Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The '–omics' revolution and oesophageal adenocarcinoma

Key Points

  • The majority of patients with oesophageal adenocarcinoma (OAC) undergoing surgery with curative intent will relapse and eventually succumb to their disease

  • The presence of Barrett oesophagus is a risk factor for developing OAC, although patients at the highest risk of developing OAC need to be identified

  • So-called –omics studies have provided novel insights into OAC biology, identifying recurrent mutations and mutational signatures important in disease pathogenesis

  • Controversy over the aetiology of gastro-oesophageal junctional tumours remains, but so-called –omics studies are providing resources to begin to subclassify this disease

  • Nearly half of OACs have a potential actionable mutation; clinical trials using targeted therapies are in their infancy and initial experiences have been disappointing, supporting the need for more accurate molecular stratification

  • Advances in molecular assays applied to nonendoscopic cell collection devices and blood-based biomarkers might enable noninvasive diagnosis of OAC, as well as monitoring response to different treatment regimes

Abstract

Oesophageal adenocarcinoma (OAC) is the eighth most common cancer type worldwide with a dismal 5-year survival. Barrett oesophagus, the replacement of the normal squamous epithelia with glandular cells, is the first step in the pathway towards OAC. Although most patients with OAC present de novo, the presence of the easily detectable OAC precursor lesion, Barrett oesophagus, enables the possibility of early detection of high-risk patients who are more likely to progress. Currently, identification of high-risk patients depends on histopathological assessment of dysplasia with no regards to molecular pathogenesis. In the future, screening and risk stratification initiatives for Barrett oesophagus that incorporate molecular profiles might permit improved early diagnosis and intervention strategies with the possibility of preventing OAC. For the majority of patients presenting de novo at an advanced stage, combining so-called –omics datasets with current clinical staging algorithms might enable OACs to be better classified according to distinct molecular programmes, thereby leading to better targeted treatment strategies as well as cancer monitoring regimes. This Review discusses how the latest advances in –omics technologies have improved our understanding of the development and biology of OAC, and how this development might alter patient management in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current clinical management pathway for OAC.
Figure 2: Illustrations of the different –omics technologies.
Figure 3: Proposed –omics-based management algorithms for Barrett oesophagus and OAC.

Similar content being viewed by others

References

  1. Pohl, H., Sirovich, B. & Welch, H. G. Esophageal adenocarcinoma incidence: are we reaching the peak? Cancer Epidemiol. Biomarkers Prev. 19, 1468–1470 (2010).

    PubMed  Google Scholar 

  2. van Hagen, P. et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 366, 2074–2084 (2012).

    CAS  PubMed  Google Scholar 

  3. Lagergren, J., Bergstrom, R., Lindgren, A. & Nyren, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med. 340, 825–831 (1999).

    CAS  PubMed  Google Scholar 

  4. Chandrasoma, P., Wickramasinghe, K., Ma, Y. & DeMeester, T. Is intestinal metaplasia a necessary precursor lesion for adenocarcinomas of the distal esophagus, gastroesophageal junction and gastric cardia? Dis. Esophagus 20, 36–41 (2007).

    CAS  PubMed  Google Scholar 

  5. Rudiger Siewert, J., Feith, M., Werner, M. & Stein, H. J. Adenocarcinoma of the esophagogastric junction: results of surgical therapy based on anatomical/topographic classification in 1,002 consecutive patients. Ann. Surg. 232, 353–361 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Demicco, E. G. et al. The dichotomy in carcinogenesis of the distal esophagus and esophagogastric junction: intestinal-type vs cardiac-type mucosa-associated adenocarcinoma. Mod. Pathol. 24, 1177–1190 (2011).

    PubMed  Google Scholar 

  7. Derakhshan, M. H. et al. Combination of gastric atrophy, reflux symptoms and histological subtype indicates two distinct aetiologies of gastric cardia cancer. Gut 57, 298–305 (2008).

    CAS  PubMed  Google Scholar 

  8. Lagergren, J. & Lagergren, P. Oesophageal cancer. BMJ 341, c6280 (2010).

    PubMed  Google Scholar 

  9. Su, Z. et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nat. Genet. 44, 1131–1136 (2012).

    CAS  PubMed  Google Scholar 

  10. Kadri, S. R. et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett's oesophagus in primary care: cohort study. BMJ 341, c4372 (2010).

