Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanism of homologous recombination: mediators and helicases take on regulatory functions

Key Points

  • Homologous recombination (HR) has an important role in DNA repair, DNA replication, meiotic chromosome segregation and telomere maintenance. HR is tightly regulated by DNA helicases. A defect in, or deregulation of, HR can lead to cell-cycle arrest, genome destabilization and cancer formation.

  • DNA double-stranded breaks (DSBs) that are caused by exposure to ionizing radiation and other DNA-damaging agents are strong inducers of HR. Programmed HR processes such as meiotic recombination and yeast mating-type switching are initiated through DSB formation.

  • Several HR pathways that are initiated by DSBs have been elucidated. In the DNA double-strand-break repair (DSBR) pathway, a DNA intermediate that contains two Holliday junctions is made. Resolution of this DNA intermediate can produce crossover recombinants that harbour a reciprocal exchange of the arms of the recombining chromosomes.

  • Crossovers are crucial for chromosome segregation at meiosis I, but their formation is suppressed in mitotic cells because of an inherent risk of chromosome rearrangements if the crossovers involve repetitive sequences in the genome.

  • HR is mediated by a class of enzymes known as recombinases. There are two eukaryotic recombinases, RAD51 and DMC1, and both are related to the bacterial recombinase RecA. RAD51 is needed for mitotic and meiotic HR, whereas DMC1 functions only during meiosis.

  • All the recombinases form a helical filament on ssDNA, better known as the presynaptic filament. Assembly of the presynaptic filament requires ATP and is facilitated by recombination mediators, which include the yeast Rad52 protein and the human BRCA2 tumour suppressor.

  • HR is regulated by DNA helicases at several stages. The yeast Mer3 helicase promotes meiotic crossover formation, whereas the yeast Sgs1 and human BLM helicases mediate the dissolution of the double Holliday junction to yield non-crossover recombinants. Moreover, the yeast Srs2 helicase attenuates HR by dismantling the Rad51 presynaptic filament.

  • Many questions concerning the mechanism and regulation of mitotic and meiotic HR remain. For example, how HR functionally synergizes with the Fanconi anaemia protein complex to mediate the removal of interstrand DNA crosslinks remains to be delineated.

Abstract

Homologous recombination (HR) is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome maintenance. As such, HR is indispensable for genome integrity, but it must be regulated to avoid deleterious events. Mutations in the tumour-suppressor protein BRCA2, which has a mediator function in HR, lead to cancer formation. DNA helicases, such as Bloom's syndrome protein (BLM), regulate HR at several levels, in attenuating unwanted HR events and in determining the outcome of HR. Defects in BLM are also associated with the cancer phenotype. The past several years have witnessed dramatic advances in our understanding of the mechanism and regulation of HR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological roles of HR.
Figure 2: Repair of DNA double-strand breaks by DSBR and SDSA.
Figure 3: Recombinase filament and displacement-loop formation.
Figure 4: DMC1: rings versus filaments.
Figure 5: Action of recombination mediators.
Figure 6: Regulation of HR by Srs2 and BLM helicases.

Similar content being viewed by others

References

  1. Clark, A. J. & Margulies, A. D. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. Natl Acad. Sci. USA 53, 451–459 (1965). Reports the first isolation of HR mutants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Symington, L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002). A comprehensive review on HR genes, proteins and pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Michel, B., Grompone, G., Flores, M. J. & Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl Acad. Sci. USA 101, 12783–12788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McEachern, M. J. & Haber, J. E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75, 111–135 (2006). A comprehensive review on BIR pathways and their relevance to telomere maintenance.

    Article  CAS  PubMed  Google Scholar 

  6. Surralles, J. et al. Molecular cross-talk among chromosome fragility syndromes. Genes Dev. 18, 1359–1370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kennedy, R. D. & D'Andrea, A. D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003).

    Article  CAS  Google Scholar 

  9. Moynahan, M. E. The cancer connection: BRCA1 and BRCA2 tumour suppression in mice and humans. Oncogene 21, 8994–9007 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Jasin, M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21, 8981–8993 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Peterson, C. L. & Cote, J. Cellular machineries for chromosomal DNA repair. Genes Dev. 18, 602–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. van Attikum, H. & Gasser, S. M. The histone code at DNA breaks: a guide to repair? Nature Rev. Mol. Cell Biol. 6, 757–765 (2005).

    Article  CAS  Google Scholar 

  15. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Yeast transformation: a model system for the study of recombination. Proc. Natl Acad. Sci. USA 78, 6354–6358 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orr-Weaver, T. L. & Szostak, J. W. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl Acad. Sci. USA 80, 4417–4421 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983). Describes a HR model that is now known as the canonical DSBR model and that can explain meiotic recombination data.

    Article  CAS  PubMed  Google Scholar 

  18. Collins, I. & Newlon, C. S. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76, 65–75 (1994). Presents the first physical demonstration of meiotic recombination DNA intermediates between homologous chromosomes.

    Article  CAS  PubMed  Google Scholar 

  19. Schwacha, A. & Kleckner, N. Identification of joint molecules that form frequently between homologues but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63 (1994). Presents evidence for DNA joint molecules between non-sister chromatids as recombination intermediates in meiosis.

    Article  CAS  PubMed  Google Scholar 

  20. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995). Presents evidence that meiotic DNA joint molecules harbour a double HJ.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson, D. O. & Holloman, W. K. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl Acad. Sci. USA 93, 5419–5424 (1996). Describes a recombination model, which is now known as the SDSA model, that does not entail crossover formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nassif, N., Penney, J., Pal, S., Engels, W. R. & Gloor, G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994). Reports the elimination of DSBs by SDSA in D. melanogaster.

    CAS  Google Scholar 

  23. Strathern, J. N. et al. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31, 183–192 (1982). Discusses how yeast mating-type switching occurs by SDSA.

    Article  CAS  PubMed  Google Scholar 

  24. Hastings, P. J. Recombination in the eukaryotic nucleus. Bioessays 9, 61–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Davis, A. P. & Symington, L. S. RAD51-dependent break-induced replication in yeast. Mol. Cell. Biol. 24, 2344–2351 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malkova, A., Naylor, M. L., Yamaguchi, M., Ira, G. & Haber, J. E. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 25, 933–944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cox, B. S. & Parry, J. M. The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat. Res. 6, 37–55 (1968).

    Article  CAS  PubMed  Google Scholar 

  29. Snow, R. Mutants of yeast sensitive to ultraviolet light. J. Bacteriol. 94, 571–575 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Game, J. C. & Mortimer, R. K. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24, 281–292 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. Resnick, M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics 62, 519–531 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakai, S. & Matsumoto, S. Two types of radiation-sensitive mutant in yeast. Mutat. Res. 4, 129–136 (1967).

    Article  CAS  PubMed  Google Scholar 

  33. Zakharov, I. A., Suslova, N. G. & Fedorova, I. V. Polyploidy and radioresistance in yeast. I. Effect of mutation xrs1–5 on radioresistance of polyploid series of Saccharomyces cerevisiae. Sov. Genet. 6, 1355–1359 (1970).

    CAS  PubMed  Google Scholar 

  34. Bai, Y. & Symington, L. S. A Rad52 homologue is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10, 2025–2037 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Ajimura, M., Leem, S. H. & Ogawa, H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133, 51–66 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klein, H. L. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147, 1533–1543 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shinohara, M. et al. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147, 1545–1556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dresser, M. E. et al. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147, 533–544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–1243 (1994). First demonstration of recombinase activity in the Rad51 protein.

    Article  CAS  PubMed  Google Scholar 

  40. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homologue of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. & Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl Acad. Sci. USA 98, 8419–8424 (2001). Compares and contrasts the RecA and Rad51 presynaptic filaments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sung, P. & Robberson, D. L. DNA strand exchange mediated by a RAD51–ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453–461 (1995). Shows that Rad51 mediates the recombination reaction via a protein filament that is assembled on ssDNA.

    Article  CAS  PubMed  Google Scholar 

  43. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896–1899 (1993). Presents the first evidence that Rad51 forms a helical protein filament on DNA.

    Article  CAS  PubMed  Google Scholar 

  44. Cox, M. M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57, 551–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998). Compares and contrasts the properties of recombinases from different species.

    Article  CAS  PubMed  Google Scholar 

  46. Sung, P. & Stratton, S. A. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271, 27983–27986 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Menetski, J. P., Bear, D. G. & Kowalczykowski, S. C. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl Acad. Sci. USA 87, 21–25 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Story, R. M., Weber, I. T. & Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, Y., Qian, X., He, Y., Moya, I. A. & Luo, Y. Crystal structure of an ATPase-active form of Rad51 homologue from Methanococcus voltae. Insights into potassium dependence. J. Biol. Chem. 280, 722–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Conway, A. B. et al. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791–796 (2004).

    Article  CAS  Google Scholar 

  51. Passy, S. I. et al. Human DMC1 protein binds DNA as an octameric ring. Proc. Natl Acad. Sci. USA 96, 10684–10688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, Z., Golub, E. I., Gupta, R. & Radding, C. M. Recombination activities of HsDmc1 protein, the meiotic human homologue of RecA protein. Proc. Natl Acad. Sci. USA 94, 11221–11226 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masson, J. Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552–6560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sehorn, M. G., Sigurdsson, S., Bussen, W., Unger, V. M. & Sung, P. Human meiotic recombinase DMC1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004). Presents the first evidence that DMC1 mediates the recombination reaction via a helical protein filament assembled on ssDNA.

    Article  CAS  PubMed  Google Scholar 

  55. Lee, M. H. et al. Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 280, 40980–40984 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Sauvageau, S. et al. Fission yeast Rad51 and Dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol. Cell. Biol. 25, 4377–4387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A. & Mazin, A. V. Activation of human meiosis-specific recombinase DMC1 by Ca2+. J. Biol. Chem. 280, 26886–26895 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, X. & Haber, J. E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, E21 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003). References 59 and 60 examine the temporal order of recruitment of recombination factors to a DNA DSB by chromatin immunoprecipitation.

    Article  CAS  PubMed  Google Scholar 

  60. Wolner, B., van Komen, S., Sung, P. & Peterson, C. L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12, 221–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Sung, P., Krejci, L., Van Komen, S. & Sehorn, M. G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003). A concise review on the enzymology of HR.

    Article  CAS  PubMed  Google Scholar 

  62. Sung, P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272, 28194–28197 (1997). This study, together with references 63 and 64, establishes that Rad52 is a recombination mediator for Rad51 recombinase.

    Article  CAS  PubMed  Google Scholar 

  63. Shinohara, A. & Ogawa, T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391, 404–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. New, J. H., Sugiyama, T., Zaitseva, E. & Kowalczykowski, S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391, 407–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sung, P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11, 1111–1121 (1997). The first report of a recombination mediator for Rad51 recombinase. The Rad55–Rad57 heterodimer mediates the recombination function of Rad51.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, H., Li, Q., Fan, J., Holloman, W. K. & Pavletich, N. P. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA–ssDNA junction. Nature 433, 653–657 (2005). Presents evidence that the BRCA2-like molecule Brh2 has recombination-mediator activity.

    Article  CAS  PubMed  Google Scholar 

  67. San Filippo, J. et al. Recombination mediator and RAD51 targeting activities of a human BRCA2 polypeptide. J. Biol. Chem. 281, 11649–11657 (2006). Presents evidence that a polypeptide that comprises functional domains from human BRCA2 protein has recombination-mediator activity.

    Article  CAS  PubMed  Google Scholar 

  68. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Milne, G. T. & Weaver, D. T. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7, 1755–1765 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Mortensen, U. H., Bendixen, C., Sunjevaric, I. & Rothstein, R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl Acad. Sci. USA 93, 10729–10734 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song, B. & Sung, P. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J. Biol. Chem. 275, 15895–15904 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Sugiyama, T. & Kowalczykowski, S. C. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J. Biol. Chem. 277, 31663–31672 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Krejci, L. et al. Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J. Biol. Chem. 277, 40132–40141 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Sugiyama, T., New, J. H. & Kowalczykowski, S. C. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl Acad. Sci. USA 95, 6049–6054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park, M. S., Ludwig, D. L., Stigger, E. & Lee, S. H. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J. Biol. Chem. 271, 18996–19000 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Yamaguchi-Iwai, Y. et al. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol. 18, 6430–6435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fujimori, A. et al. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J. 20, 5513–5520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Johnson, R. D. & Symington, L. S. Functional differences and interactions among the putative RecA homologues Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15, 4843–4850 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hays, S. L., Firmenich, A. A. & Berg, P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl Acad. Sci. USA 92, 6925–6929 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fortin, G. S. & Symington, L. S. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51–DNA complexes. EMBO J. 21, 3160–3170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Masson, J. Y. et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 15, 3296–3307 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schild, D., Lio, Y. C., Collins, D. W., Tsomondo, T. & Chen, D. J. Evidence for simultaneous protein interactions between human Rad51 paralogs. J. Biol. Chem. 275, 16443–16449 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Yonetani, Y. et al. Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res. 33, 4544–4552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodrigue, A. et al. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J. 25, 222–231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sigurdsson, S. et al. Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 15, 3308–3318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, Y., Masson, J. Y., Shah, R., O'Regan, P. & West, S. C. RAD51C is required for Holliday junction processing in mammalian cells. Science 303, 243–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature 386, 804–810 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, P. L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA 95, 5287–5292 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xia, F. et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl Acad. Sci. USA 98, 8644–8649 (2001). References 90 and 91 establish that HR requires BRCA2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRCA2. J. Biol. Chem. 272, 31941–31944 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297, 1837–1848 (2002). Describes crystal structures of several fragments of mouse BRCA2 and presents evidence for a DNA-binding function of this protein.

    Article  CAS  PubMed  Google Scholar 

  94. Kojic, M., Kostrub, C. F., Buchman, A. R. & Holloman, W. K. BRCA2 homologue required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 10, 683–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Sung, P. Mediating repair. Nature Struct. Mol. Biol. 12, 213–214 (2005).

    Article  CAS  Google Scholar 

  96. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Tsubouchi, H. & Roeder, G. S. The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168, 1219–1230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homologue Dmc1. Cell 119, 927–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Bishop, D. K. RecA homologues Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081–1092 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Siaud, N. et al. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J. 23, 1392–1401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dray, E., Siaud, N., Dubois, E. & Doutriaux, M. P. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol. 140, 1059–1069 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ferguson, D. O. & Alt, F. W. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20, 5572–5579 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Popescu, N. C. Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett. 192, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Richards, R. I. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet. 17, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Klein, H. L. A radical solution to death. Nature Genet. 25, 132–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). Presents evidence that BLM, the helicase that is mutated in Bloom's syndrome, cooperates with topoisomerase IIIα to dissolve the double HJ structure to yield exclusively non-crossover recombinants.

    Article  CAS  PubMed  Google Scholar 

  109. Klein, H. L. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157, 557–565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003). Shows that Srs2 and Sgs1 independently contribute to the suppression of crossover formation in mitotic DSBR by HR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72, 393–406 (1993).

    Article  CAS  Google Scholar 

  113. Ellis, N. A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995). Presents evidence that Bloom's syndrome is due to the inactivation of a protein that has extensive homology to the E. coli RecQ helicase.

    Article  CAS  PubMed  Google Scholar 

  114. Karow, J. K., Chakraverty, R. K. & Hickson, I. D. The Bloom's syndrome gene product is a 3′–5′ DNA helicase. J. Biol. Chem. 272, 30611–30614 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Chaganti, R. S., Schonberg, S. & German, J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc. Natl Acad. Sci. USA 71, 4508–4512 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rong, L. & Klein, H. L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Osman, F., Dixon, J., Barr, A. R. & Whitby, M. C. The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol. Cell. Biol. 25, 8084–8096 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Morishita, T. et al. Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol. Cell. Biol. 25, 8074–8083 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lawrence, C. W. & Christensen, R. B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139, 866–876 (1979).

    Article  CAS  Google Scholar 

  121. Schiestl, R. H., Prakash, S. & Prakash, L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124, 817–831 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aguilera, A. & Klein, H. L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rong, L., Palladino, F., Aguilera, A. & Klein, H. L. The hyper-gene conversion hpr5–1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127, 75–85 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaytor, M. D., Nguyen, M. & Livingston, D. M. The complexity of the interaction between RAD52 and SRS2. Genetics 140, 1441–1442 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Milne, G. T., Ho, T. & Weaver, D. T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139, 1189–1199 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schild, D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140, 115–127 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224–3234 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chanet, R., Heude, M., Adjiri, A., Maloisel, L. & Fabre, F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16, 4782–4789 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003). Together with reference 131, this paper documents the capability of Srs2 to dismantle the Rad51 presynaptic filament.

    Article  CAS  PubMed  Google Scholar 

  130. Krejci, L. et al. Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem. 279, 23193–23199 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005). Shows the recruitment of Srs2 to DNA replication forks via its association with SUMO-modified PCNA.

    Article  CAS  PubMed  Google Scholar 

  133. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005). Furnishes evidence that Srs2 binds SUMO-modified PCNA, and that this association is important for the prevention of unwanted recombination during S phase.

    Article  CAS  PubMed  Google Scholar 

  134. Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vaze, M. B. et al. Recovery from checkpoint- mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Y. & West, S. C. Happy Hollidays: 40th anniversary of the Holliday junction. Nature Rev. Mol. Cell Biol. 5, 937–944 (2004).

    Article  CAS  Google Scholar 

  137. Mankouri, H. W. & Hickson, I. D. Understanding the roles of RecQ helicases in the maintenance of genome integrity and suppression of tumorigenesis. Biochem. Soc. Trans. 32, 957–958 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Liberi, G. et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339–350 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu, L. et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc. Natl Acad. Sci. USA 103, 4068–4073 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Raynard, S., Bussen, W. & Sung, P. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIα, and BLAP75. J. Biol. Chem. 281, 13861–13864 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Rockmill, B., Fung, J. C., Branda, S. S. & Roeder, G. S. The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. Curr. Biol. 13, 1954–1962 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. McVey, M., Larocque, J. R., Adams, M. D. & Sekelsky, J. J. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl Acad. Sci. USA 101, 15694–15699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Adams, M. D., McVey, M. & Sekelsky, J. J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299, 265–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Nakagawa, T. & Ogawa, H. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J. 18, 5714–5723 (1999). Shows that the MER3 gene exerts crossover control in meiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nakagawa, T. & Kolodner, R. D. The MER3 DNA helicase catalyzes the unwinding of Holliday junctions. J. Biol. Chem. 277, 28019–28024 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Mazina, O. M., Mazin, A. V., Nakagawa, T., Kolodner, R. D. & Kowalczykowski, S. C. Saccharomyces cerevisiae Mer3 helicase stimulates 3′–5′ heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117, 47–56 (2004). Provides evidence that Mer3 helicase influences the activity of Rad51 recombinase in a manner that might promote crossover formation.

    Article  CAS  PubMed  Google Scholar 

  147. Paull, T. T., Cortez, D., Bowers, B., Elledge, S. J. & Gellert, M. Direct DNA binding by Brca1. Proc. Natl Acad. Sci. USA 98, 6086–6091 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hashizume, R. et al. The RING heterodimer BRCA1–-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Lee, M., Daniels, M. J. & Venkitaraman, A. R. Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 23, 865–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Lin, H. R., Ting, N. S., Qin, J. & Lee, W. H. M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P–CAF complex. J. Biol. Chem. 278, 35979–35987 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Marston, N. J. et al. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol. Cell. Biol. 19, 4633–4642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Schlacher, K. et al. DNA polymerase V and RecA protein, a minimal mutasome. Mol. Cell 17, 561–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol. 4, 712–720 (2003).

    Article  CAS  Google Scholar 

  155. Wesoly, J. et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol. Cell. Biol. 26, 976–989 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheok, C. F. et al. Roles of the Bloom's syndrome helicase in the maintenance of genome stability. Biochem. Soc. Trans. 33, 1456–1459 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Sehorn, M. G. & Sung, P. Meiotic recombination: an affair of two recombinases. Cell Cycle 3, 1375–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, Y. K. et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homologue juxtaposition and strand assimilation. Proc. Natl Acad. Sci. USA 101, 10572–10577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Petukhova, G. V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nature Struct. Mol. Biol. 12, 449–453 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Sehorn for providing the electron micrographs in Figure 4 and to J. San Filippo and W. Bussen for their help in preparing the figures. We apologize to colleagues whose work could not be cited because of space limitations. The studies in the laboratories of the authors have been supported by research grants from the US National Institutes of Health, the US Department of Defense and the Susan G. Komen Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hannah Klein's homepage

Patrick Sung's homepage

DNA repair genes

Human DNA repair genes

Glossary

Meiosis I

The successful completion of meiosis requires two cell divisions. Meiosis I refers to the first division in which the pairs of homologous chromosomes are segregated into the two daughter cells.

Fanconi anaemia

(FA). A genetically inherited anaemia that leads to bone marrow failure. Patients with FA are also susceptible to acute myelogenous leukaemia and squamous cell carcinomas in multiple organs. The disease is genetically complex.

Mating-type switching

Haploid S. cerevisiae cells can be of one of two mating types. Only cells of opposite mating types can mate to form a diploid. Cells can switch their mating type through an HR-dependent process.

Crossover

One of the possible outcomes of a physical exchange between duplex DNA molecules. Crossover can occur between sister chromatids or between the non-sister chromatids of a homologous pair of chromosomes. Crossover between non-sister chromatids results in new combinations of parental alleles on the crossover chromosomes.

DNA helicase

An enzyme that uses the energy from ATP hydrolysis to separate the two DNA strands in a double helix.

Post-replication DNA repair

A process that repairs gaps on newly replicated DNA using a DNA polymerase. The gaps usually occur opposite adducts or other lesions on the template strand. Post-replication repair fills in the gaps but does not remove the lesions from the template strand DNA.

Endonuclease

An enzyme that catalyses hydrolytic cleavage of DNA in the middle of a DNA strand or a double helix.

Chromatin immunoprecipitation

A technique for determining whether a protein binds to a particular region of the genome in vivo. It involves treating live cells with formaldehyde to form nonspecific crosslinks between the DNA and any associated proteins. The cells are then lysed, the genomic DNA is sheared into small fragments and the protein of interest is immunoprecipitated. Any protein-associated DNA is then removed and analysed by PCR.

Holliday junction

A cruciform DNA structure that is generated during the synaptic phase of homologous recombination. It is named after Robin Holliday, who proposed its existence in 1964.

Epistasis group

A group of genes that are most frequently defined by double-mutant analyses and function in the same biological pathway.

Orthologue

The structural and functional equivalent of a gene or protein in a different species.

Paralogue

A protein that shares some relatedness in sequence with another protein but not necessarily in function. Paralogues arise through gene duplication.

Loss of heterozygosity

(LOH). Loss of biallelic information at a gene or chromosome region through a number of events, including homologous recombination and deletions. LOH can reveal recessive mutations and is often associated with tumours.

DNA-damage checkpoint

A signal-transduction response that is triggered by DNA damage and that results in the arrest (or delay) of cell-cycle progression.

Translesion DNA polymerase

A specialized low-fidelity DNA polymerase that is capable of synthesizing past lesions in the DNA template.

Topoisomerase

An enzyme that removes torsional stress from double-stranded DNA by changing the DNA supercoiling. It accomplishes this goal by breaking and rejoining one, or both, of the DNA strands, thereby inserting or removing superhelical twists.

Hemicatenane

A DNA structure that forms when one strand of a DNA duplex is wound around a strand from another duplex DNA molecule. Newly replicated sister chromatids are thought to harbour hemicatenanes.

Ubiquitin ligase

An enzyme that facilitates the ligation of ubiquitin to target protein substrates by acting as an intermediary between a ubiquitin-conjugating enzyme and a substrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, P., Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7, 739–750 (2006). https://doi.org/10.1038/nrm2008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing