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Abstract
Repetitive DNA sequences are abundant in a broad range of species, from bacteria to mammals,
and they cover nearly half of the human genome. Repeats have always presented technical
challenges for sequence alignment and assembly programs. Next-generation sequencing projects,
with their short read lengths and high data volumes, have made these challenges more difficult.
From a computational perspective, repeats create ambiguities in alignment and assembly, which,
in turn, can produce biases and errors when interpreting results. Simply ignoring repeats is not an
option, as this creates problems of its own and may mean that important biological phenomena are
missed. We discuss the computational problems surrounding repeats and describe strategies used
by current bioinformatics systems to solve them.

DNA sequencing efficiency has increased by approximately 100,000-fold in the decade
since sequencing of the human genome was completed. Next-generation sequencing (NGS)
machines can now sequence the entire human genome in a few days, and this capability has
inspired a flood of new projects that are aimed at sequencing the genomes of thousands of
individual humans and a broad swath of animal and plant species1-3. New methods, such as
whole-transcriptome sequencing (also called RNA sequencing (RNA-seq))4-7, chromatin
immunoprecipitation followed by sequencing (ChIP–seq)8-11 and sequencing to identify
methylated DNA (methyl-seq)12,13, are transforming our ability to capture an accurate
picture of the molecular processes within the cell, which, in turn, is leading to a better
understanding of human diseases14. Whole-genome resequencing combined with new,
highly efficient alignment software is being used to discover large numbers of SNPs and
structural variants in previously sequenced genomes15. In response to this influx of new
laboratory methods, many novel computational tools have been developed to map NGS
reads to genomes and to reconstruct genomes and transcriptomes11,16-22. Current NGS
platforms produce shorter reads than Sanger sequencing (NGS reads are 50–150 bp), but
with vastly greater numbers of reads, as many as 6 billion per run. By contrast, the original
human genome project generated approximately 30 million reads using Sanger sequencing.

Some of the biggest technical challenges that are associated with these new methods are
caused by repetitive DNA23: that is, sequences that are similar or identical to sequences
elsewhere in the genome. Most large genomes are filled with repetitive sequences; for
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example, nearly half of the human genome is covered by repeats, many of which have been
known about for decades24,25. Although some repeats appear to be nonfunctional, others
have played a part in human evolution26,27, at times creating novel functions, but also acting
as independent, ‘selfish’ sequence elements28,29. Repeats arise from a variety of biological
mechanisms that result in extra copies of a sequence being produced and inserted into the
genome. Repeats come in all shapes and sizes: they can be widely interspersed repeats,
tandem repeats or nested repeats, they may comprise just two copies or millions of copies,
and they can range in size from 1–2 bases (mono- and dinucleotide repeats) to millions of
bases. Well-characterized repeats in the human genome (BOX 1) are sometimes separated
into two classes: short tandem repeats (also called microsatellites) and longer interspersed
repeats (called short interspersed nuclear elements (SINEs) and long interspersed nuclear
elements (LINEs)). The most well-documented example of interspersed repeats in the
human genome is the class of Alu repeat elements, which cover approximately 11% of the
genome25. Repeats can also take the form of large-scale segmental duplications, such as
those found on some human chromosomes30 and even whole-genome duplication, such as
the duplication of the Arabidopsis thaliana genome31. High levels of repetitiveness are
found across all kingdoms of life, and plant genomes contain particularly high proportions
of repeats: for example, transposable elements cover >80% of the maize genome32. A recent
study reported that the short-lived fish Nothobranchius furzeri has 21% of its genome
occupied by tandem repeats, suggesting a possible role for tandem repeats in the ageing
process33. Even bacterial genomes can exhibit repeat content up to 40%, as demonstrated by
Orientia tsutsugamushi34.

From a computational perspective, repeats create ambiguities in alignment and in genome
assembly, which, in turn, can produce errors when interpreting results. Repeats that are
sufficiently divergent do not present problems, so for the remaining discussion in this
Review, we define a repeat as a sequence that is at least 100 bp in length, that occurs two or
more times in the genome and that exhibits >97% identity to at least one other copy of itself.
This definition excludes many repetitive sequences, but it includes those that present the
principal computational challenges.

In this Review, we consider the challenges that are posed by repeats for genome
resequencing projects, de novo genome assembly and RNA-seq analysis. We focus on two
classes of computational tools: software for the alignment of NGS reads and software for the
assembly of genomes and transcriptomes. Some of the more widely used programs in both
categories are shown in TABLES 1,2, which illustrates the breadth of tools available. Rather
than describing the algorithmic details of these programs, we will discuss their shared
strategies for solving repeat-induced analysis problems in each situation and address some
of their limitations.

Genome resequencing projects
Genome resequencing allows researchers to study genetic variation by analysing many
genomes from the same or from closely related species23,35-37. The primary requirement is
for a high-quality reference genome onto which all of the short NGS reads can be mapped.
After sequencing a sample to deep coverage, it is possible to detect SNPs, copy number
variants (CNVs) and other types of sequence variation without the need for de novo
assembly. The computational task involves aligning millions or billions of reads back to the
reference genome using one of several short-read alignment programs (TABLE 1). The two
most efficient of these aligners, Bowtie and the Burrows–Wheeler Aligner (BWA), achieve
throughputs of 10–40 million reads per hour on a single computer processor. In spite of this
recent progress, a major challenge remains when trying to decide what to do with reads that
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map to multiple locations (that is, multi-reads). Below, we discuss how current short-read
alignment tools handle these reads and what problems remain unresolved.

Problems when mapping multi-reads
For computational tools that align NGS reads to a genome, the most commonly encountered
problem arises when reads align to multiple locations. For convenience, these reads that map
to multiple locations are often called multi-reads. Although the specific type of repeat does
not directly influence the read-mapping program, it can influence downstream analyses
(such as SNP calling) that rely on unique regions that flank the repeats. The percentage of
short reads (25 bp or longer) that map to a unique location on the human genome is typically
reported to be 70–80%, although this number varies depending on the read length, the
availability of paired-end reads and the sensitivity of the software used for alignment. The
repeat content in the human genome, by contrast, is around 50%. The main reason for the
discrepancy is that most repeats are inexact, which means that many reads will have a
unique ‘best match’, even though the same sequence might occur with slight variations in
other locations (FIG. 1a). Assigning reads to the location of their best alignment is the
simplest way to resolve repeats, although it is not always correct.

For example, suppose that a read maps to two locations, A and B, where the read aligns with
one mismatch at location A and with one deletion at B (FIG. 1b). If the alignment program
considers a mismatch to be less ‘costly’ than a gap (that is, if it assumes that substitutions
are more likely than deletions), then the aligner will put the read in location A. However, if
the source DNA has a true deletion in location B, then the read would perfectly match
position B. This illustrates a problem that is inherent in the process of aligning reads to a
reference genome: the source DNA is virtually never identical to the reference (and, in fact,
the differences are the whole reason why the source is being sequenced).

Another example to consider is the following. Suppose that a human genome sample is
sequenced, but only analysis of the variants that are present in part of the genome is
required: for example, analysis of chromosome 14. The most straightforward approach
would be to use a short-read aligner to map reads directly to that chromosome.
Unfortunately, this strategy would lead to a large pile up of reads from repetitive regions,
because all reads from those repeats would have to go to the same chromosome. To avoid
this bias, we must map the reads against the entire genome and use a strategy of random
placement of multi-reads to scatter them uniformly across all repeat copies. TABLE 1 lists
some of the most useful parameters for dealing with repeats within the most popular
alignment programs.

Multi-read mapping strategies
Systematic alignment of reads to incorrect positions in the genome can lead to false
inferences of SNPs and CNVs. For example, FIG. 1b illustrates how a SNP would be
erroneously identified after a mistake by the alignment program. Essentially, an algorithm
has three choices for dealing with multi-reads38 (FIG. 2). The first is to ignore them,
meaning that all multi-reads are discarded. The second option is the best match approach, in
which the alignment with the fewest mismatches is reported. If there are multiple, equally
good best match alignments, then an aligner will either choose one at random or report all of
them. The third choice is to report all alignments up to a maximum number, d, regardless of
the total number of alignments found. A variant on this strategy is to ignore multi-reads that
align to >d locations.

To simplify the analysis, some alignment protocols prefer the ‘ignore’ strategy for multi-
reads. However, this strategy limits analysis to unique regions in the genome, discarding
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many multi-gene families as well as all repeats, which might result in biologically important
variants being missed. An example in which this occurred is a recent study of retinitis
pigmentosa, wherein Tucker et al.39 performed exome sequencing of induced pluripotent
stem cells that were derived from a patient with autosomal recessive retinitis pigmentosa.
They discovered that the cause of the disease in this patient was a novel, homozygous
insertion of a 353 bp Alu repeat in the middle of exon 9 of male germ-cell-associated kinase
(MAK). The software used for aligning the reads to the genome trimmed off Alu sequences
from the ends of reads, which created a MAK gene that appeared to be normal and initially
prevented the discovery of the mutation. Only through a fortunate accident did the
investigators discover the presence of the Alu insertion39. The two alternative strategies
listed above will ‘fill in’ repetitive regions, although only the best match approach will
provide a reasonable estimate of coverage (FIG. 2b). Allowing multi-reads to map to all
possible positions (FIG. 2c) avoids making a possibly erroneous choice about read
placement. Multi-reads can sometimes be manually resolved with tools such as IGV40 and
SAMtools41, which allow users to choose which read placements to keep and which to
discard. However, this is not usually a feasible strategy for very large NGS data sets.

Genotyping and SNP detection
After mapping the reads, the next step in the computational pipeline is to call SNPs using a
program such as GATK42, MAQ43, SAMtools41, SOAPsnp44 or VarScan45. If multi-reads
are handled using the ‘best match’ alignment method, SNPs should be found in at least some
repetitive regions. Some methods attempt to handle multi-reads more explicitly. For
example, Sniper38 assumes that some multi-reads will align unambiguously owing to slight
sequence variations, and it also assumes that SNPs will occur in different locations in
different paralogous genes. It uses these assumptions to compute an alignment probability
for each multi-read. The probability is computed using a Bayesian genotyping model that
decomposes the likehood of a read mapping to a given locus into its component likelihoods.
This strategy offers some help for repeats that have few copies, but computation of these
probabilities comes at a cost: Sniper would require ~3 central processing unit months to
analyse data for a 70-fold coverage of the human genome.

Structural and copy number variant detection
Computational tools can discover multiple types of variants in NGS data, including
deletions, insertions, inversions, translocations and duplications (reviewed in REF. 23).
Although the software methods that are available can find variants in unique regions
reliably, the short NGS read lengths prevent them from detecting variation in repetitive
regions with comparable sensitivity. When repeats are longer than the length of a read,
methods must rely on depth of coverage or paired-end data to determine whether a repeat
region is a variant — neither of these options provides a perfect indictation of structural and
CNVs. For example, suppose that a genome of interest is sequenced to an average depth of
30-fold coverage but that a particular tandem repeat that has two copies in the reference
genome has 60-fold coverage. These data suggest that the tandem repeat has four copies in
the genome of interest — twice the number seen in the reference. However, depth of
coverage varies across a genome, which makes it difficult to distinguish N versus N + 1
copies of a repeat with high confidence.

With this caveat, one of the first algorithms to incorporate both read-depth and read-pair
data for accurate CNV discovery was VariationHunter13, which has been updated to allow it
to find transposons46. Recently, He et al.47 described a new method that was designed to
find CNVs even in repeat-rich regions; this method also used information from read pairs
and depth of coverage. These authors attempt to account for all mappings of each multi-
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read, and their method uses this information to improve the estimation of the true copy
number of each repeat.

In general, the mapping strategies used for resequencing projects apply to any NGS
application in which reads need to be mapped to a reference genome, although some
customizations are needed to address the demands of particular applications. For example, in
a methyl-seq experiment, analysis is customized to account for C-to-T changes.

De novo genome assembly
Genome assembly algorithms begin with a set of reads and attempt to reconstruct a genome
as completely as possible without introducing errors. NGS read lengths (50–150 bp) are
considerably shorter than the 800–900 bp lengths that capillary-based (Sanger) sequencing
methods were achieving more than 5 years ago, and these short read lengths make assembly
more difficult. NGS technology generates higher depth of coverage at far lower cost than
Sanger sequencing and, as a result, current strategies for assembly attempt to use deeper
coverage to compensate for shorter reads. However, repetitive sequences create substantial
difficulties that coverage depth cannot always overcome.

Problems caused by repeats
For de novo assembly, repeats that are longer than the read length create gaps in the
assembly. This fact, coupled with the short length of NGS sequences, means that most
recent genome assemblies are much more fragmented than assemblies from a few years ago,
as evidenced by recent surveys48,49. In addition to creating gaps, repeats can be erroneously
collapsed on top of one another and can cause complex, misassembled rearrangements50,51.
The degree of difficulty (in terms of correctness and contiguity) that repeats cause during
genome assembly largely depends on the read length: if a species has a common repeat of
length N, then assembly of the genome of that species will be far better if read lengths are
longer than N. As illustrated in BOX 1, the human genome has millions of copies of repeats
in the range of 200–500 bp, which is longer than the reads that are produced by today’s most
efficient NGS technologies. Until read lengths are greater than 500 bp, assemblies of large
plant and animal genomes will need to use other strategies to assemble these types of repeats
correctly. Even Sanger read lengths (800–900 bp) cannot resolve longer repeats such as
LINEs (BOX 1), and these will continue to require long-range linking information (or
exceptionally long-range reads, perhaps generated by future technologies) if they are to be
resolved.

Despite these challenges, many new de novo assemblers have emerged to tackle this
problem, a selection of which are shown in TABLE 1. All of these assemblers fall into one
of two classes: overlap-based assemblers and de Bruijn graph assemblers, both of which
create graphs (of different types) from the read data. The algorithms then traverse these
graphs in order to reconstruct the genome. From a technical perspective, repeats cause
branches in these graphs, and assemblers must then make a guess as to which branch to
follow (FIG. 3). Incorrect guesses create false joins (chimeric contigs) and erroneous copy
numbers. If the assembler is more conservative, it will break the assembly at these branch
points, leading to an accurate but fragmented assembly with fairly small contigs.

The essential problem with repeats is that an assembler cannot distinguish them, which
means that the regions flanking them can easily be misassembled. The most common error is
that an assembler will create a chimaera by joining two chromosomal regions that do not
belong near one another, as illustrated in FIG. 3. As shown in the figure, all of the reads may
align well to the misassembled genome; the only hint of a problem is found in the paired-
end links. Paired-end reads are generated from a single DNA fragment of a fixed size, from
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which both ends are sequenced. An assembler uses both the expected distance and the
orientation of the reads when reconstructing a genome. If the sequence data do not contain
paired ends that span a particular repeat, then it might be impossible to assemble the data
unambiguously.

Two recent studies illustrate the difficulty of assembling large genomes from very short
reads. Alkan et al.52 looked at recent human genome assemblies and found that they were
16% shorter than the reference genome, primarily owing to missing repetitive sequences. In
particular, the NGS assemblies were lacking 420 Mbp of common repeats, including LINE 1
elements, Alu elements and a large majority of segmental duplications. Ye et al.48 compared
two NGS assemblies of the chicken genome to its reference genome, which was generated
by Sanger sequencing. The chicken genome has a much lower repeat content than the human
genome (10% versus 50%), making it considerably easier to assemble. Although their
analysis did not look at recent segmental duplications at the level of detail of Alkan et al.,
they found only 37 long (>10 kb) contigs that were misassembled in total from the two
assemblies. Visual inspection indicated that most of these errors were caused by the collapse
of interspersed repeats flanking unique sequences (FIG. 3c).

Tandem repeats present another common assembly problem. Near-identical tandem repeats
are often collapsed into fewer copies, and it is difficult for an assembler to determine the
true copy number. Notably, the investigation into the 2001 Bacillus anthracis attacks in the
United States identified isolates of the attack strain that only differed in the presence of two-
and three-copy tandem repeats, which the genome assembler had initially collapsed
incorrectly53,54. After the assembly errors were detected, the CNVs were correctly
reconstructed. These CNVs were present in only minor ‘morphotypes’ from the anthrax-
containing letters, which contained a mixture of slight variants on the Ames strain of B.
anthracis. The tandem repeat copies were 822, 2,023 and 2,607 nucleotides in length, and
these unique markers provided crucial forensic evidence that led investigators back to a
single source for the attacks53. FIGURE 3b illustrates a collapsed repeat in which two
identical copies are assembled into one. Note that all of the reads may align perfectly, but
the coverage depth and the mate-pair information will be inconsistent.

Strategies for handing repeats
In either an overlap graph or a de Bruijn graph, all copies of a repeat will initially be
represented by a single node. Repeat boundaries and sequencing errors show up as branch
points in the graph, and complex repeats appear as densely connected ‘tangles’ (REF. 55).
Assemblers use two main strategies to resolve these tangles. First and most importantly, they
use mate-pair information from reads that were sequenced in pairs. A variety of protocols
are available for producing two reads from opposite ends of a longer fragment of DNA;
these fragments range in length from 200 bp up to 20,000 bp. Even longer stretches can be
produced using fosmid clones (30 to 40 kbp) and bacterial artificial chromosome (BAC)
clones (up to 150 kbp), although efficient ways of sequencing the ends of these clones are
still under development. If a read pair spans a repeat, then the assembler can use that
information to decide how to move from a unique region in the graph through a repeat node
and into the correct unique region on the other side. Longer fragments allow assemblers to
span longer repeats. Because paired-end information is imperfect, most assemblers require
two or more pairs of reads to confirm each decision about how to assemble a repeat region.

A good illustration of this strategy is the recently assembled potato genome56. Potato is
highly repetitive and has repeats covering an estimated 62% of its genome. The first
assembly of this 844 Mbp genome, which was generated with a combination of Illumina and
454 reads, produced tiny contigs that had an N50 size of just 697 bp and also produced
scaffolds with an N50 size of 8 kb. As the genome was reassembled using Illumina mate-
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pair libraries with increasingly large fragment sizes (2 to 10 kb), the scaffolds grew linearly
with the insert size, as shown in FIG. 4. The final scaffold N50 size, after using Sanger
sequencing to generate paired ends from 40 kb fosmids and 100 kb BACs, was 1.3 Mbp — a
100-fold improvement over the initial statistics. This is a good example of how long
fragment libraries can be used to ‘jump’ across repetitive DNA and link together many more
contigs.

The second main strategy for handling repeats is to compute statistics on the depth of
coverage for each contig. These statistics do not tell assemblers exactly how to assemble
each repeat, but they do identify the repeats themselves. In order to make use of this
information, assembly programs must assume that the genome is uniformly covered; this
means that if a genome is sequenced to 50-fold (50×) coverage, then the assembler assumes
that most contigs should also be covered at 50×. A repetitive region, by contrast, will have
substantially deeper coverage, which allows the algorithm to identify it as a repeat and to
process it differently. In particular, repeats are usually assembled after unique regions, and
assemblers may require multiple paired ends to link a repetitive contig to a unique one. One
recent study57 suggested that paired-end libraries can be ‘tuned’ to the specific genome
being assembled; in it, a strategy is described that uses a preliminary sequence assembly
from unpaired reads to estimate repeat structure, which, in turn, can be used to design
appropriate paired-end libraries.

A combination of strategies exists for resolving problems that are caused by repetitive DNA,
including sequencing strategies that use fragment libraries of varying sizes57, post-
processing software that is designed for detecting misassemblies51, analysing coverage
statistics and detecting and resolving tangles in a de Bruijn graph. One of the leading NGS
assemblers, Allpaths-LG, has specific requirements for the types of paired-end reads that it
needs for optimal performance20. None of these requirements completely solves the
problems, however, and the ultimate solution may require much longer read lengths.

Alignment and assembly of RNA sequences
High-throughput sequencing of the transcriptome provides a detailed picture of the genes
that are expressed in a cell. RNA-seq experiments capture a huge dynamic range of
expression levels, and they also detect novel transcripts and alternative splicing events. In
response to the rapid growth of these experiments, many new computational tools have
emerged, some of which are shown in TABLE 1. RNA-seq analysis centres around three
main computational tasks: mapping the reads to a reference genome, assembling the reads
into full-length or partial transcripts and quantifying the amount of each transcript. Above,
we discussed the first two tasks in the context of genome resequencing projects and de novo
assembly, and the problems caused by repeats are largely the same in transcriptome
assembly and alignment.

Splicing
A distinct challenge posed by RNA-seq data is the need for spliced alignment of NGS reads.
Simply put, this is the problem of aligning a read to two physically separate locations on the
genome, which is made necessary by the presence of introns. RNA-seq aligners, such as
TopHat58, MapSplice59, rnaSeqMap60, RUM61 and SpliceMap62 are capable of aligning a
short read to two distinct locations. Other aligners, including TopHat-Fusion63,
FusionSeq64, ShortFuse65 and SplitSeek61 have been designed to scan RNA-seq data and to
detect fusion genes that are caused by chromosome breakage and rejoining: a common event
in cancer cells. Because a read must be split into pieces before alignment, spliced alignments
are shorter, which, in turn, means that repeats present a greater problem than in full-length
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alignments. For example, if an intron interrupts a read so that only 5 bp of that read span the
splice site, then there may be many equally good locations to align the short 5 bp fragment.

Spliced alignment algorithms address this problem by requiring additional, confirming
alignments in which longer sequences align on both sides of each splice site. This strategy
works well for alignments that span normal genes but, for fusion genes, repeats are
particularly problematic. Fusion gene discovery algorithms must allow a pair of reads to
align anywhere in the genome; this means that the normal constraints on the distance and
orientation of a mate pair cannot be used. When one of the reads falls in a repeat sequence,
the algorithm may be faced with thousands of false positives. Collectively, this becomes
millions of false positives when extended to all of the data from an RNA-seq experiment.
Most fusion gene aligners address this problem by excluding any read with more than one
alignment, although some allow a small, fixed number of alignments. Without this
restriction, algorithms for fusion gene detection might become computationally unfeasible.

Gene expression
Another challenge that is unique to RNA-seq data is the measurement of gene expression
levels, which can be estimated from the number of reads mapping to each gene. The
standard approach for estimating expression levels is to count the number of reads or read
pairs (also known as fragments) that are aligned to a given gene and to normalize the count
based on gene length and sequencing depth. (The measurement is usually expressed as reads
or fragments per kilobase of transcript per million reads or fragments sequenced,
abbreviated as RPKM or FPKM.)

For gene families and genes containing repeat elements (BOX 1), multi-reads can introduce
errors in estimates of gene expression. For example, suppose that a gene exists in two
slightly different copies, A and B, and suppose that A is expressed at a much higher level
than B is expressed. If the genes are very close paralogues, then most of the reads will map
equally well to either copy. In regions where A and B diverge, reads will preferentially map
to the correct version of the gene, but this might only be a small portion of the total
transcript. Thus, the overall estimate of expression of A will be biased downwards, and the
estimate of expression of B will be biased upwards. This error will increase as the sequence
similarity between A and B increases.

One way to avoid this bias in the placement of multi-reads is the strategy implemented in
ERANGE5 and related methods: these approaches distribute multi-reads in proportion to the
number of reads that map to unique regions of each transcript. A similar idea was developed
into a more sophisticated statistical model by Jiang and Wong66, who used it to allocate
reads among different splice variants. A method that was developed by Chung et al.67 also
places multi-reads proportionally, after first estimating expression levels using an
expectation maximization algorithm. They demonstrated that, in contrast to methods that
only considered uniquely mapped reads, their method can markedly increase coverage in
ChIP–seq data, which, in turn, allows for detection of signals that would otherwise be
missed67. Li et al.68 developed a software tool called RNA-seq by Expectation
Maximization (RSEM) to address the uncertainty that is inherent in multi-read mapping by
modelling both isoform levels and non-uniform read distributions; this method produced
improved expression estimates in the highly repetitive maize genome. Although it is not
clear whether any of these methods is substantially superior to the others, what is clear is
that ignoring multi-reads can seriously interfere with accurate scientific analysis.
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Conclusions
Advances in DNA-sequencing technology, coupled with novel, efficient computational
analysis tools, have made it possible to analyse sequencing-based experimental data on an
unprecedented scale. In many of these studies, if not most of them, repetitive DNA
sequences present major obstacles to accurate analysis. Repetitive sequences, which
permeate the genomes of species from across the tree of life, create ambiguities in the
processes of aligning and assembling NGS data. Prompted by this challenge, algorithm
developers have designed a variety of strategies for handling the problems that are caused by
repeats. For alignment of reads to existing genomes, focusing on uniquely mapped reads
addresses some problems, such as SNP discovery, but more sophisticated approaches are
necessary to avoid ignoring possibly important sections of a genome: for example, regions
containing copy number variation. For de novo genome assembly, shorter read lengths mean
that repeats create much greater problems than they did in the era of Sanger sequencing.

Current algorithms rely heavily on paired-end information to resolve the placement of
repeats in the correct genome context. This dependency may entail a substantial increase in
cost, particularly for large insert sizes in fosmids or BACs (such as those used in the potato
genome project), which can be difficult to obtain. Highly repetitive genomes continue to
present a serious hurdle to assembly, and these genomes might remain difficult to assemble
until read lengths increase substantially. The maize and potato genome projects, both of
which were dealing with highly repetitive genomes, were able to avoid generating highly
fragmented assemblies by using multiple sequencing technologies, creating multiple large
insert libraries and using Sanger sequencing to create the longest insert libraries. Recent
human genome assemblies that relied solely on Illumina technology and small insert
libraries were less successful, leaving out hundreds of megabases of genomic sequence52.
Finally, efforts for estimating gene expression in the presence of repeats have made
important strides owing to sophisticated modelling techniques, which use the unique regions
of each gene to estimate expression levels and then allocate multi-reads based on statistical
estimates. All of these strategies will probably rapidly evolve in response to changing
sequencing technologies, which are producing ever-greater volumes of data while slowly
increasing read lengths. As it becomes easier to analyse repeats, we will probably learn
much more about their role in disease and their contributions to gene function, genome
structure and evolution.
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Glossary

Next-
generation
sequencing
(NGS)

Any of several technologies that sequence very large numbers of DNA
fragments in parallel, producing millions or billions of short reads in a
single run of an automated sequencer. By contrast, traditional Sanger
sequencing only produces a few hundred reads per run

Interspersed
repeats

Identical or nearly identical DNA sequences that are separated by
hundreds, thousands or even millions of nucleotides in the source
genome. Repeats can be spread out through the genome by
mechanisms such as transposition

Tandem
repeats

DNA repeats, (≥2bp in length) that are adjacent to each other and can
involve as few as two copies or many thousands of copies.
Centromeres and telomeres are largely comprised of tandem repeats

Short
interspersed
nuclear
elements

(SINEs). Repetitive DNA elements that are typically 100–300 bp in
length and spread throughout the genome (such as Alu repeats)

Long
interspersed
nuclear
elements

(LINEs). Repetitive DNA elements that are typically >300 bp in length
and spread throughout the genome (such as L1 repeats)

Multi-read A DNA sequence fragment (a ‘read’) that aligns to multiple positions
in the reference genome and, consequently, creates ambiguity as to
which location was the true source of the read

Paired-end
reads

Reads that are sequenced from both ends of the same DNA fragment.
These can be produced by a variety of sequencing protocols, and
paired-end preparation is specific to a given sequencing technology.
Some recent sequencing vendors use the terms ‘paired end’ and ‘mate
pair’ to refer to different protocols, but these terms are generally
synonymous

De Bruijn
graph

A directed graph data structure representing overlaps between
sequences. In the context of genome assembly, DNA sequence reads
are broken up into fixed-length subsequences of length k, which are
represented as nodes in the graph. Directed edges are created between
nodes i and j if the last k–1 nucleotides of i match the first k–1
nucleotides of j. Reads become paths in the graph, and contigs are
assembled by following longer paths

Contigs Contiguous stretches of DNA that are constructed by an assembler
from the raw reads produced by a sequencing machine
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DNA fragment In the sequencing process, millions of small fragments are randomly
generated from a DNA sample. In paired-end sequencing, both ends of
each fragment are sequenced, and the fragment length becomes the
‘library’ size

N50 A widely used statistic for assessing the contiguity of a genome
assembly. The N50 value is computed by sorting all contigs in an
assembly from largest to smallest, then cumulatively adding contig
sizes starting with the largest and reporting the size of the contig that
makes the total greater than or equal to 50% of the genome size. The
N50 value is also used for scaffolds

Scaffold A scaffold is a collection of contigs that are linked together by paired
end information with gaps separating the contigs
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Box 1

Repetitive DNA in the human genome

Approximately 50% of the human genome is comprised of repeats. The table in panel a
shows various named classes of repeat in the human genome, along with their pattern of
occurrence (shown as ‘repeat type’ in the table; this is taken from the RepeatMasker
annotation). The number of repeats for each class found in the human genome, along
with the percentage of the genome that is covered by the repeat class (Cvg) and the
approximate upper and lower bounds on the repeat length (bp). The graph in panel b
shows the percentage of each chromosome, based on release hg19 of the genome,
covered by repetitive DNA as reported by RepeatMasker. The colours of the graph in
panel b correspond to the colours of the repeat class in the table in panel a.
Microsatellites constitute a class of repetitive DNA comprising tandem repeats that are
2–10 bp in length, whereas minisatellites are 10–60 bp in length, and satellites are up to
100 bp in length and are often associated with centromeric or pericentromeric regions of
the genome. DNA transposons are full-length autonomous elements that encode a
protein, transposase, by which an element can be removed from one position and inserted
at another. Transposons typically have short inverted repeats at each end. Long terminal
repeat (LTR) elements (which are often referred to as retrovirus-like elements) are
characterized by the LTRs (200–5000 bp) that are harboured at each end of the
retrotransposon. LINE, long interspersed nuclear element; rDNA, ribosomal DNA; SINE,
short interspersed nuclear element.

Figure 5.

Treangen and Salzberg Page 15

Nat Rev Genet. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Ambiguities in read mapping
A Read-mapping confidence versus repeat-copy similarity. As the similarity between two
copies of a repeat increases, the confidence in any read placement within the repeat
decreases. At the top of the figure, we show three different tandem repeats with two copies
each. Directly beneath these tandem repeats are reads that are sequenced from these regions.
For each tandem repeat, we have highlighted and zoomed in on a single read. Starting with
the leftmost read (red) from tandem repeat X, we have low confidence when mapping this
read within the tandem repeat, because it aligns equally well to both X1 and X2. In the
middle example (tandem repeat Y, green), we have a higher confidence in the mapping
owing to a single nucleotide difference, making the alignment to Y1 slightly better than Y2.
In the rightmost example, the blue read that is sequenced from tandem repeat Z aligns
perfectly to Z1, whereas its alignment to Z2 contains three mismatches, giving us a high
confidence when mapping the read to Z1. B | Ambiguity in read mapping. The 13 bp read
shown along the bottom maps to two locations, a and b, where there is a mismatch at
location a and a deletion at b. If mismatches are considered to be less costly, then the
alignment program will put the read in location a. However, the source DNA might have a
true deletion in location b, meaning that the true position of the read is b.
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Figure 2. Three strategies for mapping multi-reads
The shaded rectangles at the top represent intervals along a chromosome. The two blue
rectangles below each region represent an identical two-copy repeat containing the
paralogous genes A and B. The small orange bars represent reads aligned to specific
positions. a | The ‘unique’ strategy reports only those reads that are uniquely mappable.
Because A and B are identical, no alignments are reported. b | The ‘best match’ alignment
strategy reports the best possible alignment for each read, which is determined by the
scoring function of the alignment algorithm. In the case of ties, this strategy randomly
distributes reads across equally good loci, as shown here. c | The ‘all matches’ strategy
simply reports all alignments for each multi-read, including lower-scoring alignments.
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Figure 3. Assembly errors caused by repeats
A | Rearrangement assembly error caused by repeats. Aa | An example assembly graph
involving six contigs, two of which are identical (R1 and R2). The arrows shown below each
contig represent the reads that are aligned to it. Ab | The true assembly of two contigs,
showing mate-pair constraints for the red, blue and green paired reads. Ac | Two incorrectly
assembled chimeric contigs caused by the repetitive regions R1 and R2. Note that all reads
align perfectly to the misassembled contigs, but the mate-pair constraints are violated. B | A
collapsed tandem repeat. Ba | The assembly graph contains four contigs, where R1 and R2
are identical repeats. Bb | The true assembly, showing mate-pair constraints for the red and
blue paired reads, which are oriented correctly and spaced the correct distance apart. Bc | A
misassembly that is caused by collapsing repeats R1 and R2 on top of each other. Read
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alignments remain consistent, but mate-pair distances are compressed. A different
misassembly of this region might reverse the order of R1 and R2. C | A collapsed
interspersed repeat. Ca | The assembly graph contains five contigs, where R1 and R2 are
identical repeats. Cb | In the correct assembly, R1 and R2 are separated by a unique
sequence. Cc | The two copies of the repeat are collapsed onto one another. The unique
sequence is then left out of the assembly and appears as an isolated contig with partial
repeats on its flank.
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Figure 4. Longer paired-end libraries improved assembly contiguity in the repetitive potato
genome
Each point represents the scaffold N50 size of an assembly of the potato genome that was
built using paired-end reads from inserts of a specific size and smaller. Successive points
moving from left to right used all previous data plus one additional, longer paired-end
library size, which is plotted on the y axis. With the addition of the final, 20 kb library, the
scaffold N50 size reached 1.3 Mb. The data in this figure are taken from REF. 56.
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Table 2

Overview of current computational tools for next-generation sequencing transcriptome analysis

Scope Program Repeat-relevant parameters Website Refs

Spliced read alignment GSNAP http://share.gene.com/gmap

MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice

RUM http://www.cbil.upenn.edu/RUM

SpliceMap http://www.stanford.edu/group/wonglab/SpliceMap

TopHat http://tophat.cbcb.umd.edu

Reference- guided
transcript assembly

Cufflinks Improve repeat read mapping
estimate: --multi-read-correct

http://cufflinks.cbcb.umd.edu 18,19

ERANGE Use multi-read fractions: --
withmultifraction

http://woldlab.caltech.edu/rnaseq 5

G-Mo.R-Se None required; multi-reads
supported by read aligner
parameters

http://www.genoscope.cns.fr/externe/gmorse

Myrna None required; multi-reads
supported by read aligner
parameters

http://bowtie-bio.sourceforge.net/myrna 46

Scripture None required; multi-reads
supported by read aligner
parameters

http://www.broadinstitute.org/software/scripture

De novo transcript
assembly

Multiple-k None required or none
available

http://www.surget-groba.ch/downloads

Rnnotator None required or none
available

None

Trinity Separate transcripts derived
from paralogues: --run
butterfly

http://trinityrnaseq.sourceforge.net 21

Trans-ABySS None required or none
available through command
line

http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss 76

Velvet-Oases Use long reads to resolve
repeats: -long, -exp cov auto

http://www.ebi.ac.uk/~zerbino/oases 77

The ‘Program’ column contains the name of program or algorithm. The ‘Repeat-relevant parameters’ column is a list of parameters that adjust how
repeats are treated. The programs have many other parameters, but more careful treatment of repeats would start with modification of these.
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