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Abstract

The kidney requires a large number of mitochondria to remove waste from the blood and regulate 

fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions 

and can adapt to different metabolic conditions through a number of signalling pathways (for 

example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) 

pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-

γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain 

mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, 

alterations in cellular functions and structure, and the loss of renal function. Persistent 

mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as 

acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and 

thus normal kidney function. Improving mitochondrial homeostasis and function has the potential 

to restore renal function, and administering compounds that stimulate mitochondrial biogenesis 

can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. 

Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate 

ischaemic renal injury by blocking mitochondrial fission.

The kidney is one of the most energy-demanding organs in the human body. A study 

measuring the resting energy expenditure of various organs in healthy adults, ranging from 

21 to 73 years of age, found that the kidney and heart have the highest resting metabolic 

rates1. The kidney has the second highest mitochondrial content and oxygen consumption 

after the heart2,3. The resting metabolic rate for the kidney is high because the kidney 

requires an abundance of mitochondria to provide sufficient energy to enable it to remove 

waste from the blood, reabsorb nutrients, regulate the balance of electrolytes and fluid, 

maintain acid–base homeostasis, and regulate blood pressure. These tasks, especially the 
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reabsorption of glucose, ions and nutrients through channels and transporters, are driven by 

ion gradients.

Mitochondria provide energy to the Na+–K+-ATPase to generate ion gradients across the 

cellular membrane4. In the kidney, the proximal tubule, the loop of Henle, the distal tubule 

and the collecting duct all require active transport to reabsorb ions4. By contrast, glomerular 

filtration is a passive process that is dependent on the maintainence of hydrostatic pressure 

in the glomeruli5. Proximal tubules require more active transport mechanisms than other 

renal cell types because they reabsorb 80% of the filtrate that passes through the glomerulus, 

including glucose, ions, and nutrients. As such, they contain more mitochondria than any 

other structure in the kidney. The ability of mitochondria to sense and respond to changes in 

nutrient availability and energy demand by maintaining mitochondrial homeostasis is critical 

to the proper functioning of the proximal tubule. In this Review, we describe the processes 

involved in maintaining mitochondrial homeostasis and discuss how these processes provide 

and maintain sufficient energy to support renal function. We also explore how disease states, 

such as acute kidney injury (AKI) and diabetic nephropathy, alter mitochondrial function, 

and how mitochondrial energetics might be targeted as a treatment for these diseases.

Mitochondrial function

Mitochondria are a network of plastic organelles that together maintain a variety of cellular 

functions and processes, such as the level of reactive oxygen species (ROS), cytosolic 

calcium and apoptosis6. Most importantly, mitochondria produce ATP, thereby supplying the 

energy source for basal cell functions as well as cellular repair and regeneration. To 

accomplish this feat, a population of healthy and functional mitochondria is vital.

ATP production

Aerobic respiration involves the consumption of oxygen to produce ATP, water and carbon 

dioxide (CO2). Most of the ATP generated by aerobic respiration is produced by the flux of 

electrons through the electron transport chain (ETC) in a process called oxidative phosphory 

lation (FIG. 1a). Aerobic respiration begins with the production of pyruvate from glucose via 

glycolysis7. Pyruvate is converted to acetyl-CoA (via pyruvate dehydro genase in the 

mitochondrial matrix), which fuels the tricarboxylic acid (TCA) cycle to produce six 

NADH, four FADH2, and six CO2 per molecule of glucose7. Electrons from NADH and 

FADH2 are transferred to complex I and complex II, respectively, of the ETC in the 

mitochondrial inner membrane. Electrons then travel through the ETC to complex IV, where 

they are accepted by oxygen. Note that the haem protein cytochrome c, which is located in 

the mitochondrial inner membrane, facilitates the transfer of electrons from complex III to 

complex IV. Ultimately, protons, which are actively pumped into the intermembrane space 

as electrons move through complexes I, III, and IV, flow through ATP synthase (also known 

as complex V) to drive the conversion of ADP to ATP7.

In general, all cell types in the kidney need ATP to maintain cellular functions; however, the 

mechanism by which ATP is produced is cell type-dependent. For example, in the renal 

cortex, proximal tubules depend on the efficiency of oxidative phosphorylation to produce 

ATP that drives the active transport of glucose, ions and nutrients8. By contrast, glomerular 
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cells, including podocytes, endothelial cells and mesengial cells, have lower oxidative 

capacity because their function is to filter blood to remove small molecules (namely, 

glucose, urea, water and salts) while retaining large proteins, such as haemoglobin9. This 

passive process does not directly require ATP and, therefore, glomerular cells have the 

ability to perform aerobic and anaerobic respiration to produce ATP for basal cell 

processes10–13. Anaerobic respiration, like aerobic respiration, begins with glycolysis, 

producing pyruvate from glucose, but is characterized by the subsequent production of 

lactate from pyruvate14. Anaerobic respiration produces two molecules of ATP and is an 

efficient mechanism for cell types that have a lower O2 supply10. This process is important, 

as glycolysis frequently occurs in cell types other than proximal tubules and can utilize 

alternative energy sources, such as amino acids, in the absence of glucose15,16. For example, 

pyruvate can be generated via the oxidation of amino acids to fuel both anaerobic and 

aerobic mechanisms of ATP production.

Due to the high energy demand of proximal tubules, aerobic respiration is their primary 

mechanism of ATP production. Proximal tubules utilize non- esterified fatty acids, such as 

palmitate, via β-oxidation for maximal ATP production. A single molecule of palmitate 

produces 106 molecules of ATP, whereas the oxidation of glucose only yields 36 molecules 

of ATP17,18. Fatty acids are taken up by proximal tubule cells via transport proteins, such as 

platelet glycoprotein 4 (also known as CD36), or synthesized in the cytoplasm, where they 

are activated by coA before being transported into mitochondria through the carnitine 

shuttle19 (FIG. 1b). Specifically, carnitine O-palmitoyltransferase 1 (CPT1) exchanges the 

coA group on fatty acids with l- carnitine, allowing the transfer of fatty acids across the 

mitochondrial inner membrane space through the carnitine shuttle. Fatty acids are then 

broken down for energy via β-oxidation in the mitochondrial matrix. Although β-oxidation 

is the most efficient mechanism for producing ATP in proximal tubules, it is important to 

note that due to the high consumption of oxygen by proximal tubules, they are more 

susceptible than other cell types to changes in oxygen levels20,21. A decrease in oxygen 

levels can lead to impaired β-oxidation and a reduction in ATP production (see below).

A balance of catabolic and anabolic nutrient-sensing pathways regulates the optimum 

concentration of fatty acids in a cell (see below). Disease states and different metabolic 

conditions in the kidney alter this balance and can adversely affect mitochondrial energetics. 

For example, the accumulation of fatty acids in AKI and diabetic nephropathy can 

negatively impact ATP production by decreasing β-oxidation in the mitochondria and 

increasing the formation of lipid droplets inside the cell18. An inverse correlation exists 

between lipogenesis that is induced by the accumulation of fatty acids and the transcription 

of genes that are involved in fatty acid oxidation22,23. Fatty acids can also trigger apoptosis 

and, more importantly, create a toxic environment inside the cell that hinders mitochondrial 

function24,25. Fatty acid metabolism in disease states, such as AKI and diabetic nephropathy, 

will be discussed below.

Antioxidant defences

As discussed, mitochondria produce ATP via the ETC. At steady state, when electrons are 

passed through the ETC to molecular oxygen, a low concentration of superoxide anions is 

Bhargava and Schnellmann Page 3

Nat Rev Nephrol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated from complex I and complex III. Although a low level of ROS, such as superoxide 

anions, is important for cell function, high concentrations are toxic to mitochondria and the 

cell26–28 (FIG. 2). For example, under oxidative stress, increased levels of ROS can cause 

breaks in mitochondrial DNA (mtDNA) that cause mutations in the next generation of 

mitochondria; breaks in mtDNA also negatively affect the efficiency of the ETC, causing a 

decrease in ATP production and damaging proteins and lipids29. ROS can also trigger 

apoptosis in the cell by causing the release of cytochrome c, leading to mitochondrial 

dysfunction29. Therefore, mitochondria have antioxidant defence systems to counteract the 

excessive formation of additional ROS. Superoxide dismutase 2 (SOD2), which converts 

superoxide anions to hydrogen peroxide and oxygen, is specific for mitochondria30. 

Moreover, the transcription of genes encoding antioxidant enzymes, such as SOD2, catalase 

and glutathione peroxidase, is activated by nuclear factor erythroid 2-related factor 2 (NRF2) 

in response to oxidative stress, providing a mechanism to prevent excessive ROS 

production31. The importance of these antioxidant systems is to maintain optimal ATP 

production and sustain mitochondrial function.

Another important antioxidant defence mechanism involves glutathione. Glutathione is a 

tripeptide (γ-glutamyl-cysteinal-glycine) nucleophile that can exist in a reduced form 

(GSH), or in an oxidized form as glutathione disulfide (GSSG). Mitochondria contain their 

own pool of glutathione, mitochondrial glutathione (mGSH), which not only helps to 

decrease excessive ROS levels but also prevents the release of cytochrome c from the inner 

membrane32. mGSH directly interacts with superoxide anions and becomes oxidized to 

GSSG33. Glutathione peroxidase (GPX) is located in both the cytoplasm and the 

mitochondria and uses GSH to reduce hydrogen peroxide to water, resulting in GSSG as a 

by-product34. GSSG cannot exit the mitochondria and is converted back to mGSH by 

glutathione reductase, for reuse or for elimination from the mitochondria33. The conversion 

of GSSG to mGSH requires NADPH, allowing crosstalk between the mechanism that 

maintains mGSH levels and the pentose phosphate pathway that produces NADPH. 

Together, these mechanisms have a major role in preventing excessive levels of ROS, and 

sustaining mitochondrial function.

Uncoupling proteins are a family of mitochondrial transport proteins that are located in the 

mitochondrial inner membrane35,36. They transport protons across the inner membrane to 

the mitochondrial matrix. Mitochondrial uncoupling protein 2 (UCP2) is expressed in the 

kidney and is activated by mitochondrial ROS and other stimuli. An increase in ROS 

formation in the mitochondria activates UCP2, dissipating the proton motive force as heat 

and, as a result, reducing ROS production36,37. As ROS production contributes to 

mitochondrial dysfunction in AKI and diabetic nephropathy, UCP2 has been explored in the 

kidney and in these disease states38. Studies investigating the role of UCP2 polymorphisms 

in the kidney that exacerbate disease in patients with diabetic nephro pathy reveal that UCP2 

is a potential target for treatment39. Lack of UCP2 has also been shown to worsen tubular 

injury after induction of experimental AKI in mice38. These studies show the importance of 

UCP2 in the kidney as well as its role in attenuating excessive ROS production.

Mechanisms also exist to sustain mitochondrial function under hypoxic conditions. The lack 

of oxygen under hypoxic conditions decreases ATP production and causes cell death. In 
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normoxic conditions, hypoxia-inducible factor 1α (HIF1α) is degraded in the presence of 

oxygen and α-ketoglutarate, an intermediate of the TCA cycle40. However, under hypoxic 

conditions, HIF1α heterodimerizes with HIF1β to form a transcription factor that binds to a 

hypoxia response element (HRE) present in genes that encode glycolytic enzymes and 

glucose transporters in the kidney41. Hypoxic conditions also alter the composition of 

complex IV of the ETC in which, at physiological conditions, the regulatory subunit 1 

predominates in the ETC; during hypoxia, regulatory subunit 2 predominates in complex IV, 

which increases the efficiency of the ETC42. Several studies have shown that increasing the 

efficiency of the ETC increases the production of mitochondrial ROS under hypoxic 

conditions, although the mechanism by which this occurs is still unclear43–45. The effects of 

oxidative stress and hypoxia on mitochondrial morphology and energetics are discussed 

below.

Nutrient-sensing pathways in the kidney

Nutrient-sensing pathways can directly affect mitochondrial energetics in response to 

external stimuli, such as hypoxia, oxidative stress and energy depletion. Two signalling 

pathways in particular have been extensively explored in the kidney, namely the mechanistic 

target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signalling 

pathways46,47. Both signalling pathways also have a role in regulating mitochondrial bio-

genesis — that is, the production of new and functional mitochondria — to help maintain a 

healthy population of mitochondria (FIG. 3).

mTOR is a serine/threonine kinase complex that comprises a number of proteins. Two 

distinct mTOR complexes exist: mTOR complex 1 (mTORC1) and mTORC2, each of which 

contain their own unique subunits and substrates. mTORC1, which is a complex of mTOR, 

regulatory-associated protein of mTOR (Raptor) and several other proteins, regulates cell 

growth and proliferation and inhibits autophagy by stimulating anabolic processes. 

mTORC2, which is a complex of mTOR, rapamycin- insensitive companion of mTOR 

(Rictor) and several other proteins, is thought to regulate potassium and sodium levels in the 

kidney48,49. mTORC1 is considered a nutrient sensor because it can be activated by growth 

factors, nutrients such as amino acids and glucose, and oxidative stress, triggering pathways 

that lead to protein synthesis, nucleotide synthesis, lipid synthesis and mitochondrial 

biogenesis by activating the transcriptional repressor yin and yang 1 (YY1)46,50. In the case 

of mitochondrial biogenesis, YY1 acts as a transcription factor and co-activator of the 

master regulator of mitochondrial biogenesis — the transcriptional co-activator peroxi-some 

proliferator-activated receptor-γ co-activator 1α (PGC1α) — resulting in the transcription 

of mitochondrial genes50. mTORC1-deficiency specifically in renal proximal tubules of 

mice decreased the protein levels of PGC1α in vivo51. Of note, the mTOR pathway can be 

inhibited by hypoxia and AMPK.

AMPK is another nutrient sensor in the kidney that stimulates catabolic processes. When the 

AMP:ATP ratio in the cell is high in the presence of low oxygen levels, AMPK is 

activated52. AMPK targets a number of proteins, the phosphorylation of which leads to the 

production of antioxidant enzymes, the induction of mitochondrial biogenesis, and an 

increase in glycolytic flux, fatty acid oxidation and glucose transport; all of these events 
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contribute to cell growth and an increase in cellular metabolism53. AMPK can induce 

mitochondrial biogenesis by stimulating the transcription of the gene encoding PGC1α 
(PPARGC1A) and by phosphory lating PGC1α at Thr177 and Ser539 to increase its 

activity54. AMPK stimulates the production of energy and inhibits energy-consuming 

pathways by inhibiting mTORC1. Under conditions of nutrient deprivation, crosstalk exists 

between mTORC1 and AMPK (FIG. 3) so that AMPK can inhibit mTORC1 while activating 

autophagy by phosphorylating the serine/threonine protein kinase ULK1 (REF. 55). Due to 

the presence of AMPK targets in kidney cells, AMPK is a novel drug target for several renal 

diseases (see below).

Maintaining mitochondrial homeostasis

Mitochondrial homeostasis requires a balance between mitochondrial biogenesis, fission and 

fusion, and mitophagy — the selective removal of non-functional and damaged 

mitochondria from cells by autophagy. All of these processes work together to maintain 

mitochondrial energetics, that is, the optimal production of ATP in normoxic conditions and 

in altered metabolic conditions.

Mitochondrial biogenesis

Mitochondrial biogenesis, which produces new and functional mitochondria, increases ATP 

production in response to increasing energy demands. Mitochondrial biogenesis is regulated 

by a range of transcriptional co-activators and co-repressors56,57. One study has shown that 

PGC1α is a prominent regulator, at the transcriptional level, of oxidative phosphorylation, 

the TCA cycle and fatty acid metabolism in the kidney58. In that study, the investigators 

performed gene expression profiling of kidneys from control mice and nephron-specific 

inducible PPARGC1A-knockout (NiPKO) mice that had been fed a chow diet or high-fat 

diet (HFD). Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, they 

analysed transcripts from all four groups of mice, and found a decrease in transcripts related 

to oxidative phosphorylation, TCA cycle and glycolysis in chow-fed NiPKO mice and in 

HFD-fed NiPKO mice. This finding supports the idea that inactivation of PGC1α in the 

kidney reduces mitochondrial function and metabolism and subsequently decreases 

mitochondrial biogenesis.

Overexpression of PGC1α can also mitigate mitochondrial dysfunction in vitro after oxidant 

exposure, further supporting a role for mitochondrial biogenesis in mitochondrial 

homeostasis59. The activation of peroxisome proliferator-activated receptors (PPARs) and 

oestrogen-related receptors (ERRs) also contributes to the regulation of mitochondrial 

biogenesis, sometimes by these receptors directly interacting with PGC1α60 (FIG. 4). 

PPARs and ERRs are nuclear receptors that can be activated by fatty acids and steroid 

hormones such as oestrogen, and they elicit a response by binding to specific DNA response 

elements through their DNA-binding domains61. PGC1α can directly bind to these nuclear 

receptors and co-activate the transcription of genes, the protein products of which are 

involved in oxidative phosphorylation and fatty acid oxidation62,63. PGC1α activation 

results in its translocation from the cytoplasm to the nucleus, allowing it to upregulate the 

transcription of genes that are important for mitochondrial homeostasis and ATP 
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production64. Transcription programmes downstream of PGC1α include nuclear and 

mitochondrial genes, as well as those involved in signalling pathways that regulate 

mitochondrial biogenesis (reviewed elsewhere65–67).

As the activation or suppression of PGC1α is regulated by external stimuli and post-

translational modifications, it can be considered to be a nutrient sensor in the kidney. The 

expression and regulation of PGC1α in the kidney is still being explored. However, much of 

what is known about the regulation of PGC1α was discovered in the injured kidney as a 

result of disease states, such as diabetic nephropathy, ischaemia–reperfusion injury (IRI), 

sepsis, and cisplatin-induced AKI. Findings in these disease states support a role for PGC1α 
in the recovery phase from these diseases and in restoring mitochondrial function, 

highlighting PGC1α as a therapeutic target. Exercise and insulin stimulate an increase in 

PPARGC1A expression in skeletal muscle and in the heart, whereas fasting increases 

PPARGC1A expression in the liver65,68. In brown fat and muscle cells, cold exposure 

activates PGC1α65. In cases of oxidative stress or nutrient depletion, the activation of 

mitochondrial biogenesis helps rescue mitochondria from apoptosis69,70. In general, if the 

cell is in need of more energy, PGC1α is activated by deacetylation, whereas PGC1α is 

inactivated by acetylation when energy levels are high65.

In addition to AMPK and mTOR, other energy sensing pathways that stimulate 

mitochondrial bio genesis include those involving sirtuins, cAMP and cyclic guanosine 

monophosphate (cGMP) (FIG. 4). Sirtuin 1 (SIRT1) and SIRT3 are protein deacetylases that 

have a role in a variety of mitochondrial processes, including the ETC, TCA cycle, fatty acid 

oxidation, redox homeostasis and mitochondrial biogenesis71. SIRT1 activity is activated by 

NAD+, after which it activates downstream targets such as PGC1α64. SIRT3 is 

mitochondria- specific and can be activated to stimulate mitochondrial biogenesis72. The 

stimulation of adenylyl cyclase results in an increase in cAMP, which activates protein 

kinase A (PKA) that in turn phosphorylates cyclic AMP-responsive element-binding protein 

(CREB)65,73. CREB is also a transcriptional activator of PGC1α and can therefore also 

stimulate mitochondrial biogenesis73. Finally, increased levels of cGMP induced by caloric 

restriction and the inhibition of phosphodiesterases can stimulate PGC1α activation and 

mitochondrial bio-genesis in vivo74–76. Several of these pathways are being targeted to 

increase mitochondrial biogenesis to correct mitochondrial defects.

Mitochondrial dynamics and energetics

Correct mitochondrial morphology must be maintained for maximal ATP production. The 

processes of fission, fusion and mitophagy drive mitochondrial dynamics as they directly 

affect mitochondrial structure and morphology. Fission and fusion complement each other 

under different metabolic conditions to maintain mitochondrial morphology, whereas 

mitophagy removes damaged mitochondria from the network77. Sustaining mitochondrial 

dynamics is important for the appropriate maintenance of mitochondrial energetics.

Fission and fusion—Fission, the splitting of mitochondria into two, and fusion, the 

combining of two mitochondria, are complementary processes that are necessary for 

mitochondrial homeostasis. At steady state there is a balance between these processes (FIG. 
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5). The genetic deletion of genes, the protein products of which are involved in fission or 

fusion, causes human disease. For example, dominant optic atrophy is characterized by a 

loss of visual acuity owing to mutations in the gene encoding the fusion protein dynamin-

like 120 kDa protein (also known as OPA1), and mutations in the gene encoding the fission 

protein dynamin 1-like protein (DRP1), are lethal78–83. Although exceptions exist, in 

general, studies have shown that oxidative phosphorylation increases with fusion and 

decreases with fission to match the energy demands of the cells84,85. Excessive fusion, like 

excessive fission, can be associated with disease states, as seen in neurodegenerative 

diseases86. However, some cell types do not adhere to this trend, such as adult 

cardiomyocytes and senescent cells. Mitochondria in adult cardiomyocytes have a 

fragmented morphology but maintain oxidative capacity, whereas mitochondria in senescent 

cells remain elongated, which is characteristic of increased fusion87. Senescent cells in this 

elongated state have decreased bioenergetic capacity88,89.

Fusion is a two-part process that involves fusion of the outer mitochondrial membrane and, 

subsequently, the inner mitochondrial membrane of two mitochondria. GTPases of the 

dynamin superfamily — mitofusin 1 (MFN1), MFN2 and OPA1 — are key players in 

fusion. MFN1 and MFN2 are located on the outer mitochondrial membrane and are 

necessary for outer membrane fusion, whereas OPA1 resides in the inner membrane and is 

important for inner membrane fusion. Fusion leads to the elongation of mitochondria under 

physiological conditions, which can help to maintain oxidative phosphorylation90. These 

GTPases have a role in mitochondrial energetics. For example, deletion of MFN2 in mice 

causes deficiency in coenzyme Q, an electron carrier in complex III, which leads to ETC 

dysfunction and a decrease in ATP production91. Activation of these mitofusins and the 

cleavage of OPA1 can be regulated by changes in metabolism (see below).

Mitochondrial outer membranes are tethered by dimerization of MFN1 and MFN2, and 

external stimuli, such as oxidative stress, can enhance outer membrane fusion92. The 

activation of inner membrane fusion can be regulated by changes in metabolism at sites of 

proteolytic cleavage of OPA1 (REF. 93). OPA1 usually exists in a soluble long form and can 

be cleaved by the ATP-dependent zinc metalloproteinase YME1L or by the metalloendo-

peptidase OMA1, which is activated in response to a loss in membrane potential, to yield a 

soluble short form85. The soluble long and soluble short forms of OPA1 are necessary for 

fusion to occur. During steady state, both forms can coexist to induce minor structural 

remodelling of mitochondria94,95. The activation of cleaved OPA1 requires the presence of 

GTP, and the availability of GTP to activate OPA1 correlates with ATP levels in the cell96,97. 

The exact mechanism by which outer membrane and inner membrane fusion events are 

coordinated is still under investigation.

Fission is necessary to isolate damaged mitochondria from the mitochondrial network. If the 

resulting daughter mitochondria are unbalanced and depolarized, they are targeted for 

mitophagy98 to sustain a population of healthy mitochondria. However, excessive fission, as 

seen in diseases such as diabetic nephropathy and AKI, can have harmful effects on 

mitochondrial homeostasis in the long term99. In vitro studies to elucidate the mechanisms 

that trigger mitochondrial fission have shown that cells that are exposed to an excess of 

nutrients or oxidative stress have fragmented mitochondria99. Fission is induced by the 
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translocation of DRP1 from the cytosol to the mitochondrial outer membrane as a result of a 

loss in mitochondrial membrane potential. If the membrane potential is not restored, 

mitochondria are degraded via mitophagy99. DRP1 oligomerizes on the outer membrane to 

form a ring-like structure around the mitochondria, which can cause scission of the 

membrane100. DRP1 can bind to several different receptors, such as mitochondrial fission 1 

(FIS1), the mitochondrial dynamics proteins MID49 and MID51, and mitochondrial fission 

factor (MFF), which reside on the mitochondrial outer membrane81. DRP1 accumulates on 

the outer mitochondrial membrane by binding to these receptors and mediates the scission of 

mitochondria, which is dependent on GTP101. MID51 contains a cytosolic domain that has 

affinity for ADP and GDP, and can therefore act as a metabolic sensor102,103. DRP1 activity 

can be regulated by post-translational modifications, such as phosphorylation, 

ubiquitylation, and sumoylation104, and several signalling pathways have been shown to 

regulate the phosphorylation of DRP1 (REF. 105). For example, phosphorylation of DRP1 at 

Ser637 by PKA inhibits its GTPase activity and thus inactivates fission81,106. By contrast, 

dephosphorylation of DRP1 at Ser637 by calcium and calmodulin-dependent serine/

threonine protein phosphatase 2B catalytic subunit α isoform or calcineurin (CaN) activates 

DRP1 and promotes fission107,108. The balance between fission and fusion to maintain a 

functional population of mitochondria is an intricate process and is still under investigation. 

Mitochondria that disrupt this balance between fission and fusion, such as damaged 

mitochondria, are however removed from the network via mitophagy.

Mitophagy—Mitophagy in most cell types is regulated by a PTEN-induced putative kinase 

1 (PINK1)– PARKIN mechanism that tags mitochondria for degradation109. PINK1, a 

kinase that is located in the cytosol, is imported into the mitochondria and then degraded 

under physiological conditions110. As protein import is dependent on the mitochondrial 

membrane potential, mitochondrial depolarization results in an accumulation of PINK1 on 

the outer membrane; the PINK1-mediated phosphorylation of certain proteins on the outer 

membrane mediates recruitment of the E3 ligase, PARKIN111–114, to the outer membrane. 

PARKIN ubiquitylates lysine residues in the N-termini of mitochondrial outer membrane 

proteins, such as MFN1 and MFN2, thereby targeting the mitochondria for degradation by 

autophagosomes115–119.

Several pathways regulate mitophagy (FIG. 5). Proteins that are important for autophagy, 

such as ULK1 and ULK2, can mediate mitophagy under different stimuli120. For example, 

when nutrients are sufficient, AMPK is inhibited and mTOR inhibits ULK1, suppressing 

mitophagy121. During nutrient deprivation, AMPK is activated and inhibits mTOR, 

facilitating ULK1 activation and mitophagy120 (FIG. 3). Under oxidative stress, AMPK can 

be activated and inhibit mTOR, again stimulating mitophagy55,121. A more direct role for 

AMPK in the activation of mitophagy has also been suggested122, whereby AMPK directly 

phosphorylates MFF on Ser155 and Ser172, triggering fission and, subsequently, 

mitophagy123. However, external stimuli that trigger this pathway are unknown and more 

research is needed.

Other stimuli, such as hypoxia, cause the Ser/Thr protein phosphatase phosphoglycerate 

mutase family member 5 (PGAM5) to dephosphorylate its substrate, the mitophagy receptor 

FUN14 domain-containing protein 1 (FUNDC1)124. FUNDC1 then interacts with 

Bhargava and Schnellmann Page 9

Nat Rev Nephrol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microtubule-associated protein 1 light chain 3 (LC3), which mediates the formation of an 

autophagic membrane124,125. Alternatively, hypoxia can induce mitophagy through the 

actions of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and NIP3-

like protein X (NIX; also known as BNIP3L) via a mechanism involving HIF1α126,127. 

HIF1α can directly induce the transcription of BNIP3 and NIX by binding to the promoter 

of BNIP3 and by recruiting other co-activator proteins to NIX. NIX and BNIP3 are 

transmembrane proteins located in the mitochondrial outer membrane and can activate 

mitophagy by dissipating the mitochondrial membrane potential and interacting with LC3 to 

deliver mitochondria to the autophagosome127–130. BNIP3 and NIX are also apoptotic 

regulators that can induce cell death or autophagy by increasing the production of ROS, by 

binding to pro-apoptotic proteins of the BCL-2 family, or by inhibiting the GTP-binding 

protein RHEB, an upstream activator of mTOR131–133. Previous studies suggest that 

crosstalk exists between both of the mechanisms that can regulate mitophagy127,134,135, 

although the mechanisms of this proposed crosstalk are unclear and additional studies are 

needed to determine the mechanisms that regulate mitophagy in renal disease.

Mitochondria and renal diseases

Diseases such as AKI and diabetic nephropathy can cause an imbalance in mitochondrial 

homeostasis, negatively impacting mitochondrial energetics and the production of ATP. 

Much research supports a role for mitochondrial dysfunction in a number of renal 

diseases136. We focus on AKI and diabetic nephropathy as examples of how mitochondrial 

dysfunction can negatively affect mitochondrial energetics to contribute to disease 

progression.

Acute kidney injury

The outcome of AKI is renal dysfunction, as indicated by an increase in blood urea nitrogen 

(BUN) and serum creatinine level, and/or reduced urinary output137. Current treatment for 

AKI is lacking owing to its complex pathogenesis138,139. Over the past two decades, the 

incidence of AKI has increased; furthermore, the mortality rate for patients requiring renal 

replacement therapy is >60%137,140–143. Ultimately, unresolved AKI can cause long-term 

damage to the kidney, increasing the risk of chronic kidney disease (CKD)144. AKI can be 

categorized as prerenal, postrenal or intrinsic139, and can result from sepsis, IRI, exposure to 

nephrotoxic reagents, trauma145 or in response to decreased cardiovascular function146,147. 

One of the main sites of injury in AKI is the proximal tubules, where injury is characterized 

by disrupted brush borders and tight junctions, cell sloughing, apoptosis, necrosis and the 

subsequent backleak of filtrate across injured proximal tubular cells148.

Much research has been conducted on mitochondrial dysfunction as an initiator of and 

contributor to AKI and as a therapeutic target149. Histologically, mitochondrial swelling and 

fragmentation are observed after diverse insults to the kidney150. A decrease in ATP 

production, an increase in ROS production, the release of cytochrome c, and the disruption 

of mitochondrial cristae are also observed, supporting a role for mitochondria in 

AKI150. A decrease in ATP production and mitochondrial dysfunction has been documented 

in many animal models of AKI, including sepsis, and these outcomes result from the loss of 

Bhargava and Schnellmann Page 10

Nat Rev Nephrol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial respiratory proteins in proximal tubules151–153. Furthermore, the loss of ETC 

proteins is persistent in the damaged kidney and might contribute to the slow recovery of 

renal function after AKI151.

A number of factors in the ischaemic kidney disrupt the oxidation and transport of fatty 

acids, causing an accumulation of fatty acids in the cytoplasm and contributing to the 

decrease in ATP production and mitochondrial energetics154,18,150,155,156. For example, 

cofactors, such as NAD+, are necessary for fatty acid oxidation, but a dysfunctional ETC is 

not able to regenerate NAD+ (REF. 157). IRI also decreases the activity of CPT1 (REFS 

18,158), the rate-limiting enzyme in the carnitine shuttle that transports fatty acids from the 

cytoplasm into the mitochondria158, which decreases the transport of fatty acids into the 

mitochondria and reduces β-oxidation158.

Increased levels of lactate and pyruvate and of hexokinase activity in the kidney have been 

reported after IRI, suggesting that an increase in glycolysis occurs after injury159,160. 

Increased levels of glycolytic enzymes have also been detected in injured renal tubules after 

IRI161,162, suggesting that the kidney can respond to injury by altering its metabolic 

substrates to maintain function163. Further studies are needed to explore how this increase in 

glycolysis affects mitochondrial function in the kidney and if this change in metabolism 

contributes to long-term recovery following IRI.

Changes in mitochondrial dynamics also contribute to the decrease in mitochondrial 

energetics following AKI164 (FIG. 6). The translocation of DRP1 into the mitochondrial 

outer membrane occurs shortly after kidney injury151,165, and activation of DRP1 in 

ischaemic kidneys promotes mitochondrial fragmentation and apoptosis166. Loss of cristae 

structure is also observed in AKI, which dissipates the mitochondrial membrane potential 

and halts ATP production150. Administration of a pharmacological inhibitor of DRP1, 

mdivi-1, protected kidneys from AKI by inhibiting mitochondrial fragmentation, supporting 

a role for altered mitochondrial dynamics in AKI165.

Mitophagy is also activated after ischaemic AKI. In mice from which the genes encoding the 

autophagy regulators autophagy-related protein 7 (ATG7) and ATG5 were specifically 

knocked out in renal proximal tubules, mitochondrial dysfunction was greater in renal 

proximal tubules in response to IRI, as characterized by severe morphological changes, 

increased ROS production and apoptosis167–169. Activation of NIX and BNIP3 causes the 

release of ROS and the pro-apoptotic proteins BAX and BAK, in hypoxic conditions116,170. 

Deletion of BAX and BAK in mouse kidneys not only protected mice from ischaemic AKI 

but also suppressed mitochondrial fragmentation and the release of cytochrome c, preserving 

mitochondrial integrity171. A lack of ATG7 also exacerbated cisplatin-induced AKI in 

mice134,167. These studies suggest that crosstalk occurs between components of the cell 

death machinery and the autophagy machinery in the activation of mitophagy.

In mouse models of AKI, the transcription and protein expression of PGC1α are persistently 

suppressed, but are eventually restored to basal levels with recovery151. As PGC1α can 

regulate the transcription of mitochondrial proteins, the level of these proteins is also 

decreased after AKI151,172. In a model of septic AKI, global PPARGC1A-knockout mice 
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showed a greater increase in BUN and creatinine levels than did wild-type mice152. Renal-

specific PPARGC1A-knockout mice exhibited persistent AKI in response to sepsis152. By 

contrast, overexpression of PGC1α in renal proximal tubule cells attenuated oxidant injury 

in vitro59. Together, these studies show that PGC1α is necessary for the recovery of renal 

function in AKI.

Investigations into the mechanisms by which PGC1α regulates the recovery from AKI 

revealed a role for PGC1α in NAD biosynthesis. The levels of nicotinamide, a precursor for 

NAD, were decreased after AKI in PPARGC1A-knockout mice, and supplementation with 

nicotinamide reversed ischaemic AKI173. We have reported that drugs or chemicals can 

upregulate mitochondrial biogenesis by increasing the expression of PGC1α in the recovery 

phase following IRI through two G-protein coupled receptors (GPCRs): the β2 adrenergic 

receptor and the 5-hydroxytryptamine 1F receptor174,175 (see below).

The role of SIRT3 in cisplatin-induced AKI has also been explored. SIRT3 is a 

mitochondrial-specific protein deacetylase with an active role in mitochondrial function and 

integrity176. An in vitro study using cisplatin-injured human renal proximal tubules showed 

that the over-expression of SIRT3 decreased the translocation of DRP1 from the cytosol to 

the mitochondrial outer membrane and thus decreased mitochondrial fission, supporting a 

role for SIRT3 in regulating mitochondrial dynamics after AKI176. Deletion of SIRT3 
exacerbates injury in a cisplatin-induced AKI mouse model, supporting its role in recovery 

from AKI176.

Diabetic nephropathy

Diabetic nephropathy is the leading cause of end-stage renal disease (ESRD) in the 

USA177,178. It is characterized by hyperglycaemia, albuminuria, the accumulation of 

extracellular matrix proteins, and glomerular and tubular epithelial hypertrophy, as well as a 

reduced glomerular filtration rate following an initial period of hyperfiltration179. 

Mitochondrial energetics are altered in diabetic nephropathy owing to increased ROS and 

hyperglycae-mia180, both of which induce changes in the ETC that cause a decrease in ATP 

production and an increase in apoptosis180. In line with these observations, increased fission, 

mitochondrial fragmentation and reduced levels of PGC1α are all observed in the early 

stages of diabetes mellitus181,182. Structural changes in mitochondria correlate with the 

observed changes in mitochondrial energetics182.

Hyperglycaemia is the main factor that contributes to the development of diabetic 

nephropathy (FIG. 7). Hyperglycaemia increases the production of NADH and FADH2 by 

the TCA cycle, fueling the ETC183. ROS released from the ETC can damage mtDNA, 

hindering the production of mitochondrial proteins183. The hyperglycaemic state was 

originally thought to cause mitochondrial dysfunction by stimulating the development of 

hyperpolarized mitochondria, which produce more ATP and release higher levels of 

superoxide from complexes I and III than healthy mitochondria180,184,185. Administration of 

antioxidants such as vitamin E and vitamin A did not, however, attenuate the complications 

of patients with diabetes mellitus, suggesting that mitochondrial ROS might not be the 

primary mediator of mitochondrial dysfunction in diabetic nephropathy186. Hyperglycaemia 

can also increase the level of advanced glycation end products (AGEs), and the activity of 
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the protein kinase C (PKC) and hexosamine pathways, which can contribute to 

mitochondrial dysfunction187. All three events cause deleterious effects that include 

increased fibrosis, thrombosis, oxidative damage and abnormalities in the vasculature and in 

blood flow187.

Hyperglycaemia also stimulates the conversion of glucose to fructose via the polyol pathway 

in proximal tubules, leading to ATP depletion188. A role for endogenous fructose 

metabolism in the regulation of diabetic nephropathy was suggested by a study showing that 

deleting the gene that encodes ketohexokinase (KHK; also known as hepatic fructokinase) 

— the enzyme responsible for the conversion of fructose to fructose-1-phosphate — 

protected mice from streptozotocin-induced diabetic nephropathy189. Proximal tubules 

are a major site of ketohexokinase expression188,190 and ATP levels were increased and 

tubular morphology was improved in diabetic Khk−/− mice compared with that of diabetic 

wild-type mice, suggesting a role for fructose metabolism in the pathogenesis of diabetic 

nephropathy189.

Mitochondrial fragmentation has been observed in proximal tubules in the early stages of 

diabetes mellitus181, although the mechanisms that drive changes in mitochondrial dynamics 

in diabetes are not yet clear. Fission dissipates the mitochondrial membrane potential, 

decreasing the production of ATP and promoting apoptosis191. Several studies have 

suggested a role for RHO-associated protein kinase 1 (ROCK1) signalling in activating 

fission in the diabetic kidney192. ROCK1 promotes the translocation of DRP1 to the 

mitochondria and triggers fission by phosphorylating DRP1 (REF. 192). Deletion of ROCK1 
in mice with streptozotocin-induced diabetes prevents mitochondrial fission, attenuates the 

increase in ROS production and restores bioenergetic function in the kidney192.

Patients with diabetes mellitus have reduced levels of the fusion protein MFN2193. In line 

with this finding, kidney-specific overexpression of MFN2 protects rats from streptozotocin-

induced diabetic nephropathy193. MFN2 overexpression decreased ROS production, 

decreased kidney volume and attenuated the pathological changes seen in the diabetic 

kidney193. Induced in high glucose 1 (IHG1; also known as THG1L) is another protein that 

is involved in mitochondrial fusion and has been shown to regulate mitochondrial dynamics 

and biogenesis in the diabetic kidney194. IHG1 can enhance the ability of MFN2 to bind to 

GTP and interacts directly with MFN2 to mediate fusion194. Inhibition of IHG1 reduces 

ATP production and hinders fusion in vitro194. IHG1 also stabilizes PGC1α activation195.

Reduced levels of PGC1α have also been observed in diabetic rat kidneys196. The 

overexpression of PGC1α in mesangial cells in vitro attenuated the pathophysiological 

changes induced by hyperglycaemic conditions196. The decrease in mitochondrial 

biogenesis in diabetic rat kidneys is consistent with the translocation of DRP1 to the 

mitochondrial outer membrane and an increase in mitochondrial fragmentation196. The 

levels of PGC1α mRNA and protein were also reduced in podocytes that were cultured 

under hyperglycaemic conditions compared with the levels in podocytes that were cultured 

under normal glucose conditions, indicating a decrease in mitochondrial biogenesis197.
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Another study has described an important role for pyruvate kinase M2 (PKM2) in diabetic 

nephropathy. The expression and activity of PKM2 is upregulated in patients with long-term 

diabetes mellitus who have not developed diabetic nephropathy but not in patients with 

diabetic nephropathy198. Podocytes from PKM2-knockdown mice have decreased 

PPARGC1A mRNA and mitochondrial mass, whereas activation of PKM2 attenuated the 

decrease in mitochondrial function and glycolytic flux in podocytes in vitro. In vivo studies 

showed that activation of PKM2 in mice attenuated the diabetes-induced decrease in 

PPARGC1A mRNA and increased the expression of OPA1, increasing mitochondrial 

fusion198. Activation of PKM2 can therefore reverse mitochondrial dysfunction and renal 

abnormalities associ ated with diabetes mellitus. These studies highlight the need for further 

research in this area, as targeting the balance between mitochondrial biogenesis and 

dynamics could be a potential therapeutic approach for diabetic nephropathy.

Mitochondrial energetics and therapy

Targeting AMPK signalling

AMPK signalling has been implicated as a target for correcting metabolism and 

mitochondrial function, especially in the kidney. As mentioned above, AMPK is a metabolic 

sensor of ATP in the cell. A high AMP:ATP ratio activates AMPK to stimulate cell growth 

and cellular metabolism. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-

riboside (AICAR), prevents glomerulopathy and tubulointerstitial fibrosis in mice by 

stimulating fatty acid oxidation199 (TABLE 1). AICAR also has a therapeutic effect in 

mouse renal IRI and can improve glucose utilization in obese, insulin-resistant rats200,201. 

The activation of AMPK by AICAR increased the level of PGC1α and mitochondrial 

proteins while reducing ROS production in a diabetic mouse model202.

Several studies have suggested that crosstalk exists between AMPK and SIRT3 

signalling203,204. SIRT1 and SIRT3 are activated by NAD+ (REF.205). Cisplatin-treated mice 

have decreased expression of Sirt3 and lower SIRT3 protein levels, increased tubular 

damage, and decreased levels of phosphorylated AMPK compared with that of saline-treated 

control mice206. Administration of AICAR to cisplatin-treated mice attenuated the decrease 

in SIRT3 expression, phosphorylated AMPK level, and tubular damage206. These studies 

provide a therapeutic rationale for targeting AMPK signalling in the kidney to improve 

outcomes in AKI and diabetic nephropathy.

Targeting PPARs

PPARs can regulate cellular metabolism, mitochondrial function, mitochondrial biogenesis, 

fatty acid oxidation and glucose homeostasis; thus, targeting them could be beneficial for 

patients with renal disease related to mitochondrial dysfunction.

Activation of PPARs can ameliorate ischaemic AKI207–209. As discussed above, an 

accumulation of fatty acids and increased ROS production can decrease the efficiency of the 

ETC. Defects in fatty acid oxidation have been attributed to the downregulation of PPARs 

during renal ischaemia18. Fenofibrate, which is used to treat dyslipidaemia, activates 

PPARα210 (TABLE 1). Activation of PPARα leads to activation of lipoprotein lipase, which 
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hydrolyses triglycerides into glycerol and free fatty acids for metabolism210. PPARs can also 

stimulate mitochondrial biogenesis; for example, compounds such as bardoxolone increase 

the level of PPARG (encoding PPARγ) and NFE2L2 (encoding NRF2) mRNA, leading to 

mitochondrial biogenesis211. However, the use of bardoxolone in clinical trials for patients 

with type 2 diabetes mellitus and stage 4 CKD showed adverse effects in patients, including 

an increase in the rate of heart failure events, resulting in termination of the trial212.

The efficacy of PPAR agonists in animal models suggests these agents could show promise 

for the treatment of diabetic nephropathy. Treatment of db/db diabetic mice with fenofibrate 

led to decreased hyperglycaemia and insulin resistance, potentially by correcting glucose 

homeostasis213. Studies have also shown that treatment of diabetic mice with fenofibrate 

leads to a decrease in fatty acids in the kidney, supporting its potential as a therapeutic for 

diabetic nephropathy214–216. These in vivo studies provide evidence that fenofibrate might 

be suitable for the treatment of patients with diabetic nephropathy. Indeed, fenofibrate 

decreased dyslipidaemia and albuminuria in patients with type 2 diabetes mellitus and 

reduced the risk of further cardiovascular events217. Taken together, these studies confirm 

that PPARs have a role in diabetic nephropathy and are a therapeutic target.

Targeting G protein-coupled receptors

Although a wide variety of GPCRs are expressed in the kidney, few studies correlate GPCRs 

with mitochondrial function in the kidney and other organs. We proposed that compounds 

that target two different GPCRs — β2 adrenergic receptor (β2AR) and 5-hydroxytryptamine 

receptor 1F (5-HT1F) — can induce mitochondrial bio-genesis, restore mitochondrial 

function and stimulate the recovery of renal function following IRI. Formoterol, a β2AR 

agonist used to treat asthma and chronic obstructive pulmonary disease, stimulates 

mitochondrial biogenesis and the expression of PGC1α in renal proximal tubular cells in 

mice174. The administration of formoterol in a model of IRI accelerated the recovery of 

mitochondrial and renal function by 6 days174. LY344864 is a potent 5-HT1F agonist; it 

induced mitochondrial biogenesis in naive mice and accelerated the recovery of 

mitochondrial biogenesis and renal function in the same AKI model175. Several GPCR 

ligands, such as atrasentan, are currently in clinical trials of diabetic nephropathy; however, 

whether they act by influencing mitochondrial energetics is unknown and requires further 

research. These studies provide a foundation for pursuing the targeting of GPCRs, 

particularly β2AR and 5-HT1F, as a treatment for mitochondrial dysfunction in renal 

diseases.

Using mitochondrial peptides

A 2014 study described a family of peptides, called Szeto–Schiller peptides (SS peptides), 

which specifically target cytochrome c activity in the ETC, enhancing its efficiency and 

increasing ‘state 3 respiration’ — that is, ATP production in the presence of excess 

substrates and ADP218. SS peptides are highly polar, water-soluble tetrapeptides that can 

cross the blood–brain barrier and specifically target the inner mitochondrial membrane. The 

SS peptides do not cause mitochondrial depolarization upon entry, making these compounds 

highly promising for treatment. SS peptides prevent the peroxidation of cardiolipin, a 

phospholipid that is important for maintaining cristae formation, by cytochrome c218. 
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Cytochrome c binds to and oxidizes cardiolipin, disrupting cristae formation and detaching 

cytochrome c from the inner mitochondrial membrane219,220. The SS-31 peptide (also 

known as elamipretide) has been shown, in a variety of animal disease models, especially in 

AKI, to promote ATP recovery and cristae formation218. Pretreatment of rats with SS-31 in 
vivo maintained cristae formation and prevented mitochondrial swelling of renal tubular 

epithelial cells218. Due to the success in animal models, SS-31 is currently in clinical trials 

for the treatment of impaired renal function221 (TABLE 1).

Conclusions

Mitochondrial homeostasis involves a network of cellular processes that regulate ATP 

production; the disruption of these processes can result in mitochondrial dysfunction and 

organ damage. Although much is known about mitophagy and mitochondrial fission, fusion 

and biogenesis, the precise role of these processes in renal disease remains to be determined. 

It is clear, however, that mitochondrial dysfunction is common and occurs early in AKI and 

diabetic nephropathy. Furthermore, the absence of recovery of mitochondrial function after 

diverse insults might lead to the continued impairment of renal function, leading to CKD. As 

renal cell repair and the recovery of renal function is dependent on the ability of 

mitochondria to produce ATP, restoring mitochondrial function might reverse cellular injury 

and restore renal function, particularly for diseases such as AKI and diabetic nephropathy. 

Collectively, the available studies corroborate the need to target mitochondrial homeostasis 

to restore mitochondrial function and stimulate organ repair or prevent further declines in 

organ function.

Glossary

Carnitine shuttle
Enzymes in the mitochondrial membrane that transport long-chain fatty acids from the 

cytosol to the mitochondrial matrix by replacing their coA group with carnitine

Mitochondrial cristae
Folds in the mitochondrial inner membrane that increase the surface area for mitochondrial 

respiration to take place

Streptozotocin
A glucosamine-nitrosourea that is used to induce experimental diabetes in animals by 

specifically targeting and damaging beta cells

Dyslipidaemia
Abnormalities in lipoprotein metabolism, resulting in elevated or deficient levels of lipids 

and/or lipoproteins in the body
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Key points

• Mitochondrial homeostasis requires a fine-tuned balance between 

mitochondrial dynamics and mitochondrial energetics, and ensures the 

maintenance of properly functioning mitochondria

• Mitochondria can adapt to different metabolic conditions via the regulation of 

mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase 

(AMPK) nutrient sensing pathways, to maintain a healthy population of 

mitochondria

• External stimuli can augment mitochondrial processes, such as mitophagy, 

fission and fusion, and mitochondrial biogenesis to attenuate irregular levels 

of ATP production

• The disruption of mitochondrial homeostasis in the early stages of acute 

kidney injury is an important factor that drives tubular injury and persistent 

renal dysfunction

• Hyperglycaemia-induced ATP depletion triggers changes in mitochondrial 

morphology that lead to the onset of diabetic nephropathy in diabetes mellitus

• Correcting abnormal electron transport chain function directly, and/or by 

targeting the pathways that regulate mitochondrial biogenesis, is likely to 

improve renal outcomes by restoring mitochondrial function and stimulating 

organ repair
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Figure 1. ATP production in the kidney
a | The electron transport chain (ETC). A functioning ETC transforms reducing equivalents 

from NADH and FADH2 to produce NAD+ and FAD+, respectively. The electrons (e−)that 

are produced travel through the complexes of the ETC and are ultimately accepted by 

oxygen at complex IV. As electrons are transferred from complex to complex, protons (H+) 

are actively pumped out from complexes I, III, and IV into the intermembrane space, 

maintaining the membrane potential and driving the production of ATP by ATP synthase 

(also known as complex V). b | Fatty acid transport and activation in renal proximal tubule 

cells. Proximal tubules require large amounts of ATP to drive ion transport and therefore rely 

on aerobic respiration, the most efficient mechanism for producing ATP. Fatty acids are a 

main source of energy for proximal tubules because more ATP can be produced from one 

molecule of palmitate than from one molecule of glucose18. Fatty acids bound to fatty acid-

binding proteins (FABP) are transported into the proximal tubule cell via platelet 

glycoprotein 4 (also known as CD36) and activated by the addition of acetyl-CoA in the 
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cytosol via acyl-CoA synthetase. Activated fatty acids are transported into mitochondria via 

carnitine O-palmitoyltransferase 1 (CPT1), which exchanges their acyl-CoA group for L-

carnitine, whereupon they undergo β-oxidation to produce ATP. CoQ, coenzyme Q; Cyt C, 

cytochrome c; MIM, mitochondrial inner membrane; MOM, mitochondrial outer membrane; 

Pi, inorganic phosphate.
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Figure 2. Oxidative stress and the antioxidant defence system
Insults can increase the production of reactive oxygen species (ROS) in the cytosol and 

mitochondria. NADPH oxidase 2 (NOX2) and NOX4 can also contribute to the production 

of ROS222. The production of ROS can cause breaks in mitochondrial DNA (mtDNA) and 

damage lipids and proteins. Damaged mtDNA can produce aberrant mitochondrial proteins 

and prevent mitochondrial protein synthesis, whereas damaged lipids and proteins result in 

impaired mitochondrial function, leading to further increases in mitochondrial ROS. ROS 

also activate nuclear factor erythroid 2-related factor 2 (NRF2), which translocates to the 

nucleus and binds to antioxidant-responsive elements (AREs) to activate the transcription of 

genes encoding oxidant-neutralizing enzymes, such as mitochondrial superoxide dismutase 

2 (SOD2), glutathione peroxidase (GPX) and catalase. SOD2 reduces superoxide anions to 

hydrogen peroxide (H2O2) and oxygen (O2). Catalase, found in the cytoplasm, and GPX, 

located in the cytoplasm and mitochondria, reduce H2O2 to water (H2O)223. GPX also 

oxidizes glutathione (GSH), resulting in glutathione disulfide (GSSG) as a byproduct of 

reducing hydrogen peroxide to water. GSSG in mitochondria (mGSSG) is converted back to 
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GSH by glutathione reductase (GR) in a process that requires the presence of NADPH. The 

activity of the mitochondrial uncoupling protein 2 (UCP2) is increased, dissipating the 

proton motive force and decreasing ROS production. mGSH, mitochondrial GSH. The 

electron transport chain complexes I–V are indicated as I, II, III, IV and V.
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Figure 3. Crosstalk between two nutrient-sensing pathways
Mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase 

(AMPK) have key roles in regulating mitochondrial biogenesis and mitophagy. mTORC1 is 

responsible for triggering anabolic pathways, such as the synthesis of proteins, nucleotides 

and lipids, as well as mitochondrial biogenesis. AMPK activates catabolic pathways, 

including autophagy, mitophagy, fatty acid oxidation and glycolysis. AMPK can stimulate 

mitochondrial biogenesis (dotted arrow). However, in response to stimuli such as nutrient 

deprivation, AMPK can inhibit mTORC1 (dotted inhibitory line) and phosphorylate ULK1 

to activate mitophagy (dashed arrow). Together these two signalling pathways maintain cell 

function and sustain mitochondrial energetics in response to stimuli such as hypoxia, 

oxidative stress and energy depletion.
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Figure 4. Activation and regulation of mitochondrial biogenesis
A complex network of pathways regulate mitochondrial biogenesis. Activation of 

peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) in the cytosol causes 

its translocation to the nucleus and the transcription of genes (including that encoding 

mitochondrial tricarboxylic acid (TCA) cycle and mitochondrial biogenesis. TFAM aids in 

the transcription of genes that are encoded by mitochondrial DNA224–226. The activation of 

G protein-coupled receptors (GPCRs), such as the β2 adrenergic receptors (β2AR) and 5-

hydroxytryptamine receptor 1F (5-HT1F), leads to the dissociation of heterotrimeric G 

proteins composed of Gα, Gβ and Gγ subunits and the subsequent activation of protein 

kinase A and endothelial nitric oxide synthase (eNOS)66. The pathway from GPCRs to 

eNOS is still under investigation, as indicated by the dashed line. eNOS stimulates soluble 

guanylyl cyclase (sGC) to form cyclic guanosine monophosphate (cGMP), which in turn 

activates PGC1α. A number of compounds can activate nuclear receptors such as 

peroxisome proliferator-activated receptors (PPARs) and oestrogen- related receptors 

(ERRs) and induce mitochondrial biogenesis. Once activated, these nuclear receptors can act 

as transcriptional co-activators (labelled in the figure as nuclear receptor transcription factors 

(NRTFs)), with PGC1α to stimulate mitochondrial biogenesis. Other transcription factors, 

including nuclear respiratory factor 1 (NRF1) and NRF2, can also directly bind to PGC1α to 

induce mitochondrial biogenesis227. Stimuli, such as caloric restriction, can activate eNOS, 

increasing the production of cGMP and leading to the activation of PGC1α. The activity of 

sirtuin 1 (SIRT1) is increased in the presence of a high ratio of NAD+ to NADH 

concentrations, leading to the activation of PGC1α. High AMP:ATP ratios also activate 

AMP-activated protein kinase (AMPK), activating PGC1α by phosphorylation. In all of 

these cases, the activation of PGC1α stimulates mitochondrial biogenesis. Ac, acetyl; PDE5, 
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cGMP-specific 3ʹ,5ʹ-cyclic phosphodiesterase; PKA, protein kinase A; sGC, soluble 

guanylyl cyclase.
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Figure 5. Mitochondrial dynamics: fission, fusion and mitophagy
Mitochondria are dynamic organelles that need to maintain their morphology for the optimal 

production of ATP under different metabolic conditions and as part of a healthy network of 

mitochondria. Fission and fusion are two processes that are necessary for the maintenance of 

mitochondria morphology. Mitochondria fuse together via mitofusin 1 (MFN1) and MFN2 

(outer membrane fusion) and the activation of dynamin-like 120 kDa (OPA1) (inner 

membrane fusion). Fusion can occur to maintain ATP production or to redistribute 

mitochondrial proteins. Fission can isolate depolarized mitochondrion that might not 

contribute to the healthy network of mitochondria. The activation of fission causes the 

oligomerization of dynamin 1-like protein (DRP1) on the mitochondrial outer membrane, 

where it is bound to receptors (namely mitochondrial fission 1 (FIS1) and mitochondrial 

fission factor (MFF)), forming a ring-like structure that mediates the separation of 

mitochondria. The network also isolates dysfunctional mitochondria for degradation by 

mitophagy via a well-studied PTEN-induced putative kinase 1 (PINK1)– PARKIN 

mechanism. Under adverse conditions such as hypoxia, however, mitochondria will be 
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removed by a FUN14 domain-containing protein 1 (FUNDC1) or BCL2/adenovirus E1B 19 

kDa protein-interacting protein 3 (BNIP3) and NIP3-like protein (NIX)-dependent 

mechanism of mitophagy. LC3, microtubule-associated protein 1 light chain 3; Ub, 

ubiquitin.
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Figure 6. Changes in mitochondrial morphology lead to tubular damage in acute kidney injury
A healthy proximal tubule consists of an intact brush border with tight junctions and 

contains a network of mitochondria to maintain its function. After ischaemia–reperfusion 

injury (IRI), changes in mitochondrial function and morphology lead to mitochondrial 

dysfunction, and eventually to injured proximal tubules. In the early stages of acute kidney 

injury (AKI), a number of events may happen concurrently to cause a decrease in ATP 

production. These events include a decrease in the expression of carnitine O-

palmitoyltransferase 1 (CPT1) (causing fatty acid accumulation and decreasing β-oxidation 

for ATP production), a decrease in the expression of peroxisome proliferator-activated 

receptor-γ co-activator 1α (PGC1α) and an increase in the production of reactive oxygen 

species (ROS) (bidirectional arrows). Together, these events can trigger the activation and 

accumulation of dynamin 1-like protein (DRP1) on the mitochondrial outer membrane, 

promoting mitochondrial fragmentation and eventually cell death. The release of cytochrome 

c and mitochondrial DNA (mtDNA) from dysfunctional mitochondria causes an increase in 

mitophagy. Mitochondrial dysfunction can induce cell death in injured proximal tubules, 

resulting in the loss of nuclei and tight junctions and in disrupted brush borders. Apoptotic 

or necrotic tubules can lead to cell sloughing, as seen in the centre of the tubule.
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Figure 7. Factors contributing to mitochondrial dysfunction in diabetic nephropathy
Hyperglycaemia is the primary contributing factor to mitochondrial dysfunction in diabetic 

nephropathy. An increase in glucose level results in an increase in glycolysis, in turn 

activating the advanced glycation end product (AGE) pathway, the protein kinase C (PKC) 

pathway and the hexosamine pathway, which results in a decrease in ATP levels. 

Hyperglycaemia also activates the polyol pathway, which increases fructose levels and, 

consequently, decreases ATP levels. Mitochondrial fragmentation and swelling is observed 

in early diabetic nephropathy, leading to an increase in fission and the production of reactive 

oxygen species (ROS). The correlations between increased mitochondrial fragmentation and 

decreased ATP, and between ROS production and decreased ATP, are interdependent. 

Whether one causes the other is unclear, as depicted by the bidirectional arrows. Decreases 

in the levels of mitofusin 2 (MFN2) and peroxisome proliferator-activated receptor-γ co-

activator 1α (PGC1α) correlate with, and might contribute to, the increase in mitochondrial 

fission observed in diabetic nephropathy, as indicated by the larger arrows pointing towards 

increased mitochondrial fission. Decreases in mitochondrial energetics that are caused by 

changes in mitochondrial morphology and hyperglycaemia lead to apoptosis in diabetic 

nephropathy. F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G3P, glyceraldehyde-3-

phosphate.
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Table 1

Approaches to correct abnormal mitochondrial function in AKI and diabetic nephropathy

Agent Mechanism of action In vivo and clinical studies*

Acute kidney injury

AICAR (an AMPK 
activator)

• Increases AMPK activation

• Increases crosstalk between 
SIRT3 and AMPK

• AICAR administration attenuated decreased serum 
creatinine and urea levels in Sprague–Dawley rats with 
IRI (2012)200

• AICAR attenuated BUN and serum creatinine levels in 
cisplatin-treated mice (2015)206

Formoterol (a β2AR 
agonist)

Binds to β2AR and induces mitochondrial 
biogenesis

Formoterol restored mitochondrial and renal function in mice with IRI 
within 6 days (2014)174

LY344864 (a 5-HT1F 

receptor agonist)
Binds to 5-HT1F and induces mitochondrial 
biogenesis

LY344864 restores renal function in mice with IRI within 6 days 
(2014)175

Elamipretide (a 
Szeto–Schiller 
peptide (specifically 
SS-31))

Prevents the peroxidation of cardiolipin by 
cytochrome c

• Enhances efficiency of the ETC and prevents 
mitochondrial swelling in rats (2014)218

• Phase I study (NCT02436447) in patients with impaired 
renal function (2015)221

Diabetic nephropathy

AICAR (an AMPK 
activator)

Increases glucose utilization AICAR decreased blood glucose levels in db/db diabetic mice and 
ob/ob obese mice (2002)228

Fenofibrate (a 
PPARα agonist)

• Decreases hyperglycaemia

• Increases free fatty acids by 
targeting lipase

• Decreases dyslipidaemia and 
albuminuria

• Corrected glucose homeostasis in db/db diabetic mice 
(2006)213

• Decreased serum creatinine levels and had a 
renoprotective role for diabetic nephropathy in diabetic 
rats (2016)215

• Administrating fenofibrate to patients with type 2 
diabetes mellitus decreased cardiovascular disease 
events (2005)229

5-HT1F, 5-hydroxytryptamine receptor 1F; β2AR, β2 adrenergic receptor; AICAR, 5-aminoimidazole-4-carboxamide-1-β-D-riboside; AKI, acute 

kidney injury; AMPK, AMP-activated protein kinase; BUN, blood urea nitrogen; ETC, electron transport chain; IRI, ischaemia–reperfusion injury; 
PPARα, peroxisome proliferator-activated receptor-α; SIRT3, sirtuin 3.

*
The year of the clinical study is given in parentheses.
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