    PubMed Central  PubMed  Google Scholar 

  11. Cancer Prevention Trials Unit. BEST2. Cancer Prevention Trials Unit [online], (2013).

  12. Hvid-Jensen, F., Pedersen, L., Drewes, A. M., Sorensen, H. T. & Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett's esophagus. N. Engl. J. Med. 365, 1375–1383 (2011).

    CAS  PubMed  Google Scholar 

  13. Bhat, S. et al. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. J. Natl Cancer Inst. 103, 1049–1057 (2011).

    PubMed Central  PubMed  Google Scholar 

  14. Kerkhof, M. et al. Grading of dysplasia in Barrett's oesophagus: substantial interobserver variation between general and gastrointestinal pathologists. Histopathology 50, 920–927 (2007).

    CAS  PubMed  Google Scholar 

  15. Curvers, W. L. et al. Low-grade dysplasia in Barrett's esophagus: overdiagnosed and underestimated. Am. J. Gastroenterol. 105, 1523–1530 (2010).

    PubMed  Google Scholar 

  16. Varghese, S., Lao-Sirieix, P. & Fitzgerald, R. C. Identification and clinical implementation of biomarkers for Barrett's esophagus. Gastroenterology 142, 435–441 (2012).

    PubMed  Google Scholar 

  17. Selaru, F. M. et al. Beyond field effect: analysis of shrunken centroids in normal esophageal epithelia detects concomitant esophageal adenocarcinoma. Bioinform. Biol. Insights 1, 127–136 (2007).

    PubMed  Google Scholar 

  18. Prasad, G. A., Bansal, A., Sharma, P. & Wang, K. K. Predictors of progression in Barrett's esophagus: current knowledge and future directions. Am. J. Gastroenterol. 105, 1490–1502 (2010).

    PubMed Central  PubMed  Google Scholar 

  19. Dunn, J. M. et al. Image cytometry accurately detects DNA ploidy abnormalities and predicts late relapse to high-grade dysplasia and adenocarcinoma in Barrett's oesophagus following photodynamic therapy. Br. J. Cancer 102, 1608–1617 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

    CAS  PubMed  Google Scholar 

  22. Duan, J., Zhang, J. G., Deng, H. W. & Wang, Y. P. Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS ONE 8, e59128 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111ra121 (2011).

    PubMed Central  PubMed  Google Scholar 

  24. Akagi, T. et al. Chromosomal abnormalities and novel disease-related regions in progression from Barrett's esophagus to esophageal adenocarcinoma. Int. J. Cancer 125, 2349–2359 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Walch, A. K. et al. Chromosomal imbalances in Barrett's adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am. J. Pathol. 156, 555–566 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lai, L. A. et al. Increasing genomic instability during premalignant neoplastic progression revealed through high resolution array-CGH. Genes Chromosomes Cancer 46, 532–542 (2007).

    CAS  PubMed  Google Scholar 

  27. Paulson, T. G. et al. Chromosomal instability and copy number alterations in Barrett's esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 15, 3305–3314 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Brankley, S. M. et al. The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett's esophagus. J. Mol. Diagn. 8, 260–267 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Falk, G. W. et al. Fluorescence in situ hybridization of cytologic specimens from Barrett's esophagus: a pilot feasibility study. Gastrointest. Endosc. 60, 280–284 (2004).

    PubMed  Google Scholar 

  30. Rygiel, A. M. et al. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett's esophagus. Cancer Epidemiol. Biomarkers Prev. 17, 1380–1385 (2008).

    CAS  PubMed  Google Scholar 

  31. Agrawal, N. et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2, 899–905 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Eads, C. A. et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 61, 3410–3418 (2001).

    CAS  PubMed  Google Scholar 

  33. Alvi, M. A. et al. DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett's esophagus. Clin. Cancer Res. 19, 878–888 (2013).

    CAS  PubMed  Google Scholar 

  34. Agarwal, A. et al. Role of epigenetic alterations in the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma. Int. J. Clin. Exp. Pathol. 5, 382–396 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Wu, W. et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 144, 956–966 (2013).

    CAS  PubMed  Google Scholar 

  36. Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, E32 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Agarwal, R. et al. Epigenomic program of Barrett's-associated neoplastic progression reveals possible involvement of insulin signaling pathways. Endocr. Relat Cancer 19, L5–L9 (2012).

    PubMed Central  PubMed  Google Scholar 

  38. Schulmann, K. et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 24, 4138–4148 (2005).

    CAS  PubMed  Google Scholar 

  39. Group, E. S. An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet 341, 1359–1362 (1993).

    Google Scholar 

  40. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yang, L. et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 137, 588–597 (2009).

    PubMed  Google Scholar 

  42. Fillon, S. A. et al. Novel device to sample the esophageal microbiome--the esophageal string test. PLoS ONE 7, e42938 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang, J. et al. Differential gene expression in normal esophagus and Barrett's esophagus. J. Gastroenterol. 44, 897–911 (2009).

    CAS  PubMed  Google Scholar 

  45. Xu, Y. et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res. 62, 3493–3497 (2002).

    CAS  PubMed  Google Scholar 

  46. Peters, C. J. et al. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology 139, 1995–2004 (2010).

    CAS  PubMed  Google Scholar 

  47. Kim, S. M. et al. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS ONE 5, e15074 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kimchi, E. T. et al. Progression of Barrett's metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res. 65, 3146–3154 (2005).

    CAS  PubMed  Google Scholar 

  49. Nancarrow, D. J. et al. Whole genome expression array profiling highlights differences in mucosal defense genes in Barrett's esophagus and esophageal adenocarcinoma. PLoS ONE 6, e22513 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hao, Y. et al. Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. Gastroenterology 131, 925–933 (2006).

    CAS  PubMed  Google Scholar 

  51. Hammoud, Z. T. et al. Differential gene expression profiling of esophageal adenocarcinoma. J. Thorac. Cardiovasc. Surg. 137, 829–834 (2009).

    CAS  PubMed  Google Scholar 

  52. Albrecht, B. et al. Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett's adenocarcinoma. J. Pathol. 203, 780–788 (2004).

    CAS  PubMed  Google Scholar 

  53. Nancarrow, D. J. et al. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 68, 4163–4172 (2008).

    CAS  PubMed  Google Scholar 

  54. Gu, J. et al. Genome-wide catalogue of chromosomal aberrations in barrett's esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev. Res. (Phila) 3, 1176–1186 (2010).

    CAS  Google Scholar 

  55. Weaver, J. M. J. et al. OC-008 Defining the genetic landscape of oesopahgeal adenocarcinoma by next-generation sequencing. Gut 61 (Suppl. 2), A3–A4 (2012).

    Google Scholar 

  56. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4393 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Streppel, M. M. et al. Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene http://dx.doi.org/10.1038/onc.2012.586.

  59. Schneider, P. M. et al. Mutations of p53 in Barrett's esophagus and Barrett's cancer: a prospective study of ninety-eight cases. J. Thorac. Cardiovasc. Surg. 111, 323–331; discussion 331–333 (1996).

    CAS  PubMed  Google Scholar 

  60. Barrett, M. T. et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat. Genet. 22, 106–109 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    CAS  PubMed  Google Scholar 

  63. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    CAS  PubMed  Google Scholar 

  64. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Wertheimer, E. et al. Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal. 24, 353–362 (2012).

    CAS  PubMed  Google Scholar 

  66. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  67. TCGA. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  68. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. International Cancer Genome Consortium. Esophageal cancer - esophageal adenocarcinoma. International Cancer Genome Consortium [online], (2013).

  72. National Cancer Institute. The Cancer Genome Atlas [online], (2013).

  73. Ong, C. A. et al. Three-gene immunohistochemical panel adds to clinical staging algorithms to predict prognosis for patients with esophageal adenocarcinoma. J. Clin. Oncol. 31, 1576–1582 (2013).

    PubMed Central  PubMed  Google Scholar 

  74. Schauer, M. et al. Microarray-based response prediction in esophageal adenocarcinoma. Clin. Cancer Res. 16, 330–337 (2010).

    CAS  PubMed  Google Scholar 

  75. Lagarde, S. M. et al. Analysis of gene expression identifies differentially expressed genes and pathways associated with lymphatic dissemination in patients with adenocarcinoma of the esophagus. Ann. Surg. Oncol. 15, 3459–3470 (2008).

    CAS  PubMed  Google Scholar 

  76. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    PubMed Central  PubMed  Google Scholar 

  77. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    CAS  PubMed  Google Scholar 

  78. Goh, X. Y. et al. Integrative analysis of array-comparative genomic hybridisation and matched gene expression profiling data reveals novel genes with prognostic significance in oesophageal adenocarcinoma. Gut 60, 1317–1326 (2011).

    CAS  PubMed  Google Scholar 

  79. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    CAS  PubMed  Google Scholar 

  81. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Alvarez, H. et al. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet. 7, e1001356 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Parameswaran, R. et al. Assessment and comparison of recovery after open and minimally invasive esophagectomy for cancer: an exploratory study in two centers. Ann. Surg. Oncol. 20, 1970–1977 (2013).

    CAS  PubMed  Google Scholar 

  84. Chau, I. et al. The impact of primary tumour origins in patients with advanced oesophageal, oesophago-gastric junction and gastric adenocarcinoma—individual patient data from 1775 patients in four randomised controlled trials. Ann. Oncol. 20, 885–891 (2009).

    CAS  PubMed  Google Scholar 

  85. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    CAS  PubMed  Google Scholar 

  86. Nagarajan, N. et al. Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol. 13, R115 (2012).

    PubMed Central  PubMed  Google Scholar 

  87. Hainsworth, J. D. et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute. J. Clin. Oncol. 31, 217–223 (2013).

    CAS  PubMed  Google Scholar 

  88. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Paterson, A. L. et al. Characterization of the timing and prevalence of receptor tyrosine kinase expression changes in oesophageal carcinogenesis. J. Pathol. 230, 118–128 (2013).

    CAS  PubMed  Google Scholar 

  90. Ferry, D. R. et al. A phase II study of gefitinib monotherapy in advanced esophageal adenocarcinoma: evidence of gene expression, cellular, and clinical response. Clin. Cancer Res. 13, 5869–5875 (2007).

    CAS  PubMed  Google Scholar 

  91. Keld, R. R. & Ang, Y. S. Targeting key signalling pathways in oesophageal adenocarcinoma: a reality for personalised medicine? World J. Gastroenterol. 17, 2781–2790 (2011).

    PubMed Central  PubMed  Google Scholar 

  92. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    CAS  PubMed  Google Scholar 

  93. ISRCTN. Current Controlled Trials [online], (2013).

  94. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  95. Banki, F. et al. Plasma DNA as a molecular marker for completeness of resection and recurrent disease in patients with esophageal cancer. Arch. Surg. 142, 533–538 (2007).

    CAS  PubMed  Google Scholar 

  96. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  97. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68 (2012).

    PubMed  Google Scholar 

  98. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  99. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    PubMed Central  PubMed  Google Scholar 

  100. Zhai, R. et al. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus. Neoplasia 14, 29–33 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    CAS  PubMed  Google Scholar 

  103. Bansal, A. et al. Feasibility of mcroRNAs as biomarkers for Barrett's esophagus progression: a pilot cross-sectional, phase 2 biomarker study. Am. J. Gastroenterol. 106, 1055–1063 (2011).

    CAS  PubMed  Google Scholar 

  104. Yang, H. et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 15, 5744–5752 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Diaz, L. A., Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Mardis, E. R. The $1,000 genome, the $100,000 analysis? Genome Med. 2, 84 (2010).

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. M. J. Weaver and C. S. Ross-Innes made equal contributions to researching data for the article. J. M. J. Weaver, C. S. Ross-Innes and R. C. Fitzgerald made equal contributions to discussion of content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Rebecca C. Fitzgerald.

Ethics declarations

Competing interests

The Cytosponge and assay technology developed by R. C. Fitzgerald has been licenced by the Medical Research Council to Covidien. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, J., Ross-Innes, C. & Fitzgerald, R. The '–omics' revolution and oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol 11, 19–27 (2014). https://doi.org/10.1038/nrgastro.2013.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.150

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer