Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathways of clathrin-independent endocytosis

Key Points

  • In addition to the classical clathrin-dependent mechanisms of endocytosis, there are several pathways that do not use a clathrin coat and are, therefore, referred to as clathrin-independent (CI) mechanisms.

  • CI mechanisms of uptake have gained much attention with the realization that they have important roles in the regulation of cell growth and development as well as important implications in the study of certain diseases and pathogens.

  • Two well-known CI mechanisms are the caveolar pathway and fluid-phase endocytosis. However, there is much debate concerning the number of distinct CI mechanisms that exist, the best cargo molecules for the study of a particular pathway, and the underlying protein machinery that regulates these pathways.

  • To organize the extensive literature on CI endocytosis for the purpose of arriving at a mechanistic understanding, this Review classifies CI mechanisms as follows: first, on whether or not they are dynamin dependent and, second, according to the involvement of the small GTPases CDC42, RhoA or ARF6.

  • Protein-based mechanisms (for example, ubiquitylation) and lipid-based mechanisms (for example, nanoscale clustering of lipid-tethered proteins) may both function in the selection of cargo for CI endocytosis.

  • The mechanism of budding in the dynamin-independent pathways remains elusive; however, recent theoretical studies provide testable ideas in this area.

Abstract

There are numerous ways that endocytic cargo molecules may be internalized from the surface of eukaryotic cells. In addition to the classical clathrin-dependent mechanism of endocytosis, several pathways that do not use a clathrin coat are emerging. These pathways transport a diverse array of cargoes and are sometimes hijacked by bacteria and viruses to gain access to the host cell. Here, we review our current understanding of various clathrin-independent mechanisms of endocytosis and propose a classification scheme to help organize the data in this complex and evolving field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of entry into cells.
Figure 2: Electron micrographs of early intermediates in clathrin-dependent and independent pathways of endocytosis.
Figure 3: Proposed classification system for endocytic mechanisms.

Similar content being viewed by others

References

  1. Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976). Describes the isolation of highly purified coated vesicles from different sources and demonstrates that clathrin is the major coat protein, setting the stage for mechanistic studies of a prototypic coated-pit pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mousavi, S. A., Malerod, L., Berg, T. & Kjeken, R. Clathrin-dependent endocytosis. Biochem. J. 377, 1–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth, M. G. Clathrin-mediated endocytosis before fluorescent proteins. Nature Rev. Mol. Cell Biol. 7, 63–68 (2006).

    Article  CAS  Google Scholar 

  4. Traub, L. M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirkham, M. & Parton, R. G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746, 350–363 (2005).

    Article  CAS  Google Scholar 

  7. Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995). Key paper demonstrating that inhibition of clathrin-dependent endocytosis results in an upregulation of clathrin- and dynamin-independent pinocytic endocytosis.

    Article  CAS  PubMed  Google Scholar 

  8. Guha, A., Sriram, V., Krishnan, K. S. & Mayor, S. Shibire mutations reveal distinct dynamin-independent and-dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 116, 3373–3386 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Donaldson, J. G. & Klausner, R. D. ARF: a key regulatory switch in membrane traffic and organelle structure. Curr. Opin. Cell Biol. 6, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Ellis, S. & Mellor, H. Regulation of endocytic traffic by rho family GTPases. Trends Cell Biol. 10, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Moss, J. & Vaughan, M. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270, 12327–12330 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Qualmann, B. & Mellor, H. Regulation of endocytic traffic by Rho GTPases. Biochem. J. 371, 233–241 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  15. Engqvist-Goldstein, A. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mineo, C. & Anderson, R. G. Potocytosis. Robert Feulgen Lecture. Histochem. Cell Biol. 116, 109–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Parton, R. G. Caveolae — from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

    Article  CAS  Google Scholar 

  21. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  Google Scholar 

  22. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Aboulaich, N., Vainonen, J. P., Stralfors, P. & Vener, A. V. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383, 237–248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemaitre, G. et al. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics 5, 3637–3645 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Sprenger, R. R. et al. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 25, 156–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Minshall, R. D., Tiruppathi, C., Vogel, S. M. & Malik, A. B. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem. Cell Biol. 117, 105–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Schnitzer, J. E. & Oh, P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269, 6072–6082 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, R. D. et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 14, 3254–3265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Z. J. et al. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol. Biol. Cell 17, 3197–3210 (2006). A systematic study that shows the importance of different classes of sphingolipids in modulating various mechanisms of endocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Damm, E. M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirkham, M. et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol. 168, 465–476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Massol, R. H., Larsen, J. E., Fujinaga, Y., Lencer, W. I. & Kirchhausen, T. Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Mol. Biol. Cell 15, 3631–3641 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orlandi, P. A. & Fishman, P. H. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141, 905–915 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Torgersen, M. L., Skretting, G., van Deurs, B. & Sandvig, K. Internalization of cholera toxin by different endocytic mechanisms. J. Cell Sci. 114, 3737–3742 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lamaze, C. et al. Interleukin-2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001). An important study showing that IL2-R is internalized by a clathrin-independent mechanism that requires dynamin and is specifically regulated by RhoA.

    Article  CAS  PubMed  Google Scholar 

  36. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct CDC42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002). A mechanistic study of a distinct constitutive pinocytic pathway that is responsible for the transport of GPI-APs, is dynamin-independent and is regulated by CDC42.

    Article  CAS  PubMed  Google Scholar 

  38. Llorente, A., Rapak, A., Schmid, S. L., van Deurs, B. & Sandvig, K. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J. Cell Biol. 140, 553–563 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simpson, J. C., Smith, D. C., Roberts, L. M. & Lord, J. M. Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp. Cell Res. 239, 293–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Gauthier, N. C. et al. Helicobacter pylori VacA cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol. Biol. Cell 16, 4852–4866 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalia, M. et al. Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3′-kinase-dependent machinery. Mol. Biol. Cell 17, 3689–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma, P., Sabharanjak, S. & Mayor, S. Endocytosis of lipid rafts: an identity crisis. Semin. Cell Dev. Biol. 13, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Shyng, S. L., Heuser, J. E. & Harris, D. A. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Sunyach, C. et al. The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J. 22, 3591–3601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peters, P. J. et al. Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J. Cell Biol. 162, 703–717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shyng, S. L., Moulder, K. L., Lesko, A. & Harris, D. A. The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J. Biol. Chem. 270, 14793–14800 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Garrett, W. S. et al. Developmental control of endocytosis in dendritic cells by CDC42. Cell 102, 325–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Chadda, R. et al. Cholesterol-sensitive CDC42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8, 702–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Naslavsky, N., Weigert, R. & Donaldson, J. G. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol. Biol. Cell 15, 3542–3552 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abrami, L., Liu, S., Cosson, P., Leppla, S. H. & van der Goot, F. G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–5 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Birkle, S., Zeng, G., Gao, L., Yu, R. K. & Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie 85, 455–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Arnaoutova, I., Jackson, C. L., Al-Awar, O. S., Donaldson, J. G. & Loh, Y. P. Recycling of raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol. Biol. Cell 14, 4448–4457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Glebov, O. O., Bright, N. A. & Nichols, B. J. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nature Cell Biol. 8, 46–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994). Demonstrates that caveolae are dynamic structures that undergo internalization and that this process is regulated by kinase activity and a network of actin.

    Article  CAS  PubMed  Google Scholar 

  58. Mayor, S. & Rao, M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Madore, N. et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–6926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Puri, V. et al. Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharma, D. K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15, 3114–3122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh, R. D. et al. Caveolar endocytosis and microdomain association of a glycosphingolipid analog is dependent on its sphingosine stereochemistry. J. Biol. Chem. 281, 30660–30668 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Morrow, I. C. & Parton, R. G. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6, 725–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Stuermer, C. A. et al. Glycosylphosphatidyl inositol-anchored proteins and FYN kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol. Biol. Cell 12, 3031–3045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  66. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  67. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    Article  CAS  Google Scholar 

  68. Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999). An important study demonstrating that lipid sorting along the endocytic pathway is affected by the hydrophobic tails of lipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharma, D. K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem. 278, 7564–7572 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000). A seminal study that describes the sequestration of different Rab proteins into discrete domains on individual endosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005). High-throughput screening of the human kinome showing that the signalling functions of cells are linked to endocytosis and vice versa.

    Article  CAS  PubMed  Google Scholar 

  72. Singh, R. D. et al. Inhibition of caveolar uptake, SV40 infection, and β1-integrin signaling by a non-natural glycosphingolipid stereoisomer. J. Cell Biol. 176, 895–901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tiruppathi, C., Song, W., Bergenfeldt, M., Sass, P. & Malik, A. B. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J. Biol. Chem. 272, 25968–25975 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharma, D. K. et al. The glycosphingolipid, lactosylceramide, regulates β1-integrin clustering and endocytosis. Cancer Res. 65, 8233–8241 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Guerrera, M. & Ladisch, S. N-butyldeoxynojirimycin inhibits murine melanoma cell ganglioside metabolism and delays tumor onset. Cancer Lett. 201, 31–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Nevins, A. K. & Thurmond, D. C. Caveolin-1 functions as a novel CDC42 guanine nucleotide dissociation inhibitor in pancreatic β-cells. J. Biol. Chem. 281, 18961–18972 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Riezman, H. Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis. Cell 40, 1001–1009 (1985).

    Article  CAS  PubMed  Google Scholar 

  82. Ito, M. & Komori, H. Homeostasis of cell-surface glycosphingolipid content in B16 melanoma cells. Evidence revealed by an endoglycoceramidase. J. Biol. Chem. 271, 12655–12660 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Choudhury, A., Marks, D. L., Proctor, K. M., Gould, G. W. & Pagano, R. E. Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biol. 8, 317–328 (2006). Inhibition of a target SNARE that is involved in secretory transport leads to selective inhibition of caveolar endocytosis.

    Article  CAS  PubMed  Google Scholar 

  84. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    Article  CAS  Google Scholar 

  86. Pelkmans, L., Püntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Haucke, V. Cargo takes control of endocytosis. Cell 127, 35–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Griffiths, G., Back, R. & Marsh, M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J. Cell Biol. 109, 2703–2720 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Rodal, S. K. et al. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. USA 96, 6775–6780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Edidin, M. The state of lipids rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. London, E. & Brown, D. A. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508, 182–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Maxfield, F. R. Plasma membrane microdomains. Curr. Opin. Cell Biol. 14, 483–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Sarasij, R. C., Mayor, S. & Rao, M. Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae? Biophys. J. 92, 3140–3158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA 103, 10277–10282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  102. Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998). One of the first demonstrations that caveolar endocytosis is dynamin-dependent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994). Demonstrates that crosslinking GPI-anchored proteins induces their internalization by caveolae.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to members of the Mayor and Pagano laboratories for comments on the manuscript, and to H.M. Thompson (Mayo Clinic College of Medicine) for expert editorial assistance and for generating the figure in Box 1. We apologize to colleagues whose work has not been directly cited owing to space limitations. Research in S.M.'s laboratory was supported by a Senior Research Fellowship from The Wellcome Trust, the Department of Biotechnology (India), the Human Frontier Science Program, and intramural funds from the National Centre for Biological Sciences, India. Research in R.P.'s laboratory was supported by grants from the U.S. National Institutes of Health and the National Niemann–Pick Disease Foundation, and intramural funds from the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Pharmacological inhibitors or dominant negative proteins used to distinguish clathrin-independent mechanisms of endocytosis (PDF 176 kb)

Related links

Related links

FURTHER INFORMATION

Richard Pagano's web site

Satyajit Mayor's web site

Glossary

Rab GTPase

A Ras family GTPase that regulates membrane-trafficking events in eukaryotic cells. Different Rab proteins are specific for different transport pathways and different subcellular compartments.

Macropinocytosis

A mainly actin-dependent endocytic mechanism that is used to internalize large amounts of fluid and growth factors; vesicles mediating this form of endocytosis are usually uncoated and >500 nm in diameter.

Phagocytosis

An actin-based endocytic mechanism. It is mediated by cup-like membrane extensions that are used to internalize large particles such as bacteria.

Dynamin

A large GTPase of 100 kDa. It mediates many, but not all, forms of endocytosis as well as vesicle formation from various intracellular organelles through its ability to tubulate and sever membranes.

Caveolae

50–80 nm flask-shaped pits that form in the plasma membrane and are enriched in caveolins, sphingolipids and cholesterol.

Caveosome

An intracellular compartment that is involved in the intracellular transport of simian virus-40 from caveolae to the endoplasmic reticulum.

Glycosyl phosphatidylinositol-anchored protein

A protein that is anchored to the extracellular membrane leaflet through the glycosyl phosphatidylinositol lipid modification rather than through a transmembrane protein domain.

Dominant negative protein

A mutant version of a protein that, when expressed, results in an inhibitory phenotype, usually by competing with interaction partners and thereby suppressing the function of the endogenous wild-type protein.

Carboxypeptidase E

An endopeptidase that is found in secretory vesicles and can activate neuropeptides. It may also function as a sorting receptor that sorts cargoes into the regulated secretory pathway.

Ubiquitylation

A post-translational modification that is added to some receptor tyrosine kinases following ligand binding. It mediates internalization and subsequent sorting at the level of endosomes.

E3 ubiquitin ligase

An enzyme that functions downstream of or in combination with a ubiquitin-conjugating enzyme (E2) to attach ubiquitin molecules to a target protein, marking the protein for subsequent recognition by ubiquitin-binding domains.

Ubiquitin interacting motif

A protein motif of 24 amino acids that interacts with ubiquitin and, in some instances, is also necessary for the ubiquitylation of proteins that contain this motif.

Fluorescence resonance energy transfer

(FRET). A fluorescence-based method for detecting interactions between proteins that are <10 nm apart in a cell. This method is dependent on the spectral overlap between donor and acceptor chromophores and uses the transfer of (non-radiative) energy from an initially excited donor molecule to subsequently excite an acceptor molecule.

Transient confinement zone

A region of the cell membrane that is defined in single-particle diffusion studies of mobile molecules as an area where mobile species are likely to spend more time than expected from the analysis of the trajectory of diffusing species.

Kinome

The entire repertoire of kinases encoded by the genome of an organism.

Guanine nucleotide dissociation inhibitor

A protein that inhibits the removal of guanosine diphosphate from the nucleotide-binding pocket of a GTP-binding protein, thus keeping it in the inactive state.

SNARE

Soluble N-ethylmaleimide sensitive factor attachment protein receptor. A family of coiled-coil proteins that operate in paired complexes (vesicle SNAREs and target SNAREs) to mediate the fusion of donor and acceptor membranes, usually between a vesicle and an organelle or two vesicles.

C-terminal binding protein 3/brefeldin A-ribosylated substrate

(CtBP3/BARS). A member of the CtBP transcription co-repressor family of proteins. It is involved in the dynamin-independent fission of vesicles from the plasma membrane as well as from the Golgi apparatus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayor, S., Pagano, R. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8, 603–612 (2007). https://doi.org/10.1038/nrm2216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing