Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic antibodies for autoimmunity and inflammation

Key Points

  • First-generation therapeutic antibodies have provided valuable lessons. A large number of therapeutic antibodies using diverse platforms have provided valuable insights into the strengths and limitations of each technology platform.

  • The mechanisms by which therapeutic antibodies mediate their functions are diverse.

  • Therapeutic antibodies operate through distinct mechanisms of action that affect their pharmacodynamic properties and biological activities.

  • Effector function modifications can be used to optimize desired activities of a therapeutic antibody.

  • Increased and decreased binding affinities to Fc receptors for IgG (FcγRs), complement components and neonatal FcR can be used to optimize desired activities of therapeutic antibodies.

  • Bispecific and multispecific antibodies enhance therapeutic applications.

  • The development of multi-antigen-binding therapeutic antibodies enhances their therapeutic potential.

Abstract

The development of therapeutic antibodies has evolved over the past decade into a mainstay of therapeutic options for patients with autoimmune and inflammatory diseases. Substantial advances in understanding the biology of human diseases have been made and tremendous benefit to patients has been gained with the first generation of therapeutic antibodies. The lessons learnt from these antibodies have provided the foundation for the discovery and development of future therapeutic antibodies. Here we review how key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibodies with promise for greater clinical efficacy and safety.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering IgG structure and function.
Figure 2: Mechanisms of action of therapeutic antibodies.
Figure 3: Modular IgG architecture supports numerous bispecific antibody formats.

Similar content being viewed by others

References

  1. Reichert, J. M. Antibodies to watch in 2010. mAbs 2, 28–45 (2010). An excellent overview of therapeutic antibodies in Phase III clinical trials and beyond.

    Article  Google Scholar 

  2. Scolnik, P. A. mAbs a business perspective. mAbs 1, 179–184 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  PubMed  Google Scholar 

  4. Almagro, J. C. & Fransson, J. Humanization of antibodies. Front. Biosci. 13, 1619–1633 (2008).

    CAS  PubMed  Google Scholar 

  5. Reichert, J. M. Monoclonal antibodies as innovative therapeutics. Curr. Pharm. Biotechnol. 9, 423–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lonberg, N. Fully human antibodies from transgenic mouse and phage display platforms. Curr. Opin. Immunol. 20, 450–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mondon, P., Dubreuil, O., Bouayadi, K. & Kharrat, H. Human antibody libraries: a race to engineer and explore a larger diversity. Front. Biosci. 13, 1117–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Parren, P. W. & van de Winkel, J. G. An integrated science-based approach to drug development. Curr. Opin. Immunol. 20, 426–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kelley, B. Industralization of mAb production technology. The bioprocess industry at a crossroads. mAbs 1, 443–452 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carter, P. J. Potent antibody therapeutics by design. Nature Rev. Immunol. 6, 343–357 (2006).

    Article  CAS  Google Scholar 

  11. Kubota, T. et al. Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 100, 1566–1572 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Presta, L. G. Molecular engineering and design of therapeutic antibodies. Curr. Opin. Immunol. 20, 460–470 (2008). References 11 and 12 provide a detailed summary of Fc engineering to enhance ADCC and CDC activity of IgG, as well as to extend serum half-life.

    Article  CAS  PubMed  Google Scholar 

  13. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn's disease. Crohn's Disease cA2 Study Group. N. Engl. J. Med. 337, 1029–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hanauer, S. B. et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet 359, 1541–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Vultaggio, A. et al. Anti-infliximab IgE and non-IgE antibodies and induction of infusion-related severe anaphylactic reactions. Allergy 27 Nov 2009 (doi: 10.1111/j.1398-9995.2009.02280.x).

    Article  CAS  PubMed  Google Scholar 

  18. Radstake, T. R. et al. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 68, 1739–1745 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bartelds, G. M. et al. Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann. Rheum. Dis. 66, 921–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emery, P. et al. Golimumab, a human anti-tumor necrosis factor α monoclonal antibody, injected subcutaneously every four weeks in methotrexate-naive patients with active rheumatoid arthritis: twenty-four-week results of a phase III, multicenter, randomized, double-blind, placebo-controlled study of golimumab before methotrexate as first-line therapy for early-onset rheumatoid arthritis. Arthritis Rheum. 60, 2272–2283 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Lugering, A. et al. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway. Gastroenterol. 121, 1145–1157 (2001).

    Article  CAS  Google Scholar 

  23. Scallon, B. J., Moore, M. A., Trinh, H., Knight, D. M. & Ghrayeb, J. Chimeric anti-TNF-α momoclonal cA2 binds recombinant transmembrane TNF-α and activates immune effector functions. Cytokine 7, 251–259 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Van den Brande, J. M. et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterol. 124, 1774–1785 (2003).

    Article  CAS  Google Scholar 

  25. Fossati, G. & Nesbitt, A. M. Effect of the anti-TNF agents, adalimumab, etanercept, infliximab, and certolizumab PEGOL (CDP870) on the induction of apoptosis in activated peripheral blood lymphocytes and monocytes. Am. J. Gastroenterol. 100, S298–S299 (2005).

    Google Scholar 

  26. Sandborn, W. J. et al. Certolizumab pegol for the treatment of Crohn's disease. N. Engl. J. Med. 357, 228–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber, S. et al. Maintenance therapy with certolizumab pegol for Crohn's disease. N. Engl. J. Med. 357, 239–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hawkins, P. N., Lachmann, H. J., Aganna, E. & McDermott, M. F. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 50, 607–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lachmann, H. J. et al. In vivo regulation of interleukin 1β in patients with cryopyrin-associated periodic syndromes. J. Exp. Med. 206, 1029–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Sandborn, W. J. et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterol. 135, 1130–1141 (2008).

    Article  CAS  Google Scholar 

  33. Guttman-Yassky, E. et al. Blockade of CD11a by efalizumab in psoriasis patients induces a unique state of T-cell hyporesponsiveness. J. Invest. Dermatol. 128, 1182–1191 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bousquet, J. et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy 60, 302–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Beck, L. A., Marcotte, G. V., MacGlashan, D., Togias, A. & Saini, S. Omalizumab-induced reductions in mast cell Fcɛ RI expression and function. J. Allergy Clin. Immunol. 114, 527–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. MacGlashan D. W. Jr et al. Down-regulation of FcɛRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol. 158, 1438–1445 (1997).

    CAS  PubMed  Google Scholar 

  37. Prussin, C. et al. Omalizumab treatment downregulates dendritic cell FcɛRI expression. J. Allergy Clin. Immunol. 112, 1147–1154 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. MacGlashan, D. W. Jr. Endocytosis, recycling, and degradation of unoccupied FcɛRI in human basophils. J. Leukoc. Biol. 82, 1003–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Blume, J. W., Kiratseavee, S. & Sands, M. F. Resolution of angioedema with omalizumab. J. Allergy Clin. Immunol. 119, S274 (2007).

    Article  Google Scholar 

  40. Gober, L. M., Sterba, P. M., Eckman, J. A. & Saini, S. S. Effect of anti-IgE (omalizumab) in chronic idiopathic urticaria (CIU) patients. J. Allergy Clin. Immunol. 121, S147 (2008).

    Article  Google Scholar 

  41. Shapiro, C. A., Kapatanos, N. S. & Sarmiento, E. Successful treatment of chronic idiopathic urticaria and angioedema (CIU) with Xolair (omalizumab). J. Allergy Clin. Immunol. 119, S274 (2007).

    Article  Google Scholar 

  42. Eckman, J. A., Hamilton, R. G., Gober, L. M., Sterba, P. M. & Saini, S. S. Basophil phenotypes in chronic idiopathic urticaria in relation to disease activity and autoantibodies. J. Investig. Dermatol. 128, 1956–1963 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ferrer, M., Kinet, J. P. & Kaplan, A. P. Comparative studies of functional and binding assays for IgG anti-FcɛR1α (α-subunit) in chronic urticaria. J. Allergy Clin. Immunol. 101, 672–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Coles, A. J. et al. Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  PubMed  Google Scholar 

  47. Genovese, M. C. et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum. 58, 2652–2661 (2008).

    Article  PubMed  Google Scholar 

  48. Jacobi, A. M. et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann. Rheum. Dis. 67, 450–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Golay, J. et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 98, 3383–3389 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Gong, Q. et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 174, 817–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Minard-Colin, V. et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcγRI, FcγRIII, and FcγRIV. Blood 112, 1205–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Natsume, A., Shimizu-Yokoyama, Y., Satoh, M., Shitara, K. & Niwa, R. Engineered anti-CD20 antibodies with enhanced complement-activating capacity mediate potent anti-lymphoma activity. Cancer Sci. 100, 2411–2418 (2009).

    CAS  Google Scholar 

  53. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002). This paper was the first to show an association between responsiveness to antibody therapy and a polymorphism in the gene encoding FcγRIII in patients, which strongly implicates an Fc or FcγR-mediated mechanism, such as ADCC, in the antitumour activity of rituximab.

    Article  CAS  PubMed  Google Scholar 

  54. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Anolik, J. H. et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 48, 455–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, N. A. et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood 113, 3773–3780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olejniczak, S. H., Stewart, C. C., Donohue, K. & Czuczman, M. S. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol. Invest. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. van Meerten, T., van Rijn, R. S., Hol, S., Hagenbeek, A. & Ebeling, S. B. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin. Cancer Res. 12, 4027–4035 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171, 1581–1587 (2003).

    CAS  PubMed  Google Scholar 

  60. Weng, W. K. & Levy, R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 98, 1352–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kavanaugh, A. et al. Assessment of rituximab's immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Walsh, C. A., Fearon, U., FitzGerald, O., Veale, D. J. & Bresnihan, B. Decreased CD20 expression in rheumatoid arthritis synovium following 8 weeks of rituximab therapy. Clin. Exp. Rheumatol. 26, 656–658 (2008).

    CAS  PubMed  Google Scholar 

  63. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, S. L. Ten years of orthoclone OKT3 (muromonab–CD3): a review. J. Transplant. Coord. 6, 109–121 (1996).

    Article  CAS  Google Scholar 

  65. Norman, D. J., Chatenoud, L., Cohen, D., Goldman, M. & Shield, C. F. Consensus statement regarding OKT3-induced cytokine-release syndrome and human antimouse antibodies. Transplant. Proc. 25, 89–92 (1993).

    CAS  PubMed  Google Scholar 

  66. Chatenoud, L. Anti-CD3 antibodies: towards clinical antigen-specific immunomodulation. Curr. Opin. Pharmacol. 4, 403–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Wiczling, P., Rosenzweig, M., Vaickus, L. & Jusko, W. J. Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J. Clin. Pharmacol. 23 Nov 2009 (doi:10.1177/0091270009349376).

    Article  CAS  PubMed  Google Scholar 

  68. Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala–Ala). J. Clin. Invest. 111, 409–418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bisikirska, B., Colgan, J., Luban, J., Bluestone, J. A. & Herold, K. C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 115, 2904–2913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nelson, A. L. & Reichert, J. M. Development trends for therapeutic antibody fragments. Nature Biotechnol. 27, 331–337 (2009).

    Article  CAS  Google Scholar 

  71. Labrijn, A. F., Aalberse, R. C. & Schuurman, J. When binding is enough: nonactivating antibody formats. Curr. Opin. Immunol. 20, 479–485 (2008). A comprehensive review of alternative strategies to generate antibodies that have minimized effector functions and that do not activate their targets.

    Article  CAS  PubMed  Google Scholar 

  72. Alegre, M. L. et al. A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57, 1537–1543 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1(Ala–Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Bolt, S. et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 23, 403–411 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Salfeld, J. G. Isotype selection in antibody engineering. Nature Biotechnol. 25, 1369–1372 (2007).

    Article  CAS  Google Scholar 

  76. van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007). This article shows that IgG4 can exchange Fab arms in vivo to form bispecific antibodies, and it identifies mutations for preventing this exchange.

    Article  CAS  Google Scholar 

  77. Jefferis, R. Antibody therapeutics: isotype and glycoform selection. Expert Opin. Biol. Ther. 7, 1401–1413 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Reddy, M. P. et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J. Immunol. 164, 1925–1933 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nature Biotechnol. 25, 1256–1264 (2007).

    Article  CAS  Google Scholar 

  81. Davis, P. M., Abraham, R., Xu, L., Nadler, S. G. & Suchard, S. J. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J. Rheumatol. 34, 2204–2210 (2007).

    CAS  PubMed  Google Scholar 

  82. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. & Foeller, C. Sequences of Proteins of Immunological Interest 5th edn (US National Institutes of Health, Bethesda, 1991).

    Google Scholar 

  83. Choy, E. H. et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatol. (Oxford) 41, 1133–1137 (2002).

    Article  CAS  Google Scholar 

  84. Teeling, J. L. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104, 1793–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591–6604 (2001). A detailed mutational mapping of human IgG1 Fc for FcγRs and FcRn. Fc variants described include ones that improve binding to FcγRIIIA and enhance ADCC.

    Article  CAS  PubMed  Google Scholar 

  86. Stavenhagen, J. B. et al. Enhancing the potency of therapeutic monoclonal antibodies via Fc optimization. Adv. Enzyme Regul. 48, 152–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006). The paper shows a broadly applicable Fc protein engineering strategy, used to create variants of several approved therapeutic antibodies with 100-fold more potent ADCC properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Richards, J. O. et al. Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 7, 2517–2527 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Jung, S. T. et al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proc. Natl Acad. Sci. USA 107, 604–609 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nature Rev. Drug Discov. 8, 226–234 (2009).

    Article  CAS  Google Scholar 

  91. Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nature Biotechnol. 17, 176–180 (1999). This is the first example of the alteration of the glycosylation of an Fc to enhance ADCC activity of IgG.

    Article  Google Scholar 

  92. Shields, R. L. et al. Lack of fucose on human IgG1 N.-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003). A detailed analysis of the influence of Fc glycans on the ability of a humanized antibody to support ADCC, showing that the absence of fucose has the most important role in enhancing ADCC.

    Article  CAS  PubMed  Google Scholar 

  94. Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87, 614–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Iida, S. et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin. Cancer Res. 12, 2879–2887 (2006). This paper shows a broadly applicable Fc glyco-engineering strategy used to create variants of rituximab and trastuzumab with 100-fold more potent ADCC activity. Non-fucosylated IgG1, unlike fucosylated counterparts, largely evade the inhibitory effect of plasma IgG on ADCC.

    Article  CAS  PubMed  Google Scholar 

  96. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nature Biotechnol. 24, 210–215 (2006).

    Article  CAS  Google Scholar 

  97. Idusogie, E. E. et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 164, 4178–4184 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Idusogie, E. E. et al. Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571–2575 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Dall'Acqua, W. F., Cook, K. E., Damschroder, M. M., Woods, R. M. & Wu, H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J. Immunol. 177, 1129–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Natsume, A. et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res. 68, 3863–3872 (2008). This article describes a potent enhancement of CDC activity of IgG using a IgG1–IgG3 hybrid isotype.

    Article  CAS  PubMed  Google Scholar 

  101. Vugmeyster, Y. et al. Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J. Immunother. 28, 212–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Genovese, M. C. et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum. 58, 2652–2661 (2008).

    Article  PubMed  Google Scholar 

  103. Mössner, E. et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct- and immune effector cell-mediated B-cell cytotoxicity. Blood 1 Mar 2010 (doi:10.1182/blood-2009-06-225979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reed, J. L. et al. MEDI-563, a humanized anti-IL-5Ra antibody with enhanced effector function, induces reversible blood eosinopenia in mild asthmatics. J. Allergy Clin. Immunol. Abstr. 121, S47. (2009).

    Article  Google Scholar 

  105. Beers, S. A. et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112, 4170–4177 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Ivanov, A. et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J. Clin. Invest. 119, 2143–2159 (2009). This manuscript describes a newly discovered mechanism for type II CD20-specific antibodies.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lobo, E. D., Hansen, R. J. & Balthasar, J. P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93, 2645–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nature Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  109. Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghetie, V. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nature Biotechnol. 15, 637–640 (1997). This is the first demonstration of extended serum half-life of an IgG owing to engineering the Fc region for higher affinity binding to FcRn.

    Article  CAS  Google Scholar 

  111. Hinton, P. R. et al. Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279, 6213–6216 (2004). This is the first demonstration of extended serum half-life of an IgG in non-human primates owing to Fc engineering to strengthen binding to FcRn, while maintaining pH-dependence of interaction.

    Article  CAS  PubMed  Google Scholar 

  112. Hinton, P. R. et al. An engineered human IgG1 antibody with longer serum half-life. J. Immunol. 176, 346–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Datta-Mannan, A., Witcher, D. R., Tang, Y., Watkins, J. & Wroblewski, V. J. Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J. Biol. Chem. 282, 1709–1717 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Dall'Acqua, W. F., Kiener, P. A. & Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Oganesyan, V. et al. Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol. Immunol. 46, 1750–1755 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Zalevsky, J. et al. Enhanced antibody half-life improves in vivo activity. Nature Biotechnol. 28, 157–159 (2010). This paper was the first to show that antibodies engineered for extended half-life can have enhanced efficacy in preclinical animal models.

    Article  CAS  Google Scholar 

  117. Vaccaro, C., Bawdon, R., Wanjie, S., Ober, R. J. & Ward, E. S. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc. Natl Acad. Sci. USA 103, 18709–18714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Petkova, S. B. et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int. Immunol. 18, 1759–1769 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Dall'Acqua, W. F. et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J. Immunol. 169, 5171–5180 (2002).

    Article  PubMed  Google Scholar 

  120. Vaccaro, C., Zhou, J., Ober, R. J. & Ward, E. S. Engineering the Fc region of immunoglobulin G. to modulate in vivo antibody levels. Nature Biotechnol. 23, 1283–1288 (2005).

    Article  CAS  Google Scholar 

  121. Kenanova, V. et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv–Fc antibody fragments. Cancer Res. 65, 622–631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chapman, A. P. et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nature Biotechnol. 17, 780–783 (1999).

    Article  CAS  Google Scholar 

  123. Veronese, F. M. & Mero, A. The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Yeh, P. et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc. Natl Acad. Sci. USA 89, 1904–1908 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Capon, D. J. et al. Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525–531 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nature Biotechnol. 27, 1186–1190 (2009).

    Article  CAS  Google Scholar 

  127. Dennis, M. S. et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Holliger, P., Wing, M., Pound, J. D., Bohlen, H. & Winter, G. Retargeting serum immunoglobulin with bispecific diabodies. Nature Biotechnol. 15, 632–636 (1997).

    Article  CAS  Google Scholar 

  129. Elliott, S. et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature Biotechnol. 21, 414–421 (2003).

    Article  CAS  Google Scholar 

  130. Carter, P. J. & Senter, P. D. Antibody-drug conjugates for cancer therapy. Cancer J. 14, 154–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Baeuerle, P. A. & Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Chames, P. & Baty, D. Bispecific antibodies for cancer therapy. Curr. Opin. Drug Discov. Devel. 12, 276–283 (2009).

    CAS  PubMed  Google Scholar 

  133. Marvin, J. S. & Zhu, Z. Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol. Sin. 26, 649–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Nisonoff, A. & Mandy, W. J. Quantitative estimation of the hybridization of rabbit antibodies. Nature 194, 355–359 (1962).

    Article  CAS  PubMed  Google Scholar 

  135. Kontermann, R. E. Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol. Sin. 26, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Staerz, U. D., Kanagawa, O. & Bevan, M. J. Hybrid antibodies can target sites for attack by T cells. Nature 314, 628–631 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Lu, D. et al. Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res. 61, 7002–7008 (2001).

    CAS  PubMed  Google Scholar 

  139. Lu, D. et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J. Biol. Chem. 280, 19665–19672 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Lu, D. et al. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J. Biol. Chem. 279, 2856–2865 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Bostrom, J. et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610–1614 (2009). This report describes how a 'two-in-one' antibody generated by phage display can bind either HER2 or VEGF with high affinity and inhibit tumour progression in mouse models. This is potentially broadly applicable to other antibodies and antigens.

    Article  CAS  PubMed  Google Scholar 

  142. Genovese, T. et al. Treatment with a novel poly(ADP-ribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice. Crit. Care Med. 32, 1365–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Weinblatt, M. et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann. Rheum. Dis. 66, 228–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Arend, W. P., Palmer, G. & Gabay, C. IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev. 223, 20–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. van den Berg, W. B., Joosten, L. A., Helsen, M. & van de Loo, F. A. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin. Exp. Immunol. 95, 237–243 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNFα, anti-IL-1α/β, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, C. et al. Molecular construction and optimization of anti-human IL-1α/β dual variable domain immunoglobulin (DVD-IgTM) molecules. mAbs 1, 339–347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wu, C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nature Biotechnol. 25, 1290–1297 (2007). This article was the first to describe a potentially broadly applicable bispecific antibody format (DVD-IgG), which was shown to simultaneously neutralize pairs of pro-inflammatory cytokines. A DVD-IgG binding IL-1α and IL-1β has similar in vivo potency to a combination of the two monospecific IgG molecules from which it was derived.

    Article  CAS  Google Scholar 

  149. Louten, J., Boniface, K. & de Waal Malefyt, R. Development and function of TH17 cells in health and disease. J. Allergy Clin. Immunol. 123, 1004–1011 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Mabry, R. et al. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng. Des. Sel. 23, 115–127 (2009). This report identifies bispecific antibodies that potently neutralize both IL-17A and IL-23 with good stability and pharmacokinetic properties. These bispecific antibodies have potential use for the treatment of allergic diseases mediated by T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  151. Connelly, R. J. et al. Mitogenic properties of a bispecific single-chain Fv–Ig fusion generated from CD2-specific mAb to distinct epitopes. Int. Immunol. 10, 1863–1872 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Jendreyko, N. et al. Intradiabodies, bispecific, tetravalent antibodies for the simultaneous functional knockout of two cell surface receptors. J. Biol. Chem. 278, 47812–47819 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Coloma, M. J. & Morrison, S. L. Design and production of novel tetravalent bispecific antibodies. Nature Biotechnol. 15, 159–163 (1997).

    Article  CAS  Google Scholar 

  154. Holliger, P. & Winter, G. Engineering bispecific antibodies. Curr. Opin. Biotechnol. 4, 446–449 (1993).

    Article  CAS  PubMed  Google Scholar 

  155. Petereit, H. F. & Rubbert-Roth, A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult. Scler. 15, 189–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Bird, R. E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  157. Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Holliger, P., Prospero, T. & Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA 90, 6444–6448 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saerens, D., Ghassabeh, G. H. & Muyldermans, S. Single-domain antibodies as building blocks for novel therapeutics. Curr. Opin. Pharmacol. 8, 600–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Milstein, C. & Cuello, A. C. Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540 (1983).

    Article  CAS  PubMed  Google Scholar 

  161. Suresh, M. R., Cuello, A. C. & Milstein, C. Bispecific monoclonal antibodies from hybrid hybridomas. Methods Enzymol. 121, 210–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  162. Merchant, A. M. et al. An efficient route to human bispecific IgG. Nature Biotechnol. 16, 677–681 (1998). This paper describes the first efficient and broadly applicable method for preparing bispecific human IgG potentially suitable for human therapy.

    Article  CAS  Google Scholar 

  163. Isaacs, J. D. Antibody engineering to develop new antirheumatic therapies. Arthritis Res. Ther. 11, 225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Oganesyan, V., Gao, C., Shirinian, L., Wu, H & Dall'Acqua, W. F. Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr. D Biol. Crystallogr. 64, 700–704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Weiner, L. M., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Rev. Immunol. 10, 317–327 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

A.C.C. and P.J.C. are employees of Genentech, Inc.

Related links

Related links

FURTHER INFORMATION

Andrew C. Chan's homepage

Pipeline Review: Top 20 biologics 2008

Glossary

Effector functions

Fc-mediated antibody properties that are involved in target cell destruction: antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC).

Half-life

The time taken for the plasma concentration of a drug to fall to half of its original value. Initial half-life and terminal half-life refer to the first (distribution) and second (elimination) phase for bi-exponential pharmacokinetics, respectively.

Phage display

Technology for displaying a protein, such as an antibody fragment, on the surface of a bacteriophage that contains the gene (or genes) encoding the displayed protein (or proteins), thereby physically linking the genotype and phenotype.

Binding affinity

For two interacting molecules this is the ratio of their association (ka) and dissociation (kd) rate constants: Kd = kd ÷ ka.

Neonatal FcR

(FcRn). An Fc receptor that is structually related to MHC class I molecules and protects IgG from degradation, resulting in long serum half-life. Additionally, FcRn mediates IgG transfer from a mother to her fetus, thereby providing passive immunity.

Immunoadhesin

A fusion protein that combines the functional domain of a binding protein, such as a receptor or ligand, with an immunoglobulin Fc domain. Such Fc fusion proteins can endow binding proteins with antibody-like properties including long serum half-life and effector functions.

Human anti-chimeric antibodies

(HACAs). The immune system can develop an antibody response to chimeric antibodies. Binding of HACAs to chimeric antibodies forms immune complexes that can shorten the half-life of the therapeutic antibodies and compromise clinical effectiveness. Additionally these immune complexes can deposit in organs such as skin and kidney causing adverse events, including rashes and glomerulonephritis.

Human anti-human antibodies

(HAHAs). The immune system can also develop an immune response to human therapeutic antibodies. HAHAs tend to be less common and less severe than HACAs.

Bispecific antibodies

Antibodies capable of binding to two different antigens or two distinct epitiopes on the same antigen are known as bispecific.

Exposure

In the pharmacokinetic sense, the area under the curve for a plot of drug concentration versus time.

Valency

For antibodies, including bispecific antibodies, the number of binding sites for each cognate antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A., Carter, P. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10, 301–316 (2010). https://doi.org/10.1038/nri2761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing