negative biopsies. Nat Rev Urol 7, 543–551 (2010). https://doi.org/10.1038/nrurol.2010.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing