
© 2005 Nature Publishing Group 

The introduction of antimicrobial drugs, most notably 
penicillin, was thought to herald the beginning of the 
end of bacterial infections. Unfortunately, the rapid 
recognition of penicillin resistance within a year of 
its introduction disabused physicians of this notion1. 
Initially, infections caused by antimicrobial-resistant 
bacteria occurred mainly in hospital settings, where 
antimicrobial use was most extensive. Bacteria carry-
ing antimicrobial-resistance genes had a survival 
advantage that facilitated dissemination in this setting. 
Factors such as the close proximity of sick patients, 
receiving antimicrobial agents and often cared for 
by the same healthcare personnel, contributed to 
the increased risk of developing infections caused by 
antimicrobial-resistant pathogens. Efforts to reduce 
healthcare-associated infections, especially those due 
to antimicrobial-resistant bacteria, are now a major 
focus of healthcare facilities.

More recently, there has been an equally disturb-
ing trend that has received less attention: the spread of 
antimicrobial-resistant bacteria within the community. 
Despite the increasing prevalence of organisms such as 
penicillin-resistant pneumococci, quinolone-resistant 
enterobacteriaceae and community-associated meticil-
lin (formerly methicillin)-resistant Staphylococcus aureus 
(CA-MRSA), there has been limited public attention 
focused on the community as an important reservoir 
for antimicrobial resistance.

The foremost reason for this trend is the increasing 
volume of antimicrobial usage around the world, partic-
ularly in the community setting. Studies indicate a direct 
correlation between antimicrobial use and the extent of 
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antimicrobial resistance2. Figures vary widely, but it has 
been determined that approximately 3 million pounds 
in weight of antimicrobial drugs are used by humans 
annually3. Most of these drugs are used in the outpatient 
setting, and studies estimate that half of outpatient anti-
microbials are prescribed for inappropriate indications, 
such as viral illnesses4,5 (FIG. 1).

These studies do not take into account antimicrobials 
that are acquired without doctors’ prescriptions; in fact, 
the sharing of antimicrobial drugs among friends and 
family members occurs not infrequently. Furthermore, 
antimicrobials are often obtained over the counter, 
legally in many countries and illicitly in the United States. 
Moreover, even more antimicrobial drugs are used in 
food animals compared with humans, approximated at 
30 million pounds a year3. These factors create an envi-
ronment that provides antibiotic-resistant bacteria with 
a potential survival advantage.

Mechanisms of antimicrobial resistance
Bacteria acquire antimicrobial resistance as a result of 
chromosomal mutations or the horizontal exchange 
of genetic material among related or unrelated bacterial 
species6–12. Genetic exchange occurs in various ways, 
including transformation, transduction and conjugation 
(FIG. 2). These genetic events occur in the presence or 
absence of antibiotics. There are, however, several ways 
in which antimicrobial usage contributes to antimicrobial 
resistance: a concurrent selective effect, a subsequent com-
petitive effect and bacterial genetic transfer. In the concur-
rent selective effect, during antimicrobial administration, 
susceptible organisms are killed, whereas organisms 
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that are resistant to the drug persist and therefore gain a 
survival advantage. In the subsequent competitive effect, 
the antimicrobial agent eradicates non-pathogenic com-
mensal organisms as well as pathogens, which creates a 
void in the normal microbiotic environment that can pre-
dispose an individual to colonization with less innocuous 
(and drug-resistant) organisms13. Last, bacterial genetic 
transfer allows for the survival of antimicrobial-resistance 
traits, not only in the genetic progeny of resistant strains 
but in unrelated strains of bacteria.

For a resistant pathogen to be ‘successful’, its resist-
ance mechanism must be sustainable even in the absence 
of antibiotic selective pressure. The additional genetic 
machinery must not place a significant survival constraint 
on the pathogen when compared with the antibiotic-
susceptible strains. For instance, the prediction that 
recently described isolates of vancomycin-resistant 
S. aureus (VRSA) are far more likely to disseminate than 
isolates of intermediate susceptibility to vancomycin 
(VISA) is based in part on the glycopeptide-dependent 
expression of the resistance genes in the former, in contrast 
to the constitutive expression of the resistance genes in 
the latter. VISA isolates require additional peptido glycan 
synthesis, which imposes an increased burden on the 
cell’s synthetic machinery14–17. By contrast, VRSA strains 
express resistance genes only on exposure to glycopeptides 
by synthesizing a unique depsipeptide18.

In addition to the selective effects of antibiotics, 
there are other factors that contribute to the spread of 
antibiotic-resistant pathogens in the community. For 
example, there are bacterial determinants that facilitate 

colonization and survival in diverse environmental 
settings19. Some bacteria such as Clostridium difficile 
can exist in the form of spores; these spores can sur-
vive on environmental surfaces and are resistant to the 
bactericidal action of many biocides20. This hardiness 
is one factor that contributes to hospital outbreaks of 
C. difficile. Biofilms are structural matrices that allow 
organisms to adhere to surfaces; they form on various 
indwelling clinical devices and limit the access of anti-
microbial agents to the bacteria within them, making 
eradication difficult21,22. Biofilms have been described for 
Staphylococcus epidermidis, Pseudomonas aeruginosa and 
Legionella species, among others22. S. aureus uses several 
mechanisms to adhere to nasal epithelial cells, whereby it 
colonizes the nasopharynx; these include clumping factor 
B23 and wall teichoic acid24. Such bacterial determinants, 
when associated with antimicrobial-resistant bacteria, 
can assist in their persistence and their spread.

Furthermore, social networks of individuals (for 
example, households, schools and childcare facilities) 
that serve either as a reservoir for these bacteria or as a 
means for their transmission are crucial to the success of 
antimicrobial-resistant bacteria25–28 (TABLE 1).

We discuss below several examples of antibiotic-
resistant bacteria, illustrating different elements that 
contribute to their success in the community setting.

Penicillin-resistant Streptococcus pneumoniae
Streptococcus pneumoniae is a Gram-positive coccus 
that is a common cause of lobar pneumonia, bacterial 
meningitis and otitis media. It grows in pairs and chains 
in liquid media, and most pathogenic strains are encap-
sulated, a feature that allows S. pneumoniae to avoid 
phagocytosis by the host immune system. It adheres to, 
and replicates in, the nasopharynx, which is a site for 
colonization. 5 to 10% of adults are colonized, whereas 
the colonization rate for children is higher. Invasive 
infection is most common in children under 2 years of 
age and in adults older than 65 years29.

The first clinically recognized isolates of penicillin-
resistant S. pneumoniae (PRSP) were not reported until 
1967, more than twenty years after the introduction of 
penicillin30. This resistance is conferred by alterations 
in one or more penicillin-binding proteins (PBPs) that 
result in a decreased affinity for the drug. Typically, the 
more PBP mutations, the higher the level of penicillin 
resistance, and the minimum inhibitory concentration (MIC) 
increases in a stepwise manner through these sequential 
genetic events31. These altered PBPs seem to result from 
the incorporation of foreign DNA sequences by recom-
bination, which results in ‘mosaic’ genes; the donor of 
the foreign DNA is probably a viridans streptococcal 
species, which are commensal organisms that reside in 
the oropharynx32.

Once the PRSP was established, it proved to be triply 
successful in that it was sustainable, transmissible and 
sufficiently virulent. The resistance persists even in the 
absence of antimicrobials, as resistance genes are con-
stitutively expressed33. Until the last decade, the level 
of penicillin resistance in S. pneumoniae in the United 
States was not significant, but the 1990s have seen a 

Figure 1 | Rates of prescriptions for the ‘common cold’, 
upper-respiratory-tract infections (URIs) and 
bronchitis in children and adolescents. Antibiotics are 
prescribed during a significant proportion of outpatient 
office visits for non-bacterial illnesses. Data are from the 
National Ambulatory Medical Care Survey 1992. Error bars 
represent 95% confidence intervals. nos, not otherwise 
specified. Reproduced with permission from REF. 5 © (1998) 
American Medical Association.
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considerable increase in this level. Surveillance studies 
indicate that in the United States in 2001 the frequency 
of reduced susceptibility of S. pneumoniae to penicillin 
was 38.8%, with high-level penicillin resistance (MIC > 2) 
being 26.3% (REF. 34).

On an individual level, the most common risk fac-
tor for having a PRSP infection is the previous use of 
antimicrobials35,36. Furthermore, there have been many 
ecological studies showing a population-level association 
between antibiotic use and resistance37,38. Goossens et al.2 
showed this correlation on the basis of data from the 
European Surveillance of Antimicrobial Consumption 
(ESAC) project, a network that has linked surveillance 
systems across Europe, allowing for a comparison of anti-
biotic-use data across 32 countries. These authors found 
significant variation between countries in their volume 
of antibiotic use and in their resistance rates for a wide 
range of bacteria, with the highest rates of antibiotic use 
and resistance in southern Europe. This correlation was 
highly significant for penicillin or cephalosporin use and 
PRSP (FIG. 3).

A surprisingly limited number of clones are respon-
sible for most PRSP, illustrating the role of clonal 
dissemination (BOX 1) in its spread. In 1998, Corso et al.39 

used pulsed-field gel electrophoresis to show that, of 
328 PRSP strains in the United States, only 10 clones 
were responsible for 85% of invasive PRSP disease. An 
example of clonal transcontinental PRSP transmis-
sion is the report by Soares et al.40 that documents the 
spread of the Spanish clone serotype 6B to Iceland, 
possibly as a result of travel by Icelanders to Spain.

Other studies have shown that childcare centres are 
important settings for the clonal spread of PRSP, as the 
paediatric population is a large reservoir of nasopharyn-
geal S. pneumoniae colonization and is also the frequent 
recipient of antibiotics for upper-respiratory-tract infec-
tions41,42. It is noteworthy that 40 to 60% of toddlers and 
children in childcare facilities are nasopharyngeally 
colonized with pneumococci43.

In weighing the relative importance of clonal dis-
semination and antimicrobial use in the increase in 
PRSP, McCormick et al.44 used mathematical modelling 
to determine which factor contributed more signifi-
cantly to the large geographic variation in PRSP in the 
United States. Their mathematical transmission model 
indicated that antimicrobial selective pressure was the 
key determinant.

Therefore, penicillin resistance in S. pneumoniae 
originated through the acquisition of foreign DNA lead-
ing to altered PBPs; it then spread as a result of antibiotic 
selective pressure, along with clonal dissemination, in 
facilities such as childcare centres where a reservoir of 
PRSP was established.

Antimicrobial resistance and the food industry
Food animals are a rich environment for the bacterial 
transfer of genetic material between pathogens and 
commensal non-pathogens. When this factor is cou-
pled with the enormous selective pressure of large-scale 
antimicrobial use for growth, resistance becomes almost 
inevitable.

There are many problems with antimicrobial-use 
practices in the food-animal industry, including large-
scale use of low-dose, long-duration antimicrobials 
for non-therapeutic purposes; mass antimicrobial 
administration, known as metaphylaxis, to treat a 
small number of sick animals; use of antimicrobials 
in the same class as those used in humans; and a lack 
of adequate regulation of antimicrobial use45. Most 
antimicrobial administration in food animals is not 
for treatment, or even prophylaxis, of infection; on 
the contrary, it is for growth-promotion purposes. 
Therefore, antimicrobials are administered to herds 
of animals at subtherapeutic doses, often for weeks to 
months, providing the perfect setting for selection of 
drug-resistant bacteria.

The selective pressure of antibiotics in animals can 
lead to antibiotic resistance both in animals and in 
humans who come into contact with these animals. 
Levy et al.46 conducted a landmark study in 1976 
in which chickens were given tetracycline in their 
feed. Subsequent analysis of their intestinal bacteria 
revealed tetracycline-resistant organisms. Moreover, 
the humans who lived on the farm also developed 
tetracycline-resistant intestinal flora.

Figure 2 | Horizontal gene transfer between bacteria. a | Transformation 
occurs when naked DNA is released on lysis of an organism and is taken up by 
another organism. The antibiotic-resistance gene can be integrated into the 
chromosome or plasmid of the recipient cell. b | In transduction, antibiotic-
resistance genes are transferred from one bacterium to another by means of 
bacteriophages and can be integrated into the chromosome of the recipient cell 
(lysogeny). c | Conjugation occurs by direct contact between two bacteria: 
plasmids form a mating bridge across the bacteria and DNA is exchanged, which 
can result in acquisition of antibiotic-resistance genes by the recipient cell. 
Transposons are sequences of DNA that carry their own recombination enzymes 
that allow for transposition from one location to another; transposons can also 
carry antibiotic-resistance genes.
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Vancomycin-resistant enterococcus. Many antimicrobi-
als used in food animals belong to the same classes as 
those used in humans, leading to concerns about cross-
resistance. Avoparcin, a drug similar to vancomycin, 
has been used in Europe for growth promotion of food 
animals since the 1970s, and vancomycin-resistant 
enterococcus (VRE) was subsequently first described 
in 1988 (REF. 47). VRE has since been isolated from 
food animals in Denmark and Germany, among other 
countries, and epidemiological studies have established 
a link with avoparcin use48,49. Also, the same strains 
of VRE have been found in animals and humans, 
further validating the association with avoparcin50,51. 
So, whereas nosocomial spread is the main means of 
VRE transmission in the United States, this animal-to-
human spread in Europe occurred outside the hospital 
setting and seems to explain why VRE carriage is more 
commonly found in the European environment and 
community50,52–54. For unclear reasons, however, human 
infections caused by VRE still occur less frequently in 
Europe than in the United States, where avoparcin has 
never been used.

Non-typhoidal fluoroquinolone-resistant Salmonella. 
Non-typhoidal Salmonella is another organism that 
has developed resistance linked to antimicrobial use in 
animals. Salmonellae are Gram-negative bacilli of the 
family Enterobacteriaceae. Whereas Salmonella enterica 
serovar Typhi colonizes humans only, non-typhoidal 
salmonellae colonize and infect a wide range of animals 
in addition to humans, including poultry, cows and 
other farm animals. These animals serve as a reservoir 
for Salmonella and can lead to foodborne infections in 
humans; animals can also become ill from the organism, 
the most common manifestation being diarrhoea.

Human infections due to non-typhoidal Salmonella 
are almost always a result of contaminated-food inges-
tion, with an estimated 1.4 million such infections occur-
ring in the United States each year55. Contamination of 
food products with Salmonella is common; for example, 
a recent study that tested 200 meat samples from super-
markets in the Washington DC area found that 20% con-
tained Salmonella species56. Furthermore, a relatively low 
inoculum — less than 103 organisms — can cause disease 
in humans57. A far less common mode of transmission 
is by exposure to exotic pets such as reptiles and even 
rodents58,59.

The usual clinical syndrome is an acute gastro enteritis 
with nausea, vomiting, diarrhoea and often fever. This 
syndrome is typically self-limited, but more serious 
infections can result, such as bacteraemia, endovascular 
infections and bone and joint infections, particularly at 
extremes of age or in immunocompromised individuals.

Antimicrobial resistance has been on the rise in non-
typhoidal salmonellae around the world. The Enter-net 
surveillance system in Europe found that, of 27,000 
cases of human salmonellosis in 2000, nearly 40% were 
resistant to at least one antimicrobial agent, with 18% 
being resistant to 4 or more unrelated antimicrobials60. 
Resistance is thought to be acquired both by chromo-
somal gene mutation and by horizontal transfer of plas-
mids61–63. In developing countries, resistance might be 
due to unregulated antimicrobial dispensing for human 
use64,65. By contrast, in developed countries, resistance 
seems to be largely a consequence of the extensive use 
of antimicrobials in food animals to improve growth 
rate. For instance, Denmark and Taiwan have seen 
significant increases in quinolone-resistant Salmonella 
enterica species in humans in the setting of growing 
fluoroquinolone use in food animals66,67.  

Table 1 | Community reservoirs of antimicrobial-resistant bacteria 

Bacterial species Common types of antimicrobial 
resistance

Types of infection Community reservoirs

Streptococcus pneumoniae Penicillin, macrolides, cephalosporins, 
tetracyclines

Otitis media, pneumonia, 
sinusitis, meningitis

Childcare facilities41,42, paediatric 
populations121

Streptococcus pyogenes Macrolides, tetracyclines Pharyngitis, impetigo, 
cellulitis

Childcare facilities122,123, paediatric 
populations124,125, schools126

Staphylococcus aureus

Community-associated Meticillin, cephalosporins, macrolides Skin, soft tissue, pneumonia, 
sepsis

Native Americans127, homeless people128, 
soldiers109, prisoners105, childcare 
facilities129, injection-drug users130

Healthcare-associated Meticillin, cephalosporins, quinolones, 
aminoglycosides, macrolides

Endocarditis, pneumonia, 
sepsis

People exposed to healthcare facilities 
such as nursing homes131, dialysis83, recent 
surgery or hospitalization

Enterococcus spp. Ampicillin, vancomycin, aminoglycosides Sepsis, urinary tract People exposed to hospital care (in the 
United States)132, food animals (exposure 
to avoparcin in Europe)133

Neisseria gonorrhoeae Penicillin, cephalosporins, quinolones Urethritis, pelvic 
inflammatory disease

Commercial sex workers134

Salmonella spp. 
(non typhoidal)

Cephalosporins, quinolones, tetracyclines Diarrhoea Food animals (poultry, cows)66,67 

Escherichia coli Trimethoprim, sulphonamides, quinolones Urinary tract, diarrhoea Childcare facilities135

Campylobacter jejuni Erythromycin, quinolones Gastroenteritis Food animals (poultry)136
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Fluoroquinolone use in animals is a recent phenom-
enon but is of great concern, as it represents the main 
class of drugs currently used to treat many foodborne 
illnesses, including Salmonella infections. Although qui-
nolone resistance is still uncommon in Salmonella spe-
cies in both animals and in humans, it has been on the 
rise worldwide over the past ten years. The prevalence 
of reduced quinolone susceptibility in Salmonella var-
ies widely depending on the particular species or sub-
group, but according to the Center for Disease Control 
and Prevention’s National Antimicrobial Resistance 
Monitoring System (NARMS) surveillance data, in 

2001, 1% of all Salmonella isolates in the United States 
had decreased susceptibility to quinolones (defined as 
MIC > 0.25 µg/ml)68. Although this is a small number, 
only fifteen years ago the number was virtually zero. 
In the United Kingdom, low-level resistance to the 
fluoroquinolone ciprofloxacin (MIC 0.125–1 mg/l) in 
non-typhoidal Salmonella was reported as 4% in 1996 
(REF. 69).

The main drug-resistant strain of concern at present 
is Salmonella Typhimurium DT104. This is a multi-
drug-resistant strain with a chromosome- and integron-
encoded β-lactamase61 that was first described in the 
United Kingdom in the 1980s but became increasingly 
widespread throughout the world during the 1990s, 
causing infections in both animals and humans70–72. 
During this time, some strains of S. Typhimurium 
DT104 acquired decreased susceptibility to quinolones 
as a result of a chromosomal mutation in the gyrA gene 
that encodes topoisomerase II and IV, the bacterial tar-
gets of the quinolones73.

In the United Kingdom, S. Typhimurium DT104 
with reduced susceptibility to quinolones was reported 
several years after the fluoroquinolone enrofloxacin was 
licensed for animal use in 1993 (REF. 74). In the United 
States, quinolone use in food animals is restricted to 
therapeutic use only; however, this might be sufficient 
to lead to quinolone-resistant Salmonella infections in 
humans.

Although the total number of resistant Salmonella 
infections in humans that are directly traceable to 
antibiotic use in food animals is small, the potential 
for a rapid increase of this problem is substantial. Also, 
although human antimicrobial use is not the main 
cause of resistant Salmonella, it can increase the risk 
of acquisition in some cases. In a healthcare-associ-
ated outbreak of fluoroquinolone-resistant Salmonella 
in Oregon, USA, it was found that treatment with a 
fluoroquinolone within the past six months prior to 
infection was associated with an increased risk of 
infection75. This indicates that the competitive effect, 
in which eradication of benign commensals by an 
antimicrobial agent increases the risk of subsequent 
infection, can be involved in Salmonella infections.

Figure 3 | Correlation between penicillin use and prevalence of penicillin-non-
susceptible Streptococcus pneumoniae. European countries with greater outpatient 
use of penicillin have higher rates of penicillin-non-susceptible S. pneumoniae. 
AT, Austria; BE, Belgium; CZ, Czech Republic; DE, Germany; DK, Denmark; FI, Finland; 
FR, France; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; LU, Luxembourg; NL, The 
Netherlands; PL, Poland; PT, Portugal; SI, Slovenia; ES, Spain; UK, England only. DID, the 
number of defined daily doses per 1000 inhabitants daily. Reproduced with permission 
from REF. 2 © (2005) Elsevier.

Box 1 | Antibiotic selective pressure versus clonal dissemination

Many drug-resistant microorganisms spread by a combination of antibiotic selective pressure and clonal dissemination. 
There is limited understanding of the interaction between these two factors.

Antibiotic selective pressure
Antibiotic selective pressure refers to the impact of antimicrobial use on a population of organisms, in which organisms 
that are resistant to the antibiotic gain a survival advantage over those susceptible to the antibiotic. This bacterial 
population includes both potential pathogens and the less virulent commensal flora. Antibiotic-resistant pathogens gain 
an advantage, not only because they are selected by the antibiotic, but because elimination of the antibiotic-susceptible 
commensal flora creates a niche into which resistant pathogens can spread and establish a reservoir for subsequent 
infections. Prevention of antibiotic selective pressure would focus on limiting antimicrobial use.

Clonal dissemination
Clonal dissemination refers to the spread of specific clones of an organism throughout a community. These clones are 
thought to be more transmissible than other clones, for unknown reasons. Strains that carry antibiotic-resistance genes 
might be more likely to clonally disseminate under conditions of antibiotic selective pressure (for example, farms that use 
extensive amounts of antibiotics in their feed). Prevention of clonal dissemination would focus on issues such as infection 
control and hand hygiene.
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Folliculitis
An infection of the skin 
localized to the hair follicles. 
Lesions are erythematous and 
sometimes pustular.

Infective endocarditis
An infection of a heart valve 
that can lead to tissue 
destruction, valvular 
dysfunction, stroke and heart 
failure.

Necrotizing pneumonia
A severe, often fulminant, 
infection of the lungs with 
tissue destruction caused both 
by the pathogen and by the 
response of the host immune 
system.

Necrotizing fasciitis
A deep infection of 
subcutaneous tissue resulting 
in progressive destruction of 
the fascial and fat layers. It can 
spread rapidly and is 
associated with a high 
mortality if not treated early.

Restriction of all antimicrobial use in food animals 
is indicated, as has been successfully accomplished in 
countries such as Denmark and Sweden76,77, but qui-
nolone restriction in particular is crucial, as this class of 
drugs is a key component of antimicrobial management 
in humans.

Community-associated MRSA 
Staphylococcus aureus is a Gram-positive coccus that is 
commonly found on the skin and in the nasopharynx 
of humans. Approximately 30 to 50% of the population 
is colonized with this organism78,79, and colonization is 
a risk factor for subsequent infection80. S. aureus can 
cause a wide range of clinical disease, including skin and 
soft tissue infections (cellulitis, folliculitis and abscesses), 
pneumonia, bloodstream infections, infective endocarditis 
and osteomyelitis. Certain populations are at higher risk 
of colonization, including type I diabetics81, intravenous-
drug users82, haemodialysis patients83, surgical patients84 
and those with AIDS85. One characteristic of S. aureus 
is its ongoing ability over the years to acquire resistance 
mechanisms as new antimicrobials are targeted against 
it. For example, meticillin was introduced in 1960, and 
the first report of MRSA appeared shortly thereafter86.

MRSA has been a steadily growing problem in 
healthcare facilities over the past few decades — 50% of 
S. aureus isolated from intensive-care units in the United 
States is resistant to meticillin87. European data show a 
wide range of MRSA prevalence: from <1% in northern 
Europe to >40% in southern and western Europe, includ-
ing the United Kingdom, Ireland, Italy and Greece; these 
data represent the 1999–2002 time period and include 
both inpatient and outpatient isolates88. This healthcare-
associated spread was due to a combination of concen-
trated antimicrobial use in a closely cohorted population 
of sick patients, resulting in extensive dissemination of 
a limited number of clones. In fact, molecular epide-
miological studies confirm that, until recently, only five 
major ‘pandemic clones’ of MRSA have been responsi-
ble for most worldwide MRSA89,90. Despite this growing 
healthcare-associated reservoir of MRSA, the organism 
was uncommon in the community, apart from certain 
small, closed societies (such as Western Australian abo-
riginal communities)91. The MRSA that did appear in 
the community could usually be traced back to direct or 
indirect healthcare-associated exposure.

In the past decade, we have begun to see individuals 
without the usual risk factors (hospitalization or other 
institutionalization, antibiotic use, dialysis or chronic 
wounds) with MRSA infections; this phenomenon has 
been called ‘community-associated MRSA’ (CA-MRSA). 
There are little published data on the true community 
incidence of CA-MRSA, but a recent population-based 
surveillance study in the United States found incidences 
of 18.0 and 25.7 cases per 100,000 people in Baltimore 
and Atlanta, respectively92. As opposed to healthcare-
associated strains, which tend to cause a wide variety 
of infections (for example, wound infections, catheter-
associated bacteraemias or prosthesis infections), 
CA-MRSA most commonly causes a specific syndrome of 
skin manifestations, particularly folliculitis and abscesses. 

More severe infections such as necrotizing pneumonia, 
necrotizing fasciitis and sepsis have also been reported93–95.

CA-MRSA is distinguished from healthcare-associated 
MRSA (HA-MRSA) in part by the mobile chromosomal 
element known as the staphylococcal chromosomal cas-
sette (SCC), which carries the meticillin-resistance gene 
mec. HA-MRSA more frequently carries an SCCmec 
element from groups I–III; CA-MRSA contains a novel 
SCCmec type known as SCCmec type IV (and more 
recently SCCmec type V). Because of its relatively small 
size (21 kb) and its intact recombinase genes, SCCmec 
type IV is more mobile and can insert into a wider array 
of staphylococcal genetic backgrounds96–99. As a result, 
CA-MRSA comprises a more genetically diverse group 
of strains than HA-MRSA. Also, owing to the absence of 
other antimicrobial-resistance genes on SCCmec type IV, 
CA-MRSA tends to be more susceptible to non-β-lactam 
antibiotics than HA-MRSA.

Having described the characteristics that distinguish 
CA-MRSA from HA-MRSA, it is also important to 
acknowledge the progressive blurring of the two cat-
egories. HA-MRSA has also disseminated in the com-
munity; for example, there are studies that describe the 
transmission of MRSA from patients to their household 
contacts in the community100. Conversely, CA-MRSA 
has now been around long enough to enter healthcare 
settings and cause outbreaks in hospitals: recently, a 
CA-MRSA strain caused an outbreak of mastitis in post-
partum patients on a maternity ward101.

Therefore, like the PRSP and the quinolone-resistant 
Salmonella, CA-MRSA seems to have arisen through 
the acquisition of a foreign genetic element, SCCmec 
type IV (most likely from a coagulase-negative staphylo-
coccal species)102. In contrast to the first two examples, 
however, its origin is less clearly associated with antimi-
crobial selective pressure, at least on the individual level 
— many patients with CA-MRSA have not received such 
drugs. This raises the question of whether the CA-MRSA 
strains possess other survival advantages, such as colo-
nization factors or a more rapid growth rate that would 
facilitate survival103,104.

Clonal dissemination does seem to have an important 
role in the spread of CA-MRSA, as outbreaks have been 
reported in some well-defined epidemiological groups, 
including children in childcare facilities, prison inmates, 
athletes, intravenous-drug users and military recruits105–108. 
During the investigation of a CA-MRSA outbreak among 
military recruits, 2.7% (24 out of 874) of the workers at 
the military facility were found to be nasally colonized 
with CA-MRSA, a much higher prevalence than in the 
general population109. Features that were common to these 
outbreaks included close contact, crowding, contaminated 
items, poor hygiene and compromised skin integrity. At 
present, there are limited data on what determines the 
efficiency of CA-MRSA clonal dissemination.

It is of interest that this emerging resistant commu-
nity pathogen might not have arisen as a direct effect of 
antimicrobial use. Instead, its rapid spread is associated 
with a confluence of elements that combine bacterial 
virulence factors (such as the Panton–Valentine leuko-
cidin) with unique social and environmental settings.
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Conclusions and future directions
Antimicrobial resistance is the end result of a multitude 
of factors (FIG. 4). Some of the key factors are acquisition 
of a foreign genetic resistance element, antimicrobial 
selective pressure and clonal dissemination. Various 
methodologies have been used to delineate these causes, 
including molecular epidemiology, network tracing, 
ecological studies, and traditional observational epide-
miological studies.

Much of the literature focuses solely on antibiotic 
selective pressure, and indeed the ubiquity of anti-
microbials in our environment gives them a crucial 
role in the spread of resistance. However, the element of 
selective pressure carries different weight for different 
microorganisms, settings (hospital versus community) 
and geographic locations. As illustrated above, even 
three microorganisms that all occur in the community 

setting can trace their resistance back to a unique mix 
of factors, with antibiotic selective pressure having a 
different magnitude of importance for each. The com-
plicated nature of antimicrobial resistance requires a 
multipronged approach to combat it.

Curbing the volume of antimicrobial use in both 
humans and animals should of course be a priority. 
Although some studies indicate that reducing anti-
microbial use might not lead to a rapid, or even any, 
reduction in resistance110, other studies have shown more 
hope. Finland instituted national guidelines in 1991 to 
decrease macrolide use, and a subsequent 42% reduction 
in macrolide use was followed by a 48% reduction in the 
prevalence of group A streptococci that were resistant to 
macrolides111. Denmark has seen success in decreasing 
levels of VRE in broilers (from 72.7% in 1995 to 5.8% 
in 2000) after the government banned avoparcin use 
in 1995 (REF. 76), although it is unclear what effect this 
has had on human VRE infections. The United States 
has historically lagged behind Europe in banning or 
restricting the use of antibiotic growth promoters, but 
in July 2005 a decision was made by the Food and Drug 
Administration to ban the use of enrofloxacin for poultry 
(see Online links box). 

In addition to reducing the total volume of antibiotic 
use in animals and humans, attention should be focused 
more specifically on reducing the use of low-potency, 
long-duration antibiotics. There has been evidence to 
suggest that using antibiotics in such a manner increases 
the risk of PRSP carriage112. A randomized controlled 
trial in children showed that short-course (5-day), high-
dose amoxicillin for upper-respiratory-tract infections 
led to the isolation of significantly lower levels of PRSP 
after therapy than conventional (10-day) courses (24% 
versus 32%)113.

As clonal dissemination has a role in the spread of 
many antimicrobial-resistant pathogens, decreasing anti-
biotic usage alone would be insufficient in halting their 
proliferation. Investigation of the modes of transmission 
of resistant pathogens will result in a better understand-
ing of their spread and in more effective intervention 
strategies. Social-network theory has been increasingly 
used to understand the transmission of certain infec-
tious diseases, such as HIV, tuberculosis and sexually 
transmitted diseases25–28. This theory views the world as 
a series of networks linked by social settings and behav-
iours. By constructing such networks, the transmission of 
pathogens can be traced back to common sources. More 
recently, social networking has been combined with 
molecular epidemiology to strengthen it as an investiga-
tional tool26,114. By using these methodologies, perhaps we 
can create interventions to break the networks by which 
antimicrobial-resistant bacteria are spread.

Last, vaccine development and use provide some 
hope in the battle against antimicrobial resistance. 
A 7-valent pneumococcal conjugate vaccine (Prevnar) was 
licensed for use in young children in 2000–2001, and 
subsequent data on PRSP prevalence have been mixed. 
Some studies have shown an increase in S. pneumoniae 
resistance in the past few years115–117, raising concerns 
that vaccine serotypes might simply be replaced with 

Figure 4 | Factors that contribute to the spread of antimicrobial resistance in the 
community. Antimicrobial resistance in the community setting is a multifactorial 
problem. Increased antimicrobial usage around the world is the foremost reason for 
this spread. Social networks of individuals (households, schools and childcare facilities) 
serve either as a reservoir for these bacteria or as a means for their transmission. 
Hospitals, nursing homes and long-term care facilities also serve as reservoirs of 
antibiotic-resistant organisms. The discharge into the community of patients exposed 
to antibiotics in healthcare facilities also contributes to the spread of resistant 
organisms. The use of antimicrobials in food animals is an important contributing 
cause. The acquisition of a foreign genetic resistance element, antimicrobial selective 
pressure and clonal dissemination are key factors, which carry different weight for 
different organisms and geographic locations. 
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non-vaccine serotypes, and that penicillin resistance 
might rise in the latter. In fact, a mathematical-modelling 
study has predicted that, after 20 years, any decrease in 
penicillin-resistant strains due to the vaccine would not 
be sustained, as antibiotic selective pressure seemed to 
be a more important determinant of the persistence of 
resistance118. However, other studies report a decrease 
in childhood rates of overall invasive pneumococcal dis-
ease and of disease caused by pneumococci not suscep-
tible to penicillin119,120. In one population-based study, a 
decrease in invasive pneumococcal disease was also seen 

in adults, perhaps owing to a reduction in pneumococ-
cal transmission from children120. Therefore, although 
it might be too soon to draw conclusions about the ulti-
mate effect of vaccines on antimicrobial resistance, they 
represent a potentially valuable tool for intervention.

In summary, antimicrobial resistance in the commu-
nity setting is a multifactorial problem that is progres-
sively increasing. To tackle this problem, we must take a 
multifaceted approach that focuses on, but is not limited 
to, reducing the volume of antimicrobial use wherever 
and whenever we can.
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