Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growth hormone and cognitive function

Abstract

Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.

Key Points

  • Growth hormone has profound effects on brain function in both humans and experimental animals; in humans, this effect is particularly seen in patients receiving growth hormone replacement therapy

  • Growth hormone receptors are present in the brain, particularly in areas of importance for cognition, as shown in humans and rodents

  • Treatment with growth hormone can improve certain components of cognition in growth-hormone-deficient individuals

  • The effects of growth hormone on cognitive function are mediated through interactions with the N-methyl-D-aspartate receptor complex, which leads to an increase in long-term potentiation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NMDA receptor complex.
Figure 2: A proposed pathway of how GH interacts with excitatory circuits in the brain.

Similar content being viewed by others

References

  1. Pavelic, J., Matijevic, T. & Knezevic, J. Biological & physiological aspects of action of insulin-like growth factor peptide family. Indian J. Med. Res. 125, 511–522 (2007).

    CAS  PubMed  Google Scholar 

  2. Chao, W. & D'Amore, P. A. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19, 111–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nyberg, F. The role of the somatotrophic axis in neuroprotection and neuroregeneration of the addictive brain. Int. Rev. Neurobiol. 88, 399–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Aberg, D. Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Endocr. Dev. 17, 63–76 (2010).

    Article  PubMed  Google Scholar 

  5. Bengtsson, B. A. et al. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J. Clin. Endocrinol. Metab. 76, 309–317 (1993).

    CAS  PubMed  Google Scholar 

  6. van Nieuwpoort, I. C. & Drent, M. L. Cognition in the adult with childhood-onset GH deficiency. Eur. J. Endocrinol. 159 (Suppl. 1), S53–S57 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Burman, P. & Deijen, J. B. Quality of life and cognitive function in patients with pituitary insufficiency. Psychother. Psychosom. 67, 154–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Maruff, P. & Falleti, M. Cognitive function in growth hormone deficiency and growth hormone replacement. Horm. Res. 64 (Suppl. 3), 100–108 (2005).

    CAS  PubMed  Google Scholar 

  9. Salvatori, R. Clinical management of growth hormone therapy in adults. Manag. Care 18 (Suppl. 6), 10–16 (2009).

    PubMed  Google Scholar 

  10. Deijen, J. B., de Boer, H. & van der Veen, E. A. Cognitive changes during growth hormone replacement in adult men. Psychoneuroendocrinology 23, 45–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Le Greves, M. et al. Growth hormone replacement in hypophysectomized rats affects spatial performance and hippocampal levels of NMDA receptor subunit and PSD-95 gene transcript levels. Exp. Brain Res. 173, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sathiavageeswaran, M. et al. Effects of GH on cognitive function in elderly patients with adult-onset GH deficiency: a placebo-controlled 12-month study. Eur. J. Endocrinol. 156, 439–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Johansson, J. O. et al. Treatment of growth hormone-deficient adults with recombinant human growth hormone increases the concentration of growth hormone in the cerebrospinal fluid and affects neurotransmitters. Neuroendocrinology 61, 57–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Burman, P. et al. Growth hormone treatment affects brain neurotransmitters and thyroxine [see comment]. Clin. Endocrinol. (Oxf.) 44, 319–324 (1996).

    Article  CAS  Google Scholar 

  15. Nyberg, F. Growth hormone in the brain: characteristics of specific brain targets for the hormone and their functional significance. Front. Neuroendocrinol. 21, 330–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhai, Q., Lai, Z., Roos, P. & Nyberg, F. Characterization of growth hormone binding sites in rat brain. Acta Paediatr. Suppl. 406, 92–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Kwak, M. J. et al. Comparative study of the effects of different growth hormone doses on growth and spatial performance of hypophysectomized rats. J. Korean Med. Sci. 24, 729–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eichenbaum, H. Declarative memory: insights from cognitive neurobiology. Annu. Rev. Psychol. 48, 547–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Eichenbaum, H. & Fortin, N. J. The neurobiology of memory based predictions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1183–1191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bliss, T. V. & Cooke, S. F. Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 66 (Suppl. 1), 13–17 (2011).

    Google Scholar 

  21. Kenney, J. W. & Gould, T. J. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol. Neurobiol. 38, 101–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santini, E., Muller, R. U. & Quirk, G. J. Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J. Neurosci. 21, 9009–9017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glannon, W. Psychopharmacology and memory. J. Med. Ethics 32, 74–78 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J. & Lee, I. Hippocampus is necessary for spatial discrimination using distal cue-configuration. Hippocampus 21, 609–621 (2011).

    Article  PubMed  Google Scholar 

  25. Andersson, K. et al. Rat growth hormone and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete reductions in dopamine and noradrenaline levels and turnover in the median eminence of the hypophysectomized male rat. Eur. J. Pharmacol. 95, 271–275 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Frohman, L. A., Nernardis, L. L. & Kant, K. J. Hypothalamic stimulation of growth hormone secretion. Science 162, 580–582 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. van Houten, M., Posner, B. I. & Walsh, R. J. Radioautographic identification of lactogen binding sites in rat median eminence using 125I-human growth hormone: evidence for a prolactin “short-loop” feedback site. Exp. Brain Res. 38, 455–461 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Lai, Z. et al. Age-related reduction of human growth hormone-binding sites in the human brain. Brain Res. 621, 260–266 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Thornwall-Le Greves, M. et al. Morphine decreases the levels of the gene transcripts of growth hormone receptor and growth hormone binding protein in the male rat hippocampus and spinal cord. Neurosci. Lett. 304, 69–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Enhamre-Brolin, E., Carlsson, A., Hallberg, M. & Nyberg, F. Growth hormone reverses streptozotocin-induced cognitive impairments in male mice. Behav. Brain Res. 238, 273–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Enhamre, E. et al. The expression of growth hormone receptor gene transcript in the prefrontal cortex is affected in male mice with diabetes-induced learning impairments. Neurosci. Lett. 523, 82–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Coculescu, M. Blood-brain barrier for human growth hormone and insulin-like growth factor-I. J. Pediatr. Endocrinol. Metab. 12, 113–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Pan, W. et al. Permeation of growth hormone across the blood-brain barrier. Endocrinology 146, 4898–4904 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Pan, W. & Kastin, A. J. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology 72, 171–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. McGauley, G. A. Quality of life assessment before and after growth hormone treatment in adults with growth hormone deficiency. Acta Paediatr. Scand. Suppl. 356, 70–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen, J. O. et al. Adult growth hormone deficiency. Horm. Res. 42, 235–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Rosen, T., Wiren, L., Wilhelmsen, L., Wiklund, I. & Bengtsson, B. A. Decreased psychological well-being in adult patients with growth hormone deficiency. Clin. Endocrinol. (Oxf.) 40, 111–116 (1994).

    Article  CAS  Google Scholar 

  38. McGauley, G., Cuneo, R., Salomon, F. & Sonksen, P. H. Growth hormone deficiency and quality of life. Horm. Res. 45, 34–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Burman, P., Johansson, A. G., Siegbahn, A., Vessby, B. & Karlsson, F. A. Growth hormone (GH)-deficient men are more responsive to GH replacement therapy than women. J. Clin. Endocrinol. Metab. 82, 550–555 (1997).

    CAS  PubMed  Google Scholar 

  40. Falleti, M. G., Maruff, P., Burman, P. & Harris, A. The effects of growth hormone (GH) deficiency and GH replacement on cognitive performance in adults: a meta-analysis of the current literature. Psychoneuroendocrinology 31, 681–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Webb, S. M. Measurements of quality of life in patients with growth hormone deficiency. J. Endocrinol. Invest. 31 (9 Suppl.), 52–55 (2008).

    CAS  PubMed  Google Scholar 

  42. Geisler, A. et al. Quality of life in children and adolescents with growth hormone deficiency: association with growth hormone treatment. Horm. Res. Paediatr. 78, 94–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Chaplin, J. E. et al. Improvements in behaviour and self-esteem following growth hormone treatment in short prepubertal children. Horm. Res. Paediatr. 75, 291–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Deijen, J. B., de Boer, H., Blok, G. J. & van der Veen, E. A. Cognitive impairments and mood disturbances in growth hormone deficient men. Psychoneuroendocrinology 21, 313–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Arwert, L. I. et al. Growth hormone deficiency and memory functioning in adults visualized by functional magnetic resonance imaging. Neuroendocrinology 82, 32–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Arwert, L. I., Veltman, D. J., Deijen, J. B., van Dam, P. S. & Drent, M. L. Effects of growth hormone substitution therapy on cognitive functioning in growth hormone deficient patients: a functional MRI study. Neuroendocrinology 83, 12–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Schneider-Rivas, S., Rivas-Arancibia, S., Vazquez-Pereyra, F., Vazquez-Sandoval, R. & Borgonio-Perez, G. Modulation of long-term memory and extinction responses induced by growth hormone (GH) and growth hormone releasing hormone (GHRH) in rats. Life Sci. 56, PL433–PL441 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Ariznavarreta, C. et al. Growth hormone and aging. Homo 54, 132–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Molina, D. P., Ariwodola, O. J., Weiner, J. L., Brunso-Bechtold, J. K. & Adams, M. M. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Dordr) http://dx.doi.org/10.1007/s11357-012-9460-4.

  50. Sonntag, W. E. et al. The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J. Anat. 197, 575–585 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schliebs, R. & Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Magnusson, K. R. Aging of the NMDA receptor: from a mouse's point of view. Future Neurol. 7, 627–637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stanley, E. M., Fadel, J. R. & Mott, D. D. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol. Aging 33, e431–e413 (2012).

    Article  CAS  Google Scholar 

  54. Li, E. et al. Hippocampus-dependent spatial learning and memory are impaired in growth hormone-deficient spontaneous dwarf rats. Endocr. J. 58, 257–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Witty, C. F., Gardella, L. P., Perez, M. C. & Daniel, J. M. Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the hippocampus: a role for insulin-like growth factor-I. Endocrinology 154, 842–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Le Greves, M. et al. Growth hormone enhances cognitive functions in hypophysectomized rats. Am. J. Neuroprot. Neuroregen 3, 53–58 (2011).

    Article  Google Scholar 

  57. Gronbladh, A., Johansson, J., Nostl, A., Nyberg, F. J. & Hallberg, M. Growth hormone improves spatial memory and reverses certain anabolic androgenic steroid-induced effects in intact rats. J. Endocrinol. 216, 31–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Li, R. C. et al. Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience 196, 237–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Abel, T. & Lattal, K. M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Sonntag, W. E., Ramsey, M. & Carter, C. S. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, E., Grover, L. M., Bertolotti, D. & Green, T. L. Growth hormone rescues hippocampal synaptic function after sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1588–R1596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, S. W. et al. Differential effects of insufflated, subcutaneous, and intravenous growth hormone on bone growth, cognitive function, and NMDA receptor subunit expression. Endocrinology 151, 4418–4427 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Magnusson, K. R., Das, S. R., Kronemann, D., Bartke, A. & Patrylo, P. R. The effects of aging and genotype on NMDA receptor expression in growth hormone receptor knockout (GHRKO) mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 607–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Monaghan, D. T. & Cotman, C. W. Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J. Neurosci. 5, 2909–2919 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Conti, F., Minelli, A., DeBiasi, S. & Melone, M. Neuronal and glial localization of NMDA receptors in the cerebral cortex. Mol. Neurobiol. 14, 1–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Lynch, G., Kessler, M., Arai, A. & Larson, J. The nature and causes of hippocampal long-term potentiation. Prog. Brain Res. 83, 233–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Kang, S. J. et al. Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. J. Neurosci. 32, 11318–11329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zorumski, C. F. & Izumi, Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci. Biobehav. Rev. 36, 989–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. MacDonald, J. F., Jackson, M. F. & Beazely, M. A. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit. Rev. Neurobiol. 18, 71–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, M. G. et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47, 859–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cui, Y. et al. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS ONE 6, e20312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Bashir, Z. I., Alford, S., Davies, S. N., Randall, A. D. & Collingridge, G. L. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349, 156–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Mallon, A. P., Auberson, Y. P. & Stone, T. W. Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-D: -aspartate receptors in hippocampal slices. Exp. Brain Res. 162, 374–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ogden, K. K. & Traynelis, S. F. New advances in NMDA receptor pharmacology. Trends Pharmacol. Sci. 32, 726–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henson, M. A., Roberts, A. C., Pérez-Otaño, I. & Philpot, B. D. Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 91, 23–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, Y. S. & Silva, A. J. The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Le Greves, M., Steensland, P., Le Greves, P. & Nyberg, F. Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male rats. Proc. Natl Acad. Sci. USA 99, 7119–7123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahmoud, G. S. & Grover, L. M. Growth hormone enhances excitatory synaptic transmission in area CA1 of rat hippocampus. J. Neurophysiol. 95, 2962–2974 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Le Greves, M., Le Greves, P. & Nyberg, F. Age-related effects of IGF-1 on the NMDA-, GH- and IGF-1-receptor mRNA transcripts in the rat hippocampus. Brain Res. Bull. 65, 369–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Tang, Y. P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Sheng, M. The postsynaptic NMDA-receptor--PSD-95 signaling complex in excitatory synapses of the brain. J. Cell Sci. 114, 1251 (2001).

    CAS  PubMed  Google Scholar 

  85. Muller, B. M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. O'Brien, R. J., Lau, L. F. & Huganir, R. L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Muller, D., Toni, N. & Buchs, P. A. Spine changes associated with long-term potentiation. Hippocampus 10, 596–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Medvedev, N. I. et al. The N-methyl-D-aspartate receptor antagonist CPP alters synapse and spine structure and impairs long-term potentiation and long-term depression induced morphological plasticity in dentate gyrus of the awake rat. Neuroscience 165, 1170–1181 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Ramsey, M. M., Weiner, J. L., Moore, T. P., Carter, C. S. & Sonntag, W. E. Growth hormone treatment attenuates age-related changes in hippocampal short-term plasticity and spatial learning. Neuroscience 129, 119–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Helm, K. A. et al. GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 48, 956–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lasarge, C. L., Banuelos, C., Mayse, J. D. & Bizon, J. L. Blockade of GABA(B) receptors completely reverses age-related learning impairment. Neuroscience 164, 941–947 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Gronbladh, A., Johansson, J., Nyberg, F. & Hallberg, M. Recombinant human growth hormone affects the density and functionality of GABA(B) receptors in the male rat brain. Neuroendocrinology http://dx.doi.org/10.1159/000339821.

  94. Johansson, J., Gronbladh, A., Nyberg, F. & Hallberg, M. Application of in vitro [35S]GTPγ-S autoradiography in studies of growth hormone effects on opioid receptors in the male rat brain. Brain Res. Bull. 90, 100–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Persson, A. I. et al. Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats. Eur. J. Neurosci. 19, 1847–1855 (2004).

    Article  PubMed  Google Scholar 

  96. Aberg, N. D., Brywe, K. G. & Isgaard, J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal 6, 53–80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ransome, M. I., Goldshmit, Y., Bartlett, P. F., Waters, M. J. & Turnley, A. M. Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness. Eur. J. Neurosci. 19, 2069–2079 (2004).

    Article  PubMed  Google Scholar 

  98. Svensson, A. L., Bucht, N., Hallberg, M. & Nyberg, F. Reversal of opiate-induced apoptosis by human recombinant growth hormone in murine foetus primary hippocampal neuronal cell cultures. Proc. Natl Acad. Sci. USA 105, 7304–7308 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu, T., Goh, E. L., Graichen, R., Ling, L. & Lobie, P. E. Signal transduction via the growth hormone receptor. Cell Signal. 13, 599–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Orellana, D. I., Quintanilla, R. A., Gonzalez-Billault, C. & Maccioni, R. B. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotox. Res. 8, 295–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kasagi, Y., Tokita, R., Nakata, T., Imaki, T. & Minami, S. Human growth hormone induces SOCS3 and CIS mRNA increase in the hypothalamic neurons of hypophysectomized rats. Endocr. J. 51, 145–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Scott, H. J. et al. Differential effects of SOCS2 on neuronal differentiation and morphology. Brain Res. 1067, 138–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Leung, K. C. et al. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. Proc. Natl Acad. Sci. USA 100, 1016–1021 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Garcia-Segura, L. M., Arevalo, M. A. & Azcoitia, I. Interactions of estradiol and insulin-like growth factor-I signalling in the nervous system: new advances. Prog. Brain Res. 181, 251–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. O'Kusky, J. & Ye, P. Neurodevelopmental effects of insulin-like growth factor signaling. Front. Neuroendocrinol. 33, 230–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alberini, C. M. & Chen, D. Y. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35, 274–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miltiadous, P., Stamatakis, A., Koutsoudaki, P. N., Tiniakos, D. G. & Stylianopoulou, F. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp. Neurol. 231, 223–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Torres Aleman, I. Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol. Metab. Clin. North Am. 41, 395–408 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Graff, J. & Tsai, L. H. Cognitive enhancement: A molecular memory booster. Nature 469, 474–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Johannsson, G. Treatment of growth hormone deficiency in adults. Horm. Res. 71 (Suppl. 1), 116–122 (2009).

    CAS  PubMed  Google Scholar 

  112. Lipworth, W. L., Ho, K., Kerridge, I. H. & Day, R. O. Drug policy at the margins: the case of growth hormone replacement for adults with severe growth hormone deficiency. Med. J. Aust. 197, 204–205 (2012).

    Article  PubMed  Google Scholar 

  113. Reimunde, P. et al. Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury. Brain Inj. 25, 65–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Siemensma, E. P. et al. Beneficial effects of growth hormone treatment on cognition in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. J. Clin. Endocrinol. Metab. 97, 2307–2314 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Baum, H. B. et al. Effects of physiological growth hormone (GH) therapy on cognition and quality of life in patients with adult-onset GH deficiency. J. Clin. Endocrinol. Metab. 83, 3184–3189 (1998).

    CAS  PubMed  Google Scholar 

  116. Kokshoorn, N. E. et al. GH replacement therapy in elderly GH-deficient patients: a systematic review. Eur. J. Endocrinol. 164, 657–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Brummelman, P. et al. Effects of previous growth hormone excess and current medical treatment for acromegaly on cognition. Eur. J. Clin. Invest. 42, 1317–1324 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Maric, N. P. et al. Psychiatric and neuropsychological changes in growth hormone-deficient patients after traumatic brain injury in response to growth hormone therapy. J. Endocrinol. Invest. 33, 770–775 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Baker, L. D. et al. Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch. Neurol. 60, 1420–1429 (2012).

    Article  Google Scholar 

  120. Bennett, R. M. Adult growth hormone deficiency in patients with fibromyalgia. Curr. Rheumatol. Rep. 4, 306–312 (2002).

    Article  PubMed  Google Scholar 

  121. Bennett, R. M., Clark, S. C. & Walczyk, J. A randomized, double-blind, placebo-controlled study of growth hormone in the treatment of fibromyalgia. Am. J. Med. 104, 227–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Cuatrecasas, G. et al. High prevalence of growth hormone deficiency in severe fibromyalgia syndromes. J. Clin. Endocrinol. Metab. 95, 4331–4337 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Glass, J. M. Review of cognitive dysfunction in fibromyalgia: a convergence on working memory and attentional control impairments. Rheum. Dis. Clin. North Am. 35, 299–311 (2009).

    Article  PubMed  Google Scholar 

  124. Kim, S. H. et al. Spatial versus verbal memory impairments in patients with fibromyalgia. Rheumatol. Int. 32, 1135–1142 (2012).

    Article  PubMed  Google Scholar 

  125. Donahue, C. P., Kosik, K. S. & Shors, T. J. Growth hormone is produced within the hippocampus where it responds to age, sex, and stress. Proc. Natl Acad. Sci. USA 103, 6031–6036 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Medical Research Council (Grant 9459) and from the Swedish Council for Working Life and Social Research.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Fred Nyberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyberg, F., Hallberg, M. Growth hormone and cognitive function. Nat Rev Endocrinol 9, 357–365 (2013). https://doi.org/10.1038/nrendo.2013.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing