Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The significance of molecular slips in transport systems

Abstract

The advantage of precision in biological processes is obvious; however, in many cases, deviations from the faithful mechanisms occur. Here, we discuss how in-built operating imperfections in transport systems can actually benefit a cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subunit structure of the F- and V-ATPases.
Figure 2: A schematic representation of a mechanistic slip induced in V-ATPase by an increased proton-motive force.
Figure 3: A schematic representation of a mechanistic slip in ion-driven transporters.

Similar content being viewed by others

References

  1. Hancock, J. M. The contribution of slippage-like processes to genome evolution. J. Mol. Evol. 41, 1038–1047 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Karlstrom, A. et al. Using antibody catalysis to study the outcome of multiple evolutionary trials of a chemical task. Proc. Natl Acad. Sci. USA 97, 3878–3883 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hughes, J. F. & Coffin, J. M. Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nature Genet. 29, 487–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Barry, J. D. & McCulloch, R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49, 1–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Pietrobon, D., Zoratti, M., Azzone, G. F. & Caplan, S. R. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies. Biochemistry 25, 767–775 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Caplan, S. R. in The Ion Pumps, Structure, Function and Regulation (ed. Stein, W. D.) 377–386 (Alan R. Liss, New York, 1988).

    Google Scholar 

  8. Nelson, N. & Harvey, W. R. Vacuolar and plasma membrane V-ATPases. Phys. Rev. 79, 361–385 (1999).

    CAS  Google Scholar 

  9. Senior, A. E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Leslie, A. G. & Walker, J. E. Structural model of F1-ATPase and the implications for rotary catalysis. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 465–471 (2000).

    Article  CAS  Google Scholar 

  11. Hirata, T., Nakamura, N., Omote, H., Wada, Y. & Futai, M. Regulation and reversibility of vacuolar H(+)-ATPase. J. Biol. Chem. 275, 386–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Junge, W. et al. Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett. 504,152–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase — a marvellous rotary engine of the cell. Nature Rev. Mol. Cell Biol. 2, 669–677 (2001).

    Article  CAS  Google Scholar 

  16. Cherepanov, D. A. & Junge, W. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys. J. 81, 1234–1244 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 1687–1688 (1999).

    Article  Google Scholar 

  18. Stahlberg, H. et al. Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep. 2, 229–233 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seelert, H. et al. Structural biology. Proton-powered turbine of a plant motor. Nature 405, 418–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Stock, D., Leslie, A. G. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Schonfeld, M. & Neumann, J. Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett. 73, 51–54 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Braun, G., Evron, Y., Malkin, S. & Avron, M. Proton flow through the ATP synthase in chloroplasts regulates the distribution of light energy between PS I and PS II. FEBS Lett. 280, 57–60 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Groth, G. & Junge, W. Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. Biochemistry 32, 8103–8111 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Hinkle, P. C., Kumar, M. A., Resetar, A. & Harris, D. L. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30, 3576–3582 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Feniouk, B. A., Cherepanov, D. A., Junge, W. & Mulkidjanian, A. Y. ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions. FEBS Lett. 445, 409–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Nelson, N. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100, 109–124 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Moriyama, Y. & Nelson, N. in The Ion Pumps, Structure, Function and Regulation (ed. Stein, W. D.) 387–394 (Alan R. Liss, New York, 1988).

    Google Scholar 

  28. Grabe, M., Wang, H. & Oster, G. The mechanochemistry of V-ATPase proton pumps. Biophys. J. 78, 2798–2813 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arechaga, I. & Jones, P. C. The rotor in the membrane of the ATP synthase and relatives. FEBS Lett. 494, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Müller, M., Irkens-Kiesecker, U., Rubinstein, B. & Taiz, L. On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H+-ATPase activities of fruits and epicotyls. J. Biol. Chem. 271, 1916–1924 (1996).

    Article  PubMed  Google Scholar 

  31. Müller, M. L., Irkens-Kiesecker, U., Kramer, D. & Taiz, L. Purification and reconstitution of the vacuolar H+-ATPases from lemon fruits and epicotyls. J. Biol. Chem. 272, 12762–12770 (1997).

    Article  PubMed  Google Scholar 

  32. Müller, M. L., Jensen, M. & Taiz, L. The vacuolar H+-ATPase of lemon fruits is regulated by variable H+/ATP coupling and slip. J. Biol. Chem. 274, 10706–10716 (1999).

    Article  PubMed  Google Scholar 

  33. Uyama, T., Moriyama, Y., Futai, M. & Michibata, H. Immunological detection of a vacuolar-type H(+)-ATPase in vanadocytes of the ascidian Ascidia sydneiensis samea. J. Exp. Zool. 270, 148–154 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Bruns, D., Engert, F. & Lux, H. D. A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10, 559–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Petersen, C. I. & DeFelice, L. J. Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nature Neurosci. 2, 605–610 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Su, A., Mager, S., Mayo, S. L. & Lester, H. A. A multi-substrate single-file model for ion-coupled transporters. Biophys. J. 70, 762–777 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nelson, N. The family of Na+/Cl neurotransmitter transporters. J. Neurochem. 71, 1785–1803 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Cao, Y., Mager, S. & Lester, H. A. H+ permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17, 2257–2266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanner, B. Glutamate transporters from brain — a novel neurotransmitter transporter family. FEBS Lett. 325, 95–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Sonders, M. S. & Amara, S. G. Channels in transporters. Curr. Opin. Neurobiol. 6, 294–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Lester, H. A., Cao, Y. & Mager, S. Listening to neurotransmitter transporters. Neuron 17, 807–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. DeFelice, L. J. & Blakely, R. D. Pore models for transporters? Biophys. J. 70, 579–580 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sonders, M. S., Zhu, S. J., Zahniser, N. R., Kavanaugh, M. P. & Amara, S. G. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galli, A., Blakely, R. D. & DeFelice, L. J. Norepinephrine transporters have channel modes of conduction. Proc. Natl Acad. Sci. USA 93, 8671–8676 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galli, A., Petersen, C. I., deBlaquiere, M., Blakely, R. D. & DeFelice, L. J. Drosophila serotonin transporters have voltage-dependent uptake coupled to a serotonin-gated ion channel. J. Neurosci. 17, 3401–3411 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kavanaugh, M. P. Neurotransmitter transport: models in flux. Proc. Natl Acad. Sci. USA 95, 12737–12738 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fairman, W. A. & Amara, S. G. Functional diversity of excitatory amino acid transporters: ion channel and transport modes. Am. J. Physiol. 277, F481–F486 (1999).

    CAS  PubMed  Google Scholar 

  50. Otis, T. S. & Kavanaugh, M. P. Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J. Neurosci. 20, 2749–2757 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wadiche, J. I. & Kavanaugh, M. P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. MacAulay, N. et al. Engineered Zn(2+) switches in the γ-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J. Biol. Chem. 276, 40476–40485 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Mager, S. et al. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16, 5405–5414 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ni, Y. G. et al. A lithium-induced conformational change in serotonin transporter alters cocaine binding, ion conductance, and reactivity of Cys-109. J. Biol. Chem. 276, 30942–30947 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Dix, D. R., Bridgham, J. T., Broderius, M. A., Byersdorfer, C. A. & Eide, D. J. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J. Biol. Chem. 269, 26092–26099 (1994).

    CAS  PubMed  Google Scholar 

  56. Supek, F., Supekova, L., Nelson, H. & Nelson, N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl Acad. Sci. USA 93, 5105–5110 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Supek, F., Supekova, L., Nelson, H. & Nelson, N. Function of metal-ion homeostasis in cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain functions. J. Exp. Biol. 200, 321–330 (1997).

    CAS  PubMed  Google Scholar 

  58. Liu, X. F., Supek, F., Nelson, N. & Culotta, V. C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J. Biol. Chem. 272, 11763–11769 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Orgad, S., Nelson, H., Segal, D. & Nelson, N. Metal ions suppress the abnormal taste behavior of the Drosophila mutant malvolio. J. Exp. Biol. 201, 115–120 (1998).

    CAS  PubMed  Google Scholar 

  60. Eide, D. J. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18, 441–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Radisky, D. C. & Kaplan, J. Regulation of transition metal transport across the yeast plasma membrane. J. Biol. Chem. 274, 4481–4484 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Nelson, N. Metal-ion transporters and homeostasis. EMBO J. 18, 4361–4371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, X.-Z. et al. Yeast SMF1 mediates H-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem. 274, 35089–35094 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Sacher, A., Cohen, A. & Nelson, N. Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus oocytes. J. Exp. Biol. 204, 1053–1061 (2001).

    CAS  PubMed  Google Scholar 

  67. Fleming, M. D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl Acad. Sci. USA 95, 1148–1153 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaback, H. R., Sahin-Toth, M. & Weinglass, A. B. The kamikaze approach to membrane transport. Nature Rev. Mol. Cell Biol. 2, 610–620 (2001).

    Article  CAS  Google Scholar 

  69. van Dam, K. Regulation and control of energy coupling at the cellular level. Biochim. Biophys. Acta 1187, 129–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Schuster, S. & Westerhoff, H. V. Modular control analysis of slipping enzymes. Biosystems 49, 1–15 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the United States–Israel Binational Scientific Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Nelson.

Related links

Related links

DATABASES

Swiss-Prot

Dct1

Smf1

FURTHER INFORMATION

Nathan Nelson's lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, N., Sacher, A. & Nelson, H. The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3, 876–881 (2002). https://doi.org/10.1038/nrm955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing