Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasome activation and function in liver disease

Key Points

  • Inflammasomes are multiprotein complexes that assemble upon the sensing of danger signals and initiate the release of proinflammatory cytokines IL-1β and IL-18 via caspase-1 activation

  • By responding to low-threshold signals, the inflammasome is able to fine-tune the inflammatory response

  • The balance between a healthy inflammatory response and chronic damage is delicate and several inflammasomes, such as NLRP3, NLRP6 and AIM2, also have a role in liver diseases

  • Among other diseases, inflammasome activation contributes to alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia–reperfusion injury, paracetamol-induced liver injury and liver fibrosis

Abstract

Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia–reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammasomes involved in liver diseases.
Figure 2: Domain organization of inflammasome proteins.
Figure 3: The role of inflammasomes in liver diseases.
Figure 4: Inflammasomes as systems integrators in low-signal liver diseases.

Similar content being viewed by others

References

  1. Janeway, C. A., Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, Y. Caught red-handed: uric acid is an agent of inflammation. J. Clin. Invest. 120, 1809–1811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Chassaing, B., Etienne-Mesmin, L. & Gewirtz, A. T. Microbiota-liver axis in hepatic disease. Hepatology 59, 328–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Schwabe, R. F., Seki, E. & Brenner, D. A. Toll-like receptor signaling in the liver. Gastroenterology 130, 1886–1900 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, B. et al. Innate immunity in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G516–G525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szabo, G., Dolganiuc, A. & Mandrekar, P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology 44, 287–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Warren, S. E. et al. Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2. J. Immunol. 185, 818–821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Szabo, G. & Csak, T. Inflammasomes in liver diseases. J. Hepatol. 57, 642–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrasek, J. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476–3489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139, 323–334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Rock, K. L., Kataoka, H. & Lai, J. J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 9, 13–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Csak, T. et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54, 133–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsuzaka, T. et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology 56, 2199–2208 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shulga, N. & Pastorino, J. G. Hexokinase II binding to mitochondria is necessary for Kupffer cell activation and is potentiated by ethanol exposure. J. Biol. Chem. 289, 26213–26225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petrasek, J., Dolganiuc, A., Csak, T., Kurt-Jones, E. A. & Szabo, G. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology 140, 697–708.e4 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Granowitz, E. V., Vannier, E., Poutsiaka, D. D. & Dinarello, C. A. Effect of interleukin-1 (IL-1) blockade on cytokine synthesis: II. IL-1 receptor antagonist inhibits lipopolysaccharide-induced cytokine synthesis by human monocytes. Blood 79, 2364–2369 (1992).

    CAS  PubMed  Google Scholar 

  29. Granowitz, E. V., Clark, B. D., Vannier, E., Callahan, M. V. & Dinarello, C. A. Effect of interleukin-1 (IL-1) blockade on cytokine synthesis: I. IL-1 receptor antagonist inhibits IL-1-induced cytokine synthesis and blocks the binding of IL-1 to its type II receptor on human monocytes. Blood 79, 2356–2363 (1992).

    CAS  PubMed  Google Scholar 

  30. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Mehal, W. & Imaeda, A. Cell death and fibrogenesis. Semin. Liver Dis. 30, 226–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cosgrove, B. D. et al. An inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to tumor necrosis factor-α. Hepatology 48, 276–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dinarello, C. A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Davis, B. K., Wen, H. & Ting, J. P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guma, M. et al. Caspase 1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1β. Arthritis Rheum. 60, 3651–3662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greten, F. R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mayer-Barber, K. D. et al. Caspase-1 independent IL-1β production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fantuzzi, G. et al. Response to local inflammation of IL-1 beta-converting enzyme- deficient mice. J. Immunol. 158, 1818–1824 (1997).

    CAS  PubMed  Google Scholar 

  41. Coeshott, C. et al. Converting enzyme-independent release of tumor necrosis factor α and IL-1β from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc. Natl Acad. Sci. USA 96, 6261–6266 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Dinarello, C. A. Interleukin-18, a proinflammatory cytokine. Eur. Cytokine Netw. 11, 483–486 (2000).

    CAS  PubMed  Google Scholar 

  44. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Serti, E. et al. Monocytes activate natural killer cells via inflammasome-induced interleukin 18 in response to hepatitis C virus replication. Gastroenterology 147, 209–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arshad, M. I., Piquet-Pellorce, C. & Samson, M. IL-33 and HMGB1 alarmins: sensors of cellular death and their involvement in liver pathology. Liver Int. 32, 1200–1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Villarreal, D. O. & Weiner, D. B. Interleukin 33: a switch-hitting cytokine. Curr. Opin. Immunol. 28, 102–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA 104, 282–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Luzina, I. G. et al. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion. J. Immunol. 189, 403–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Volarevic, V. et al. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J. Hepatol. 56, 26–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Marvie, P. et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J. Cell. Mol. Med. 14, 1726–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Yin, H. et al. Pretreatment with soluble ST2 reduces warm hepatic ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 351, 940–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Amatucci, A. et al. Recombinant ST2 boosts hepatic Th2 response in vivo. J. Leukoc. Biol. 82, 124–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl Acad. Sci. USA 107, 18581–18586 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Csak, T. et al. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34, 1402–1413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Latz, E. The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ioannou, G. N. et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid Res. 56, 277–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  Google Scholar 

  67. Kim, H. Y., Kim, S. J. & Lee, S. M. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J. 282, 259–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  Google Scholar 

  69. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 β production. Nat. Immunol. 11, 63–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Lozano-Ruiz, B. et al. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. J. Hepatol. 62, 64–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett. 530, 73–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Anand, P. K. et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186, 7187–7194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108, 9601–9606 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, G. Y. Role of Nlrp6 and Nlrp12 in the maintenance of intestinal homeostasis. Eur. J. Immunol. 44, 321–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Shea, R. S., Dasarathy, S., McCullough, A. J., Practice Guideline Committee of the American Association for the Study of Liver, D. & Practice Parameters Committee of the American College of, G. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    Article  PubMed  Google Scholar 

  82. Mandrekar, P. & Szabo, G. Signalling pathways in alcohol-induced liver inflammation. J. Hepatol. 50, 1258–1266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng, Y., French, B. A., Tillman, B., Morgan, T. R. & French, S. W. The inflammasome in alcoholic hepatitis: Its relationship with Mallory-Denk body formation. Exp. Mol. Pathol. 97, 305–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McClain, C. J. et al. Serum interleukin-1 (IL-1) activity in alcoholic hepatitis. Life Sci. 39, 1479–1485 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao, J. et al. Lycium barbarum polysaccharide attenuates alcoholic cellular injury through TXNIP-NLRP3 inflammasome pathway. Int. J. Biol. Macromol. 69, 73–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Clemens, D. L. Use of cultured cells to study alcohol metabolism. Alcohol Res. Health 29, 291–295 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Szabo, G. Gut–liver axis in alcoholic liver disease. Gastroenterology 148, 30–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Inokuchi, S. et al. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin. Exp. Res. 35, 1509–1518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoek, J. B., Cahill, A. & Pastorino, J. G. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122, 2049–2063 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lieber, C. S., Jones, D. P., Losowsky, M. S. & Davidson, C. S. Interrelation of uric acid and ethanol metabolism in man. J. Clin. Invest. 41, 1863–1870 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stiburkova, B., Pavlikova, M., Sokolova, J. & Kozich, V. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS ONE 9, e97646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrasek J. et al. Metabolic danger signals, uric acid and ATP mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. http://dx.doi.org/10.1189/jlb.3AB1214-590R.

  94. Kono, H. et al. Allopurinol prevents early alcohol-induced liver injury in rats. J. Pharmacol. Exp. Ther. 293, 296–303 (2000).

    CAS  PubMed  Google Scholar 

  95. Ge, X. et al. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J. Biol. Chem. 289, 22672–22691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu, M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Xu, J. et al. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. 21, 1229–1239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ganz, M. & Szabo, G. Immune and inflammatory pathways in NASH. Hepatol. Int. 7, 771–781 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mehal, W. Z. The inflammasome in liver injury and non-alcoholic fatty liver disease. Dig. Dis. 32, 507–515 (2014).

    Article  PubMed  Google Scholar 

  100. Lamkanfi, M. & Kanneganti, T. D. The inflammasome: a remote control for metabolic syndrome. Cell Res. 22, 1095–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J. & Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 105, 141–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, H. M. et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62, 194–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ganz, M., Csak, T. & Szabo, G. High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World J. Gastroenterol. 20, 8525–8534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wree, A. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. (Berl.) 92, 1069–1082 (2014).

    Article  CAS  Google Scholar 

  107. Mehal, W. Z. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 637–644 (2013).

    Article  PubMed  Google Scholar 

  108. Pan, J. J. & Fallon, M. B. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol. 6, 274–283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Csak, T. et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G433–G441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Petrasek, J., Csak, T., Ganz, M. & Szabo, G. Differences in innate immune signaling between alcoholic and non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 28, 93–98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Messina, J. P. et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61, 77–87 (2015).

    Article  PubMed  Google Scholar 

  112. Saha, B. & Szabo, G. Innate immune cell networking in hepatitis C virus infection. J. Leukoc. Biol. 96, 757–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Heim, M. H. Innate immunity and HCV. J. Hepatol. 58, 564–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Dolganiuc, A. et al. Viral and host factors induce macrophage activation and loss of toll-like receptor tolerance in chronic HCV infection. Gastroenterology 133, 1627–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chattergoon, M. A. et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog. 10, e1004082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, W. et al. HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells. PLoS ONE 9, e84953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Burdette, D. et al. Hepatitis C virus activates interleukin-1β via caspase-1-inflammasome complex. J. Gen. Virol. 93, 235–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jaeschke, H., Williams, C. D., Ramachandran, A. & Bajt, M. L. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 32, 8–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. McGill, M. R. et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest. 122, 1574–1583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McGill, M. R. et al. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology 60, 1336–1345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Williams, C. D., Koerner, M. R., Lampe, J. N., Farhood, A. & Jaeschke, H. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol. Appl. Pharmacol. 257, 449–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jaeschke, H., Williams, C. D. & Farhood, A. No evidence for caspase-dependent apoptosis in acetaminophen hepatotoxicity. Hepatology 53, 718–719 (2011).

    Article  PubMed  Google Scholar 

  123. Williams, C. D., Farhood, A. & Jaeschke, H. Role of caspase-1 and interleukin-1β in acetaminophen-induced hepatic inflammation and liver injury. Toxicol. Appl. Pharmacol. 247, 169–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sander, L. E. & Blander, J. M. Inflammasome and toll-like receptor 9: Partners in crime in toxic liver injury. Hepatology 49, 2119–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Hoque, R. et al. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1171–G1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, C. D. et al. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol. Appl. Pharmacol. 252, 289–297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kataoka, H., Kono, H., Patel, Z. & Rock, K. L. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS ONE 9, e104741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kono, H., Chen, C. J., Ontiveros, F. & Rock, K. L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest. 120, 1939–1949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Antoniades, C. G. et al. Secretory leukocyte protease inhibitor: a pivotal mediator of anti-inflammatory responses in acetaminophen-induced acute liver failure. Hepatology 59, 1564–1576 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Abu-Amara, M. et al. Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl. 16, 1016–1032 (2010).

    Article  PubMed  Google Scholar 

  132. Weigand, K. et al. Ischemia/Reperfusion injury in liver surgery and transplantation: pathophysiology. HPB Surg. 2012, 176723 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhai, Y., Petrowsky, H., Hong, J. C., Busuttil, R. W. & Kupiec-Weglinski, J. W. Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 10, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Jaeschke, H. Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. J. Gastroenterol. Hepatol. 26, 173–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Gabrielli, M. et al. Steatotic livers. Can. we use them in OLTX? Outcome data from a prospective baseline liver biopsy study. Ann. Hepatol. 11, 891–898 (2012).

    Article  PubMed  Google Scholar 

  136. Farrell, G. C., Teoh, N. C. & McCuskey, R. S. Hepatic microcirculation in fatty liver disease. Anat. Rec. (Hoboken) 291, 684–692 (2008).

    Article  Google Scholar 

  137. DuBray, B. J. Jr. et al. BH3-only proteins contribute to steatotic liver ischemia-reperfusion injury. J. Surg. Res. 194, 653–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhu, P. et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum. Gene Ther. 22, 853–864 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, H. et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J. Immunol. 191, 2665–2679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kamo, N. et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 58, 351–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shimizu, S. et al. Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes. Am. J. Physiol. 271, G949–G958 (1996).

    CAS  PubMed  Google Scholar 

  142. Shito, M. et al. Interleukin 1 receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia-reperfusion in the rat. Transplantation 63, 143–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Harada, H. et al. Transfer of the interleukin-1 receptor antagonist gene into rat liver abrogates hepatic ischemia-reperfusion injury. Transplantation 74, 1434–1441 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Takeuchi, D. et al. Interleukin 18 causes hepatic ischemia/reperfusion injury by suppressing anti-inflammatory cytokine expression in mice. Hepatology 39, 699–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Inoue, Y. et al. NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes. J. Immunol. 192, 4342–4351 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Watanabe, A. et al. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1248–G1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ouyang, X., Ghani, A. & Mehal, W. Z. Inflammasome biology in fibrogenesis. Biochim. Biophys. Acta 1832, 979–988 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Weiskirchen, R. & Tacke, F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 3, 344–363 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Khan, F., Peltekian, K. M. & Peterson, T. C. Effect of interferon-α, ribavirin, pentoxifylline, and interleukin-18 antibody on hepatitis C sera-stimulated hepatic stellate cell proliferation. J. Interferon Cytokine Res. 28, 643–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Gieling, R. G., Wallace, K. & Han, Y. P. Interleukin-1 participates in the progression from liver injury to fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1324–G1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Roos, B. et al. Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 9, 3244–3256 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Kamari, Y. et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J. Hepatol. 55, 1086–1094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Isoda, K. et al. Deficiency of interleukin-1 receptor antagonist deteriorates fatty liver and cholesterol metabolism in hypercholesterolemic mice. J. Biol. Chem. 280, 7002–7009 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Dixon, L. J., Flask, C. A., Papouchado, B. G., Feldstein, A. E. & Nagy, L. E. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS ONE 8, e56100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Samstad, E. O. et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837–2845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wen, H., Ting, J. P. & O'Neill, L. A. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat. Immunol. 13, 352–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ganz, M., Csak, T., Nath, B. & Szabo, G. Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J. Gastroenterol. 17, 4772–4778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Petrasek, J. et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Purohit, V. et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol 42, 349–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Neuman, M. G. et al. Mechanisms of alcoholic liver disease: cytokines. Alcohol Clin. Exp. Res. 25, 251S–253S (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Cohen, J. I., Roychowdhury, S., McMullen, M. R., Stavitsky, A. B. & Nagy, L. E. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology 139, 664–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roychowdhury, S. et al. An early complement-dependent and TLR-4-independent phase in the pathogenesis of ethanol-induced liver injury in mice. Hepatology 49, 1326–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sherlock, S. Liver disease in women. Alcohol, autoimmunity, and gallstones. West. J. Med. 149, 683–686 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Stranges, S. et al. Differential effects of alcohol drinking pattern on liver enzymes in men and women. Alcohol Clin. Exp. Res. 28, 949–956 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Hatton, J. et al. Drinking patterns, dependency and life-time drinking history in alcohol-related liver disease. Addiction 104, 587–592 (2009).

    Article  PubMed  Google Scholar 

  168. Askgaard, G. et al. Alcohol drinking pattern and risk of alcoholic liver cirrhosis: a prospective cohort study. J. Hepatol. 62, 1061–1067 (2015).

    Article  PubMed  Google Scholar 

  169. Csak, T. et al. Mitochondrial antiviral signaling protein defect links impaired antiviral response and liver injury in steatohepatitis in mice. Hepatology 53, 1917–1931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kohli, R. et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52, 934–944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Linton, S. D. et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J. Med. Chem. 48, 6779–6782 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Shiffman, M. L. et al. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor—a randomized placebo-controlled study in patients with chronic hepatitis, C. Aliment. Pharmacol. Ther. 31, 969–978 (2010).

    CAS  PubMed  Google Scholar 

  175. Baskin-Bey, E. S. et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am. J. Transplant 7, 218–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Pockros, P. J. et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis, C. Hepatology 46, 324–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. MacKenzie, S. H., Schipper, J. L. & Clark, A. C. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 13, 568–576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Church, L. D. & McDermott, M. F. Canakinumab, a fully-human mAb against IL-1β for the potential treatment of inflammatory disorders. Curr. Opin. Mol. Ther. 11, 81–89 (2009).

    CAS  PubMed  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  180. Mandrup-Poulsen, T., Pickersgill, L. & Donath, M. Y. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Howard, C. et al. Safety and tolerability of canakinumab, an IL-1β inhibitor, in type 2 diabetes mellitus patients: a pooled analysis of three randomised double-blind studies. Cardiovasc. Diabetol. 13, 94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Callus, B. A. & Vaux, D. L. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 14, 73–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bhaskaracharya, A. et al. Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism. PLoS ONE 9, e93058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, S. J. & Lim, Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 63, 693–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Ambade, A., Catalano, D., Lim, A. & Mandrekar, P. Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55, 1585–1595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Staun-Olsen, P., Bjorneboe, M., Prytz, H., Thomsen, A. C. & Orskov, F. Escherichia coli antibodies in alcoholic liver disease. Correlation to alcohol consumption, alcoholic hepatitis, and serum IgA. Scand. J. Gastroenterol. 18, 889–896 (1983).

    Article  CAS  PubMed  Google Scholar 

  190. Petrasek, J., Csak, T. & Szabo, G. Toll-like receptors in liver disease. Adv. Clin. Chem. 59, 155–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Bala, S., Marcos, M., Gattu, A., Catalano, D. & Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 9, e96864 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bode, C. et al. Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. Int. Immunopharmacol. 18, 27–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Li, P. et al. Mice deficient in IL-1 β-converting enzyme are defective in production of mature IL-1 β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  195. McGill, M. R. et al. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans. Biomarkers 19, 222–230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams, C. D. et al. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol. Appl. Pharmacol. 275, 122–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. McGill, M. R. et al. Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Arch. Toxicol. 88, 391–401 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.S. made substantial contributions to discussion of content and reviewed/edited the manuscript before submission. Both authors contributed equally to researching and writing the article.

Corresponding author

Correspondence to Gyongyi Szabo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabo, G., Petrasek, J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12, 387–400 (2015). https://doi.org/10.1038/nrgastro.2015.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing