Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in whole-embryo imaging: a quantitative transition is underway

Key Points

  • Over the past decade, advances in genetically encoded fluorescent probes have enabled quantitative studies that have resulted in a deeper knowledge and understanding of the dynamic processes of embryonic differentiation, patterning and morphogenesis.

  • However, the currently available fluorescent imaging approaches have limitations, and new developments, such as the advent of engineered nanoprobes, should positively affect the field of quantitative whole-animal imaging.

  • Innovations in multiphoton and light-sheet microscopy have enabled researchers to obtain deeper and faster in vivo whole-animal images with decreased photodamage in various applications.

  • Bottlenecks in image processing and analysis, including visualization, data registration and feature computation, currently limit imaging complexity. Addressing these issues will ultimately enable truly multidimensional and multiscale investigations of embryonic development.

Abstract

With the advent of imaging probes and live microscopy, developmental biologists have markedly extended our understanding of the molecular and cellular details of embryonic development. To fully comprehend the complex mechanistic framework that forms the developing organism, quantitative studies with high fidelity in space and time are now required. We discuss how integrating established, newly introduced and future imaging tools with quantitative analysis will ensure that imaging can fulfil its promise to elucidate how new life begins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging probes and microscopy techniques for quantitative whole-embryo imaging.
Figure 2: Quantitative whole-embryo imaging: a selection flowchart for specific applications in cellular and molecular dynamics.

Similar content being viewed by others

References

  1. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    PubMed  Google Scholar 

  3. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  PubMed  Google Scholar 

  4. Oates, A. C., Gorfinkiel, N., González-Gaitán, M. & Heisenberg, C.P. Quantitative approaches in developmental biology. Nature Rev. Genet. 10, 517–530 (2009).

    CAS  PubMed  Google Scholar 

  5. Mavrakis, M., Pourquié, O. & Lecuit, T. Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 137, 373–387 (2010).

    CAS  PubMed  Google Scholar 

  6. Miyawaki, A. Proteins on the move: insights gained from fluorescent protein technologies. Nature Rev. Mol. Cell. Biol. 12, 656–668 (2011).

    CAS  Google Scholar 

  7. Muller, P., Rogers, K. W., Yu, S. R., Brand, M. & Schier, A. F. Morphogen transport. Development 140, 1621–1638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nienhaus, K. & Ulrich Nienhaus, G. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 43, 1088–1106 (2013).

    Google Scholar 

  9. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    CAS  PubMed  Google Scholar 

  11. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    CAS  PubMed  Google Scholar 

  12. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Magde, D., Elson, E. & Webb, W. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).

    CAS  Google Scholar 

  14. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007). Analyses the kinetic parameters of Decapentaplegic (Dpp) and Wingless (Wg) morphogen gradient formation using FRAP. Provides evidence that endocytosis is required for Dpp spreading.

    CAS  PubMed  Google Scholar 

  15. Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, S. R. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009). Analyses the Fgf8 morphogen gradient using FCS. Provides evidence that a freely diffusing Fgf8 morphogen can set up the gradient by a source–sink mechanism.

    CAS  PubMed  Google Scholar 

  17. Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N. & Fradin, C. High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys. J. 99, L33–L35 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Muller, P. et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336, 721–724 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Daniels, B. R., Rikhy, R., Renz, M., Dobrowsky, T. M. & Lippincott-Schwartz, J. Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm. Proc. Natl Acad. Sci. 109, 8588–8593 (2012).

    CAS  PubMed  Google Scholar 

  20. Zhou, S. et al. Free extracellular diffusion creates the dpp morphogen gradient of the Drosophila wing disc. Curr. Biol. 22, 668–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wohland, T., Shi, X., Sankaran, J. & Stelzer, E. H. K. Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt. Express 18, 10627–10641 (2010).

    CAS  PubMed  Google Scholar 

  22. Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nature Biotech. 29, 835–839 (2011).

    CAS  Google Scholar 

  23. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  24. Hadjieconomou, D. et al. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Meth 8, 260–266 (2011).

    CAS  Google Scholar 

  25. Kanca, O., Caussinus, E., Denes, A. S., Percival-Smith, A. & Affolter, M. Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development 141, 472–480 (2014).

    CAS  PubMed  Google Scholar 

  26. Gupta, V. & Poss, K. D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484, 479–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabansky, I. et al. Developmental bias in cleavage-stage mouse blastomeres. Curr. Biol. 23, 21–31 (2013). References 26 and 27 describe the recent application of lineage tracing that uses rainbow-labelled clones in the growing zebrafish heart and in mouse blastocysts.

    CAS  PubMed  Google Scholar 

  28. Dempsey, W. P., Fraser, S. E. & Pantazis, P. PhOTO zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration. PLoS ONE 7, e32888 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    CAS  PubMed  Google Scholar 

  30. Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotech. 24, 461–465 (2006).

    CAS  Google Scholar 

  31. Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E. & Pantazis, P. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nature Cell Biol. 13, 117–123 (2011). Uses the FDAP assay to examine the binding kinetics of the pluripotency factor OCT4. Shows that the kinetics of OCT4–chromatin binding predict cell lineage patterning in the early mouse embryo.

    CAS  PubMed  Google Scholar 

  32. Kaur, G. et al. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy. Nature Comms 4, 1637 (2013).

    Google Scholar 

  33. Pantazis, P. & González-Gaitán, M. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs. J. Biomed. Opt. 12, 044004 (2007).

    PubMed  Google Scholar 

  34. Pantazis, P. & Bollenbach, T. Transcription factor kinetics and the emerging asymmetry in the early mammalian embryo. Cell Cycle 11, 2055–2058 (2012)

    CAS  PubMed  Google Scholar 

  35. Strack, R. L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, M. Z. et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 16, 1169–1179 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morozova, K. S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13–L15 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shcherbo, D. et al. Near-infrared fluorescent proteins. Nature Meth. 7, 827–829 (2010).

    CAS  Google Scholar 

  39. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nature Biotech. 29, 757–761 (2011).

    CAS  Google Scholar 

  41. Auldridge, M. E., Satyshur, K. A., Anstrom, D. M. & Forest, K. T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009 (2012).

    CAS  PubMed  Google Scholar 

  42. Filonov, G. S. et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. Angew. Chem. Int. Ed. Engl. 51, 1448–1451 (2012).

    CAS  PubMed  Google Scholar 

  43. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Meth 10, 751–754 (2013).

    CAS  Google Scholar 

  44. Rieger, S., Kulkarni, R. P., Darcy, D., Fraser, S. E. & Köster, R. W. Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev. Dyn. 234, 670–681 (2005).

    CAS  PubMed  Google Scholar 

  45. Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. & Chang, H.-C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

    CAS  PubMed  Google Scholar 

  46. Igarashi, R. et al. Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 12, 5726–5732 (2012).

    CAS  PubMed  Google Scholar 

  47. Lim, S. F. et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett. 6, 169–174 (2006).

    CAS  PubMed  Google Scholar 

  48. Chatterjee, D. K., Rufaihah, A. J. & Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008).

    CAS  PubMed  Google Scholar 

  49. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotech. 26, 83–90 (2007).

    Google Scholar 

  50. Pantazis, P., Maloney, J., Wu, D. & Fraser, S. E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl Acad. Sci. USA 107, 14535–14540 (2010). Establishes imaging of SHG nanoprobes in live zebrafish embryos.

    CAS  PubMed  Google Scholar 

  51. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    CAS  PubMed  Google Scholar 

  53. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotech. 22, 969–976 (2004).

    CAS  Google Scholar 

  54. Tada, H., Higuchi, H., Wanatabe, T. M. & Ohuchi, N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 67, 1138–1144 (2007).

    CAS  PubMed  Google Scholar 

  55. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 7, 11–23 (2011).

    Google Scholar 

  56. Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotechnol. 5, 345–349 (2010).

    CAS  Google Scholar 

  57. Kuo, Y., Hsu, T. Y., Wu, Y. C. & Chang, H. C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34, 8352–8360 (2013).

    CAS  PubMed  Google Scholar 

  58. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 50, 5808–5829 (2011).

    CAS  PubMed  Google Scholar 

  59. Chien, Y.-H. et al. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 7, 8516–8528 (2013).

    CAS  PubMed  Google Scholar 

  60. Xing, H. et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci. Rep. 3, 1751 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Qian, X. M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912 (2008).

    CAS  PubMed  Google Scholar 

  62. Kneipp, J., Kneipp, H. & Kneipp, K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008).

    CAS  PubMed  Google Scholar 

  63. Zavaleta, C. L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. 106, 13511–13516 (2009).

    CAS  PubMed  Google Scholar 

  64. Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl Acad. Sci. 110, E2288–E2297 (2013).

    CAS  PubMed  Google Scholar 

  65. Dempsey, W. P., Fraser, S. E. & Pantazis, P. SHG nanoprobes: Advancing harmonic imaging in biology. Bioessays 34, 351–360 (2012).

    CAS  PubMed  Google Scholar 

  66. Culic-Viskota, J., Dempsey, W. P., Fraser, S. E. & Pantazis, P. Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish. Nature Protoc. 7, 1618–1633 (2012).

    CAS  Google Scholar 

  67. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nature Chem. Biol. 1, 13–21 (2005).

    CAS  Google Scholar 

  68. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 2707–2712 (2006).

    CAS  PubMed  Google Scholar 

  69. Supatto, W., McMahon, A., Fraser, S. E. & Stathopoulos, A. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis. Nature Protoc. 4, 1397–1412 (2009).

    Google Scholar 

  70. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  71. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl Acad. Sci. USA 102, 1047–1052 (2005).

    CAS  PubMed  Google Scholar 

  72. McMahon, A., Supatto, W., Fraser, S. E. & Stathopoulos, A. Dynamic Analyses of Drosophila Gastrulation Provide Insights into Collective Cell Migration. Science 322, 1546–1550 (2008). Uses multiphoton microscopy and computational image analysis to image the deepest mesoderm cells and to decompose their complex movements during fly embryonic development.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rebollo, E., Roldan, M. & Gonzalez, C. Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development 136, 3393–3397 (2009).

    CAS  PubMed  Google Scholar 

  74. Sato, Y. et al. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE 5, e12674 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Squirrell, J. M., Wokosin, D. L., White, J. G. & Bavister, B. D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nature Biotech. 17, 763–767 (1999).

    CAS  Google Scholar 

  76. McDole, K., Xiong, Y., Iglesias, P. A. & Zheng, Y. Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev. Biol. 355, 239–249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gregor, T. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. 102, 18403–18407 (2005).

    CAS  PubMed  Google Scholar 

  78. Débarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nature Meth. 3, 47–53 (2006).

    Google Scholar 

  79. Olivier, N. et al. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329, 967–971 (2010). Uses harmonic generation microscopy for label-free imaging and cell lineage reconstruction.

    CAS  PubMed  Google Scholar 

  80. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    CAS  PubMed  Google Scholar 

  81. Supatto, W., Fraser, S. E. & Vermot, J. An all-optical approach for probing microscopic flows in living embryos. Biophys. J. 95, L29–L31 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahou, P. et al. Multicolor two-photon tissue imaging by wavelength mixing. Nature Meth. 9, 815–818 (2012).

    CAS  Google Scholar 

  83. Olivier, N., Débarre, D. & Beaurepaire, E. Dynamic aberration correction for multiharmonic microscopy. Opt. Lett. 34, 3145–3147 (2009).

    PubMed  Google Scholar 

  84. Liebling, M. et al. Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development. Dev. Dyn. 235, 2940–2948 (2006).

    PubMed  Google Scholar 

  85. Arrenberg, A. B., Stainier, D. Y. R., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    CAS  PubMed  Google Scholar 

  86. Anton, H. et al. Pulse propagation by a capacitive mechanism drives embryonic blood flow. Development 140, 4426–4434 (2013).

    CAS  PubMed  Google Scholar 

  87. Hirota, Y. et al. Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137, 3037–3046 (2010).

    CAS  PubMed  Google Scholar 

  88. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004). Seminal work that uses light-sheet microscopy for live embryo imaging.

    CAS  PubMed  Google Scholar 

  89. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    CAS  PubMed  Google Scholar 

  90. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Meth. 10, 413–420 (2013).

    CAS  Google Scholar 

  91. Panier, T. et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy. Front. Neural Circuits 7, 65 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nature Meth. 7, 418–419 (2010).

    CAS  Google Scholar 

  93. Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nature Meth. 9, 730–733 (2012).

    CAS  Google Scholar 

  94. Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E. H. K. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029–8042 (2007).

    PubMed  Google Scholar 

  95. Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nature Meth. 9, 755–763 (2012). References 92 and 94 show the recent application of light-sheet microscopy for whole-embryo imaging.

    CAS  Google Scholar 

  96. Schmid, B. et al. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nature Comms 4, 1–10 (2013).

    Google Scholar 

  97. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M. & Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nature Meth 8, 757–760 (2011). Uses a combination of multiphoton excitation and light-sheet illumination to image fly embryos.

    CAS  Google Scholar 

  98. Lavagnino, Z., Zanacchi, F. C., Ronzitti, E. & Diaspro, A. Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt. Express 21, 5998–6008 (2013).

    PubMed  Google Scholar 

  99. Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nature Meth 8, 417–423 (2011).

    CAS  Google Scholar 

  100. Fahrbach, F. O., Gurchenkov, V., Alessandri, K., Nassoy, P. & Rohrbach, A. Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy. Opt. Express 21, 11425 (2013).

    PubMed  Google Scholar 

  101. Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608–2610 (2007).

    PubMed  Google Scholar 

  102. Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nature Meth. 7, 637–642 (2010).

    CAS  Google Scholar 

  103. Mertz, J. & Kim, J. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J. Biomed. Opt. 15, 016027 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. S. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582–20598 (2012).

    CAS  PubMed  Google Scholar 

  106. Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012).

    PubMed  Google Scholar 

  107. Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nature Meth. 10, 598–599 (2013).

    CAS  Google Scholar 

  108. Gualda, E. J. et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nature Meth. 10, 599–600 (2013).

    CAS  Google Scholar 

  109. Truong, T. V. & Supatto, W. Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis. Genesis 49, 555–569 (2011).

    PubMed  Google Scholar 

  110. Mikut, R. et al. Automated processing of zebrafish imaging data: a survey. Zebrafish 10, 401–421 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Moore, J. L., Du, Z. & Bao, Z. Systematic quantification of developmental phenotypes at single-cell resolution during embryogenesis. Development 140, 3266–3274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Eliceiri, K. W. et al. Biological imaging software tools. Nature Meth. 9, 697–710 (2012).

    CAS  Google Scholar 

  113. Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotech. 28, 348–353 (2010).

    CAS  Google Scholar 

  114. Ronneberger, O. et al. ViBE-Z.: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nature Meth. 9, 735–742 (2012).

    CAS  Google Scholar 

  115. Khairy, K. & Keller, P. J. Reconstructing embryonic development. Genesis 49, 488–513 (2011).

    PubMed  Google Scholar 

  116. Amat, F. & Keller, P. J. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy. Develop. Growth Differ. 55, 563–578 (2013).

    Google Scholar 

  117. Blanchard, G. B. et al. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nature Meth. 6, 458–464 (2009).

    CAS  Google Scholar 

  118. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nature Rev. Mol. Cell. Biol. 15, 34–48 (2014).

    CAS  Google Scholar 

  119. Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A. 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Meth. 6, 667–672 (2009).

    CAS  Google Scholar 

  120. Fowlkes, C. C. et al. A quantitative spatiotemporal atlas of gene expression in the Drosophila Blastoderm. Cell 133, 364–374 (2008).

    CAS  PubMed  Google Scholar 

  121. Xiong, F. et al. Specified neural progenitors sort to form sharp domains after noisy shh signaling. Cell 153, 550–561 (2013). Shows how quantitative image analysis of both molecular signalling and cell motion provides new insights into tissue patterning.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mosaliganti, K. R., Noche, R. R., Xiong, F., Swinburne, I. A. & Megason, S. G. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes. PLoS Comput. Biol. 8, e1002780 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pop, S. et al. Extracting 3D cell parameters from dense tissue environments: application to the development of the mouse heart. Bioinformatics 29, 772–779 (2013).

    CAS  PubMed  Google Scholar 

  124. Meder, D. & Van Minnebruggen, G. Straight talk with...Doris Meder and Geert Van Minnebruggen. Interview by Katharine Sanderson. Nature Med. 19, 802 (2013).

    PubMed  Google Scholar 

  125. Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank former and present members of their laboratories for discussions and feedback during the preparation of this Review. The authors apologize to those whose work could not be discussed owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Periklis Pantazis or Willy Supatto.

Ethics declarations

Competing interests

Work mentioned in the Review is the subject of patent applications filed by the Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, the California Institute of Technology (Caltech), Pasadena, California, USA, the Centre National de la Recherche Scientifique (CNRS), Paris, France, and the École Polytechnique, Palaiseau, France.

Related links

FURTHER INFORMATION

BioEmergences

Core for Life

OpenSPIM

PowerPoint slides

Glossary

Confocal microscopy

An optical imaging technique that uses point-scanning illumination and a spatial pinhole to obtain optical sectioning and to eliminate out-of-focus signals in tissue.

Two-photon microscopy

An optical imaging technique that uses point-scanning illumination, a near-infrared spectrum femtosecond laser and two-photon absorption to obtain optical sectioning and improved imaging depth compared with confocal microscopy.

Light-sheet microscopy

An optical imaging technique whereby the specimen is illuminated with a sheet of light perpendicular to the detection direction, which provides excellent sectioning capabilities, fast imaging and low levels of photodamage.

Fluorescence recovery after photobleaching

(FRAP). An imaging assay that can determine the diffusion properties of labelled molecules in a tissue by photobleaching a small defined fluorescent region, which is followed by measuring the rate and extent of fluorescence recovery emanating from neighbouring regions.

Fluorescence correlation spectroscopy

(FCS). An imaging assay that can determine the diffusion properties of labelled molecules in a tissue by measuring fluorescence fluctuations in a small volume.

Morphogens

Signalling molecules that are typically present in gradients and that determine where specific cell types form in developing tissues.

PhOTO zebrafish

(Photoconvertible optical tracking of zebrafish). A transgenic zebrafish line with life-long fluorescent labelling of nuclear or plasma membrane proteins using the photoconvertible protein Dendra2. Taking advantage of the instantaneous photoconversion of the Dendra2 fusion protein, the non-invasive, targeted and high-contrast selection of any cells of interest can be accomplished, which greatly simplifies cell segmentation and tracking in time and space.

Multiphoton

All photonic processes depend nonlinearly on light intensity. Multiphoton microscopy takes advantage of such nonlinear processes as a source of contrast.

Fluorescence decay after photoactivation or photoconversion

(FDAP). An imaging assay that is similar to traditional fluorescence recovery after photobleaching (FRAP) but that uses photoactivatable (or photoconvertible) proteins as labelling molecules. The added benefit of visualizing only a limited population of photoactivated or photoconverted molecules is that this avoids the very high laser powers that are necessary to carry out FRAP experiments. It also enables the analysis of the diffusion behaviour and turn-over of photoactivated or photoconverted molecules independently of other proteins that are newly synthesized.

Blinking

Large intensity fluctuation between a bright state (On) and a dark state (Off) of an imaging probe that is under continuous excitation.

Raman reporter molecules

Nitrogen-containing cationic dyes, sulphur-containing dyes or thio-small molecules, which can inelastically scatter a fraction of the absorbed light into a series of different wavelengths that are indicative of the vibrational transitions in the molecules.

Bioorthogonal labelling

Labelling reactions that can occur inside living embryos without interfering with the native biological system.

Harmonic generation

A coherent contrast mechanism that relies on nonlinear scattering of light. Unlike fluorescence, second-harmonic generation (SHG) and third-harmonic generation (THG) do not involve light absorption.

Optical parametric oscillator

An optical device that converts an input laser wave into an output wave of a lower frequency (or greater wavelength). The one used in multiphoton microscopy is pumped by a standard titanium-sapphire laser in the 750–900 nm range, which enables output wavelengths to reach the 1,000–1,500 nm range.

Conformal scanning

Unlike raster scanning, which is used in most point-scanning microscopes, conformal scanning uses a laser scanning pattern that is adapted to the sample shape.

Dynamic aberration correction

An experimental procedure to correct for changing optical aberrations that are induced by embryonic tissues during development using adaptive optics and real-time corrections.

Gaussian beam

The intensity profile of a laser beam after focusing it with a standard microscope objective.

Bessel beam

A specific laser beam profile with elongated axial and short lateral extensions of the focal volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantazis, P., Supatto, W. Advances in whole-embryo imaging: a quantitative transition is underway. Nat Rev Mol Cell Biol 15, 327–339 (2014). https://doi.org/10.1038/nrm3786

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing