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33. Protein Import into Chloroplasts: an Outline of Early 
Events in the Translocation Pathway 

Heike Alefsen & Jürgen Soll 

Botanisches Institut der Christian-Albrechts-Universität, Olshausenstraße 40, 
D-24118Kiel, Germany 

Summary 

The import of cytoplasmically synthesized proteins into chloroplasts requires at least the 
interaction between the precursor protein and the import apparatus located in the plastidal 
envelope membranes. In this review we summarize the present knowledge of the events in 
which components of the plastid envelope membranes are directly involved, i.e. binding 
of the precursor to the organellar surface and translocation across the envelope membranes. 
The requirement of soluble cytosolic components for the import process is discussed. 
Furthermore we describe the import routes of proteins destined for the outer chloroplast 
envelope and compare it to that of polypeptides localized inside the plastid. 

Introduction 

The majority of the plastid proteins (1) among them most of the envelope proteins (2) are 
encoded by the nuclear genome. As a consequence, the biogenesis of chloroplasts requires 
the transport of the cytoplasmically synthesized polypeptides into the organelle. This 
involves a system of selective intracellular sorting and an efficient import machinery into 
or across the organellar membranes. In a general outline, chloroplast protein transport can 
be described by the following events: All imported chloroplast proteins are initially 
synthesized on cytosolic polysomes as higher molecular weight precursor proteins with 
positively charged amino-terminal presequences that have been shown to contain the 
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essential targeting information (3-5). The precursors are transferred from the cytosol to the 
organelle via a posttranslational mechanism. After recognition by proteinaceous receptors 
on the outer envelope membrane surface, the proteins are translocated into and across the 
envelope membranes. ATP hydrolysis is required at least at two distinct steps during the 
import pathway while a membrane potential necessary in mitochondrial protein transloca­
tion is not requisite in plastids (6, 7). Low concentrations (5-100 μΜ) ATP are required for 
binding (8), but higher concentrations (0,2-2 mM) to completely translocate the precursor 
protein into the plastid (9-12). Inside the organelle the N-terminal transit peptides are 
removed by a stromal processing protease. The proteins are sorted to their final subplastidal 
destination and i f required assembled to functional units (for details see 4, 5, 13 and 
references therein). Protein transport and routing inside the chloroplast have been reviewed 
in more detail in Schmidt and Mishkind (14), Lubben et al. (15), Mishkind and Scioli (16), 
Keegstra et al. (17), Smeekens et al. (13) and Joyard et al. (18). We will therefore focus on 
the description of the chloroplast envelope localized translocation process. 

Import competency of precursor proteins 

One main problem in protein transport consists of the mechanism by which large and maybe 
already partially folded polypeptides cross the hydrophobic environment of biological 
membranes. Considering that protein import into chloroplasts and mitochondria is a 
posttranslational event, at least some protein folding is likely to occur prior to the initiation 
of membrane transfer. Cytosolic factors should ensure formation or conservation of an 
import competent protein structure, since the specific penetration of tightly folded proteins 
through membranes seems improbable. 

Delia Cioppa and Kishore (19) could demonstrate that translocation of a tightly folded 
protein across the chloroplast envelopes is severely diminished. The import of the in-vitro 
synthesized chloroplast precursor 5-enolpyruvylshikimate-3-phosphate synthase 
(pEPSPS) into isolated chloroplasts was inhibited by the addition of its first substrate 
shikimate-3-phosphate and the competitive inhibitor and herbicide glyphosate instead of 
phosphoenolpyruvate. Thus the enzyme forms a stable ternary complex with the shikima-
te-3-phosphate and the herbicide that can not be translocated by the import machinery, 
whereas import of other precursor proteins was not hindered when both of the substrates 
were simultaneously present in the import assay. 

The involvement of cytosolic factors in mediating an import competent protein 
structure is suggested from experiments performed with the precursor of the major 
light-harvesting chlorophyll a/b binding protein (pLHCP) that was overexpressed in 
Escherichia coli. Waegemann et al. (20) showed that at least two cytoplasmic components 
present in pea leaf extracts are necessary for efficient translocation of the purified pLHCP 
after its denaturation and unfolding in 8 Μ urea. The presence of these cytosolic factors 
renders the precursor of this hydrophobic membrane protein more susceptible to protease 
treatment probably due to a less tightly folded polypeptide conformation. Purified hsc 70 
was also able to support the translocation of urea denatured pLHCP indicating the 
involvement of molecular chaperones of the hsc 70 familiy in this process (20) which 
corresponds with the findings that members of the hsp 70 family appear to facilitate 
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transport of proteins into different organelles by retarding the spontaneous folding process 
of the polypeptides by a so far incomplete understood mechanism which requires ATP 
hydrolysis (for recent reviews see 21-23). On the other hand cytosolic factors did not seem 
to be necessary for protein import of purified ferredoxin precursor, pFD, (24, 25) or 
plastocyanin precursor, pPC, (26) in isolated chloroplasts in vitro. Both proteins were taken 
up by the chloroplasts after dilution of the urea denatured proteins into the import mixture. 
It is unknown at present how these divergent results obtained in vitro reflect the in vivo 
situation. Maybe chaperones are required by all precursor proteins however at different 
times during the translocation process, e.g. in the cytosol or at the envelope. In fact hsp 70 
homologues have been found to exist inside the chloroplast as well as in the chloroplast 
envelope of higher plants (27) and Euglena gracilis (28). 

Binding of precursor proteins to the organellar surface 

Once proteins are targeted towards the chloroplast they must interact with the plastid 
envelope which consists of rather closely spaced outer and inner membranes, separated by 
the intermembrane space. Productive binding of the precursor to the receptor requires ATP 
hydrolysis. ATP concentrations between 1-100 μΜ have been determined to support 
binding to isolated organelles (8), right-side-out envelope vesicles (29) and the isolated 
import apparatus (30). 

In order to identify the sites of precursor binding we used immunogold labelling with 
a chimeric protein composed of the E. coli outer membrane protein A (ompA) and the 
presequence of the small subunit of ribulose-bisphosphate-carboxylase-oxygenase (pS). 
As seen on electron micrographs (Fig. 1 a and b), the precursor polypeptides (pSompA) 
are confined to certain distinct sites in the membrane. When chloroplasts were shrunken 
in hypertonic medium after labelling and before fixation the bound precursors are located 
at areas where the two envelope membranes are closely apposed indicating that both 
membranes might be contracted by the translocating precursor proteins. 

Chloroplast import is proposed to be initiated by binding of the precursor polypeptides 
to proteinaceous receptors of the outer membrane because protease treatment of intact 
organelles (31) or right-side-out envelope vesicles (29) reduces binding of precursor 
polypeptides drastically. A limited amount of 1500-3500 binding sites per chloroplast was 
determined by Pfisterer et al. (32) using isolated envelope membranes, and by Friedman 
and Keegstra (33) using isolated intact chloroplasts. Precursor binding is a high affinity 
interaction with a dissociation constant of 6-10 nM. Competition studies carried out with 
synthetic transit peptides indicate that all precursor proteins examined so far use the same 
receptor species for binding. Peptides, homologue to parts of the pSSU transit sequence 
with a length of 20-30 amino acids inhibited binding with rather low affinities, i.e. between 
2-40 μΜ peptide were necessary for 50 % inhibition (34, 35). Perry et al. (36) report that 
synthetic peptides corresponding to the central region of the pSSU transit sequence inhibit 
binding of authentic precursor proteins (pSSU, pLHCP, pFD and pPC), while peptides 
representing either the N - or C- terminal end of the pSSU transit peptide have little or no 
effect on binding but drastically reduce the translocation process. However, the obvious 
disadvantage of this approach is that these peptides represent only part of the transit 
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peptides, and it remains to be investigated if the properties of the entire chloroplast targeting 
domain can be understood simply as the sum of the properties of its constituent fragments. 
Experiments using purified pPC as authentic precursor polypeptides demonstrated that a 
10-100 fold lower concentration was necessary for efficient competition of pPC, pSSU and 
pFD than in the case of synthetic peptides (26). 

Fig.l. Distribution of binding sites on the chloroplast surface. Precursor proteins (pSompA) were 
bound to the chloroplast surface, and after reisolation of the organelles the bound precursor 
polypeptides were visualized by labelling with antibodies (anti-ompA) and protein A- gold (as 
indicated by arrows). Prior to fixation chloroplasts were shrunken in hypertonic buffer to separate 
outer and inner envelope membranes in some extent and reveal that protein binding sites are 
concentrated at distinct membrane contact sites. (A) magnification 112000 χ, (B) magnification 
Π 7000 x. 

Components of the translocation apparatus 

The mechanism by which precursor proteins translocate the envelope membranes involves 
a number of as yet unidentified components. Different approaches have been used to 
identify polypeptides involved in the import process including: proteolytic digestion of the 
outer envelope membranes, chemical crosslinking studies, phosphorylation, use of synthe­
tic peptides and solubilization of envelope membranes. Cornwell and Keegstra (37) used 
a heterobifunctional, photoactivatable crosslinking reagent to identify a 66 kDa chloroplast 
surface protein that was associated with pSSU binding, minor crosslink products were 
found at 25,57 and 60 kDa (molecular weight (MW) data result after substracting the M W 
of the crosslinked precursor). In a comparable approach Kaderbhai et al. (38) observed 
similar crosslink products of 52 kDa (most likely the large subunit of Rubisco) and two 



33. Protein Import into Chloroplasts 335 

crosslink conjugates with inner envelope proteins of 30 kDa and 60 kDa. An entirely 
different approach was taken by Pain et al. (39), who raised antibodies against antibodies 
directed against a synthetic transit peptide of pea pSSU. These antiidiotypic antibodies 
which should mimick the binding properties of the transit peptide were shown to inhibit 
protein transport and reacted with a protease sensitive protein on the surface of intact 
chloroplast at regions where inner and outer membrane are in contact as also observed in 
our immunogold labelling experiment (Fig. 1). In western blotting experiments the antii­
diotypic antibodies reacted with a 52 kDa protein present in the stromal compartment, 
representing the large subunit of Rubisco and the major 30 kDa envelope protein that was 
suggested to be the import receptor and an integral chloroplast envelope membrane protein. 
However, the major 30 kDa polypeptide in the envelope membrane is known to be the 
phosphate translocator (40). Schnell et al. (41) subsequently reported the isolation of a full 
length cDNA clone of their 30 kDa protein that was found to be very homologue to the 
phosphate translocator protein from spinach and identical to that from pea (42, 43). The 
authors therefore concluded that this 30 kDa envelope membrane protein serves as the 
import receptor for pSSU and not as the phosphate translocator. Their studies raise a series 
of questions as discussed by Joyard and Douce (44), Flügge et al. (45), de Boer and 
Weisbeek (5), Soll and Alefsen (46). It seems therefore likely that the protein import 
receptor remains yet to be identified. 

Probably more than one protein is necessary for binding to and translocation across 
the envelope. For example a 51 kDa protein has also been implicated to be a component 
of the receptor complex since an increase in phosphorylation of this protease sensitive outer 
envelope protein was observed during precursor binding (47). 

Recently it was demonstrated that it is possible to isolate a membrane complex loaded 
with pSSU from purified outer chloroplast envelopes (29,30). After incubation with pSSU 
translation product and reisolation the outer envelope vesicles were solubilized by digitonin 
and subjected to fractionation on a linear sucrose gradient. The pSSU containing membrane 
complex consists of about 10 outer envelope polypeptides (MW 86, 75, 72, 64, 54, 52,42, 
34 kDa and minor components) which were identified either by molecular weight or 
immunological methods. Using the reverse order, an isolated membrane complex was 
subjected to binding assays and shown to be able to recognize pSSU in an ATP, protease 
sensitive and transit sequence dependent manner. Furthermore, translocation intermediates 
detected in chloroplasts were also found after interaction of the precursor polypeptide with 
the isolated import complex. It seems therefore possible to isolate large parts of the protein 
translocation apparatus from chloroplasts as a functional unit which is active in recognition 
and insertion of precursor polypeptides. 

In addition to the proteinaceous components described above, envelope bound heat-
shock proteins (27) and envelope membrane lipids (48) are proposed to be involved in the 
translocation process. A possible function of lipids in the import process can be assumed 
easily because envelope membranes have a unique lipid composition, containing high 
amounts of the phospholipids phosphatidylcholine and phosphatidyglycerol as well as the 
specific chloroplast galactolipids, monogalactosyldiacylglycerol and digalactosyldiacyl-
glycerol and the sulpholipid, sulphoquinovosyldiacylglycerol. Recently Van't Hof et al. 
(48) reported that fragments representing different parts of the transit peptide of pSSU 
interact specifically with lipids typically present in the outer chloroplast envelope, indica­
ting that transit peptide-lipid interactions could play a certain role in a productive chloro-
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plast protein import pathway. In contrary Endo et al. (49) showed that the chloroplast-tar-
geting domain of PC transit peptide has only low affinity for lipid bilayers consisting of 
galactolipids and phospholipids to mimick the lipid composition of chloroplast envelope 
membranes, but can form a helical structure in a hydrophobic environment. Since the PC 
transit peptide consists of the N-terminal positively charged hydrophilic chloroplast-targe-
ting domain and the C-terminal hydrophobic thylakoid-transfer domain they suggest that 
the first interaction of pPC with the chloroplast surface might be mediated by the thylakoid 
transfer domain at the C-terminal part of the transit sequence. Subsequently the chloro-
plast-targeting domain might form a helical structure which in turn could be recognized by 
receptor proteins located at the chloroplast surface, thus indicating a conformation media­
ting influence of the lipid bilayers. 

Furthermore Kerber and Soil (50) demonstrated that hydrolysis of phosphatidylcho­
line by phospholipase C (PLC) treatment inhibited almost completely import of the 
precursor protein into the organelle (Fig. 2, upper panel). At which step PLC blocks the 
translocation process was determined by carrying out the import assays under conditions 
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Fig. 2. Schematic representation of the effect of phospholipase C (PLC) treatment of intact 
chloroplasts on the interaction with pSSU under import and binding conditions, respectively. 
1. Untreated and PLC-pretreated chloroplasts were incubated with precursor proteins under import 
conditions, a. import control, b. import into PLC-pretreated organelles. II. Precursor proteins were 
bound to untreated and PLC-pretreated chloroplasts. a. binding control, b. binding to PLC-pretreated 
organelles. Membrane located translocation events: binding to (1), translocation through (2) and 
release (3) of the precursor protein from the translocation machinery (tm). Blocks in the translocation 
pathway are indicated by the crossed out arrows, hindrance is indicated by arrows in dashed lines. 
Om, outer envelope membrane, im, inner envelope membrane, tm, translocation machinery, r, 
receptor. 
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which allowed binding but not import, e.g. chloroplasts incubated with pSSU in the dark 
and in the presence of 10 μΜ ATP. In control experiments these conditions led to partial 
precursor insertion into the import apparatus which could be detected as protease-protected 
translocation intermediates after thermolysin digestion. Identical binding assays with 
PLC-pretreated chloroplasts however, did not provide any translocation intermediates 
while binding to the chloroplast surface was nearly as efficient as in control binding. These 
data indicate (50) that hydrolysis of phosphatidylcholine inhibits precursor protein trans­
location at a step after binding but before insertion into the import machinery (compare 
Fig. 2, panel I I a and b) and give rise to the supposition that phosphatidylcholine is an 
essential constituent of the translocation complex described by Soil and Waegemann (30). 

Additionally the isolated import complex (29) and the outer envelope membranes (27, 
51) do contain hsc 70 homologues which could play a role in the translocation event. Von 
Heijne and Nishikawa (52) propose that chloroplast transit peptides are essentially devoid 
of regular secondary or tertiary motifs and that such unfolded structures are favorable for 
guidance of chaperones operating at different steps of the chloroplast protein import 
pathway. This may partially argue against the findings of Endo et al. (50). Supplementary 
members of the hsp 60 family, collectively termed chaperonin 60 (cpn 60) were identified 
in the chloroplast stroma (53) where they assist the folding and assembly of both imported 
and organellar synthesized proteins and only recently a cpn 10 protein was found in 
chloroplasts from pea and spinach that is functional as co-chaperonin in Rubisco folding 
(54). 

Protein routing into the envelope membranes 

The chloroplast envelope consists of rather closely spaced outer and inner membranes, 
separated by an intermembrane space. So far only little is known about import of proteins 
into the envelope membranes and due to a lack of authentic proteins nothing is known about 
transfer into the intermembrane space. So far only two inner envelope proteins have been 
cloned and their import behaviour has been analysed (42, 55). Like typical polypeptides 
destined for the inside of the organelle they possess cleavable target sequences, which are 
recognized by proteinaceous receptors on the organellar surface and require ATP for 
binding and transport into the inner envelope membrane. Obvious differences in the 
structure of the transit peptides, i.e. the ability to form an amphiphilic α-helix (43) and the 
absence of a ß-strand domain typical for internal chloroplast proteins (56), suggest that 
certain details of the import mechanism are significantly distinct between stromal or 
thylakoid proteins and envelope proteins, respectively. Insertion of outer envelope proteins 
again differentiates strikingly from import of those destined for the inner plastid compart­
ments. The three proteins studied so far, i.e. a 6,7 kDa spinach protein (57), a 14 kDa pea 
protein (58) and a hsp 70 spinach protein (51), do not possess a cleavable target sequence, 
do not require protease sensitive receptors on the organellar surface and do not require ATP 
for either binding or insertion into the outer envelope. Thus, several distinct uptake 
processes may exist, not only within the plant cell, but probably also within the chloroplast 
(59). 
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