Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic neuroimaging of the brain in diabetes mellitus and hypoglycaemia

Abstract

Functional neuroimaging techniques can be used to study changes in regional brain activation, using changes in surrogate markers such as regional cerebral perfusion and rates of glucose uptake or metabolism. These approaches are shedding new light on two major health problems: the increasing burden of type 2 diabetes mellitus (T2DM), which is driven by the rising prevalence of insulin resistance and obesity; and recurrent intractable problematic hypoglycaemia, which is driven by the cognitive impairment that can occur in association with iatrogenic hypoglycaemic episodes. Some patients with diabetes mellitus lose awareness of being hypoglycaemic, which puts them at risk of severe hypoglycaemia as they are unlikely to take action to prevent the condition worsening. Involvement of corticolimbic brain and centres serving higher executive functions as well as the hypothalamus has been demonstrated in both situations and has implications for therapy. This Review describes the relevant principles of functional neuroimaging techniques and presents data supporting the notion that the dysregulation of central pathways involved in metabolic regulation, reward and appetite could contribute to problematic hypoglycaemia during therapy for diabetes mellitus and to insulin-resistant obesity and T2DM. Understanding these dysregulations could enable the development of novel clinical interventions.

Key Points

  • Functional neuroimaging shows brain regions that are activated during task performance or in response to stimuli by detecting changes in markers showing, for example, perfusion, nutrient uptake or metabolism

  • Functional neuroimaging has been used to study therapy-related hypoglycaemia in patients with diabetes mellitus and the increasing prevalence of type 2 diabetes mellitus (T2DM), which is driven by obesity

  • Patients with acute hypoglycaemia demonstrate extensive activation of the cortex, putative glucose-sensing brain regions and stress pathways; these features are altered in patients with counter-regulatory deficits and hypoglycaemia unawareness

  • In patients with hypoglycaemia unawareness, altered responses of reward and memory pathways might prevent long-term restoration of awareness

  • Growing evidence from functional neuroimaging studies indicates that dysfunction of reward and motivational pathways occurs in individuals with obesity or T2DM

  • Increased understanding of the cortical components of these alterations in patients with T2DM, obtained from neuroimaging studies, could lead to development of effective therapeutic interventions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the principles of functional neuroimaging.
Figure 2: Principles of glucose PET.
Figure 3: Water PET study showing the evolution of regional brain activation patterns observed during an episode of controlled hypoglycaemia induced in a group of healthy men.

Similar content being viewed by others

References

  1. Bernard, C. I. J. An Introduction to the Study of Experimental Medicine (Macmillan & Co. Ltd, New York, 1927).

    Google Scholar 

  2. Roy, C. S. & Sherrington, C. S. On the regulation of the blood supply of the brian. J. Physiol. 11, 85–108 (1890).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metea, M. R. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Figley, C. R. & Stroman, P. W. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur. J. Neurosci. 33, 577–588 (2011).

    Article  PubMed  Google Scholar 

  5. Phelps, M. E. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with 182-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Kuwabara, H., Brust, P., Steinbach, J. & Bergmann, R. Blood–brain transport and metabolic rate of glucose measured with 11C-O-methyl-D-glucose (OMG) [abstract 73P]. J. Nucl. Med. 40 (suppl.), 293 (1999).

    Google Scholar 

  7. Nakanishi, H., Cruz, N. F., Adachi, K., Sokoloff, L. & Dienel, G. A. Influence of glucose supply and demand on determination of brain glucose content with labelled methylglucose. J. Cereb. Blood Flow Metab. 16, 439–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Raichle, M. E., Martin, W. R., Herscovitch, P., Mintun, M. A. & Markham, J. Brain blood flow measured with intravenous H215O. II. Implementation and validation. J. Nucl. Med. 24, 790–798 (1983).

    CAS  PubMed  Google Scholar 

  9. Finnema, S. J., Bang-Andersen, B., Wikström, H. V. & Halldin, C. Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. Curr. Top. Med. Chem. 10, 1477–1498 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Goldstone, A. P. et al. Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci. 30, 1625–1635 (2009).

    Article  PubMed  Google Scholar 

  13. Williams, D. S. Quantitative perfusion imaging using arterial spin labelling. Methods Mol. Med. 124, 151–173 (2006).

    PubMed  Google Scholar 

  14. Wong, E. C. Quantifying CBF with pulsed ASL: technical and pulse sequence factors. J. Magn. Reson. Imaging 22, 727–731 (2005).

    Article  PubMed  Google Scholar 

  15. Dai, W., Garcia, D., de Bazelaire, C. & Alsop, D. C. Continuous flow-driven inversion for arterial spin labelling using pulsed radio frequency and gradient fields. Magn. Reson. Med. 60, 1488–1497 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mitrakou, A. et al. Hierarchy of glycaemic thresholds for counter-regulatory hormone secretion, symptoms, and cerebral dysfunction. Am. J. Physiol. 260, E67–E74 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Gerich, J., Cryer, P. & Rizza, R. Hormonal mechanisms in acute glucose counter-regulation: the relative roles of glucagon, epinephrine, norepinephrine, growth hormone, and cortisol. Metab. Clin. Exp. 29, 1164–1175 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Kerr, D. et al. Symmetry of cerebral blood flow and cognitive responses to hypoglycaemia in humans. Diabetologia 36, 73–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Bolli, G. B. et al. Abnormal glucose counter-regulation after subcutaneous insulin in insulin-dependent diabetes mellitus. N. Engl. J. Med. 310, 1706–1711 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Peacey, S. R., Rostami-Hodjegan, A., George, E., Tucker, G. T. & Heller, S. R. The use of tolbutamide-induced hypoglycemia to examine the intraislet role of insulin in mediating glucagon release in normal humans. J. Clin. Endocrinol. Metab. 82, 1458–1461 (1997).

    CAS  PubMed  Google Scholar 

  21. Deary, I. J., Hepburn, D. A., MacLeod, K. M. & Frier, B. M. Partitioning the symptoms of hypoglycaemia using multi-sample confirmatory factor analysis. Diabetologia. 36, 771–777 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence, R. Insulin hypoglycaemia changes in nervous manifestations. Lancet 238, 602 (1941).

    Article  Google Scholar 

  23. Geddes, J., Schopman, J. E., Zammitt, N. N. & Frier, B. M. Prevalence of impaired awareness of hypoglycaemia in adults with type 1 diabetes. Diabet. Med. 25, 501–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Schopman, J. E., Geddes, J. & Frier, B. M. Prevalence of impaired awareness of hypoglycaemia and frequency of hypoglycaemia in insulin-treated type 2 diabetes. Diabetes Res. Clin. Pract. 87, 64–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Maran, A., Taylor, J., Macdonald, I. A. & Amiel, S. A. Evidence for reversibility of defective counter-regulation in a patient with insulinoma. Diabet. Med. 9, 765–768 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Cranston, I., Lomas, J., Maran, A., Macdonald, I. & Amiel, S. A. Restoration of hypoglycaemia awareness in patients with long-duration insulin-dependent diabetes. Lancet 344, 283–287 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Fanelli, C. et al. Long-term intensive therapy of IDDM patients with clinically overt autonomic neuropathy: effects on hypoglycemia awareness and counter-regulation. Diabetes 46, 1172–1181 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Dagogo-Jack, S., Rattarasarn, C. & Cryer, P. E. Reversal of hypoglycemia unawareness, but not defective glucose counter-regulation, in IDDM. Diabetes 43, 1426–1434 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Mühlhauser, I. et al. Bicentric evaluation of a teaching and treatment programme for type 1 (insulin-dependent) diabetic patients: improvement of metabolic control and other measures of diabetes care for up to 22 months. Diabetologia 25, 470–476 (1983).

    Article  PubMed  Google Scholar 

  30. Sämann, A., Mühlhauser, I., Bender, R., Kloos, C. & Müller, U. A. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia 48, 1965–1970 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Hopkins, D. et al. Improved biomedical and psychological outcomes 1 year after structured education in flexible insulin therapy for people with type 1 diabetes mellitus: the UK DAFNE Experience. Diabetes Care http://dx.doi.org/10.2337/dc11-1579.

  32. Page, K. A. et al. Small decrements in systemic glucose provoke increases in hypothalamic blood flow prior to the release of counter-regulatory hormones. Diabetes 58, 448–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Musen, G. et al. Regional brain activation during hypoglycemia in type 1 diabetes. J. Clin. Endocrinol. Metab. 93, 1450–1457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teh, M. M. et al. Evolution and resolution of human brain perfusion responses to the stress of induced hypoglycemia. Neuroimage 53, 584–592 (2010).

    Article  PubMed  Google Scholar 

  35. Jauch-Chara, K. et al. Hypoglycemia during sleep impairs consolidation of declarative memory in type 1 diabetes and healthy humans, Diabetes Care 30, 2040–2045 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Warren, R. E., Zammitt, N. N, Deary, I. J & Frier, B. M. The effects of acute hypoglycaemia on memory acquisition and recall and prospective memory in type 1 diabetes. Diabetologia 50, 178–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Uehara, Y., Nipper, V. & McCall, A. L. Chronic insulin hypoglycemia induces GLUT-3 protein in rat brain neurons. Am. J. Physiol. 272, E716–E719 (1997).

    CAS  PubMed  Google Scholar 

  38. Kumagai, A. K., Kang, Y. S., Boado, R. J. & Pardridge, W. M. Upregulation of blood–brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes 44, 1399–1404 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Kety, S. & Schmidt, C. The nitrous oxide method for the quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J. Clin. Invest. 27, 476–483 (1948).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyle, P. J. et al. Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc. Natl Acad. Sci. USA 91, 9352–9356 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyle, P. J., Kempers, S. F., O'Connor, A. M. & Nagy, R. J. Brain glucose uptake and unawareness of hypoglycemia in patients with insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 1726–1731 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Amiel, S. A. et al. Effect of antecedent glucose control on cerebral function during hypoglycemia. Diabetes Care 14, 109–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Maran, A., Lomas, J., Macdonald, I. A. & Amiel, S. A. Lack of preservation of higher brain function during hypoglycaemia in patients with intensively-treated IDDM. Diabetologia 38, 1412–1418 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Hvidberg, A. et al. Impact of recent antecedent hypoglycemia on hypoglycaemic cognitive dysfunction in nondiabetic humans. Diabetes 45, 1030–1036 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Ovalle, F. et al. Brief twice-weekly episodes of hypoglycemia reduce detection of clinical hypoglycemia in type 1 diabetes mellitus. Diabetes 47, 1472–1479 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Fanelli, C. G. et al. Impact of nocturnal hypoglycemia on hypoglycaemic cognitive dysfunction in type 1 diabetes. Diabetes 47, 1920–1927 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Spyer, G., Hattersley, A. T., MacDonald, I. A., Amiel, S. & MacLeod, K. M. Hypoglycaemic counter-regulation at normal blood glucose concentrations in patients with well controlled type 2 diabetes. Lancet 356, 1970–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Brooks, D. J. et al. Regional cerebral glucose transport in insulin-dependent diabetic patients studied using 11C 3-O-methyl-D-glucose and positron emission tomography. J. Cereb. Blood Flow Metab. 6, 240–244 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Fanelli, C. G. et al. Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes 47, 1444–1450 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Segel, S. A. et al. Blood-to-brain glucose transport, cerebral glucose metabolism, and cerebral blood flow are not increased after hypoglycemia. Diabetes 50, 1911–1917 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Bingham, E. M. et al. Differential changes in brain glucose metabolism during hypoglycaemia accompany loss of hypoglycaemia awareness in men with type 1 diabetes mellitus. An 11C-3-O-methyl-D-glucose PET study. Diabetologia 48, 2080–2089 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Cranston, I., Reed, L. J., Marsden, P. K. & Amiel, S. A. Changes in regional brain 18F-fluorodeoxyglucose uptake at hypoglycemia in type 1 diabetic men associated with hypoglycemia unawareness and counter-regulatory failure. Diabetes 50, 2329–2336 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Dunn, J. T., Cranston, I., Marsden, P. K., Amiel, S. A. & Reed, L. J. Attenuation of amygdala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes: a new player in hypoglycemia unawareness? Diabetes 56, 2766–2773 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Arbelaez, A. M., Powers, W. J., Videen, T. O., Price, J. L. & Cryer, P. E. Attenuation of counter-regulatory responses to recurrent hypoglycemia by active thalamic inhibition: a mechanism for hypoglycemia-associated autonomic failure. Diabetes 57, 470–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Smith, C. B., Choudhary, P., Pernet, A., Hopkins, D. & Amiel, S. A. Hypoglycemia unawareness is associated with reduced adherence to therapeutic decisions in patients with type 1 diabetes: evidence from a clinical audit. Diabetes Care 32, 1196–1198 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rogers, H., de Zoysa, N. & Amiel, S. Patient experience of hypoglycaemia unawareness in type 1 diabetes: are patients appropriately concerned? Diabet. Med. 29, 321–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Rosenthal, J. M. et al. The effect of acute hypoglycemia on brain function and activation: a functional magnetic resonance imaging study. Diabetes 50, 1618–1626 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Bolo, N. R. et al. Brain activation during working memory is altered in patients with type 1 diabetes during hypoglycemia. Diabetes 60, 3256–3264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenthal, M. J. et al. Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers. Diabet. Med. 24, 720–727 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. International Diabetes Federation. Diabetes Atlas, 5th edition. [online], (2011).

  61. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Willer, C. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Matsuda, M. et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48, 1801–1806 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y., Gao, J.-H., Liu, H.-L. & Fox, P. T. The temporal response of the brain after eating revealed by functional MRI. Nature 405, 1058–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Smeets, P. A. M., de Graaf, C., Stafleu, A., van Osch, M. J. P. & van der Grond, J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 24, 363–368 (2005).

    Article  PubMed  Google Scholar 

  66. Vidarsdottir, S. et al. Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Diabetes 56, 2547–2550 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Berridge, K. C., Ho, C. Y., Richard, J. M. & DiFeliceantonio, A. G. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cranston, I. et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J. Cereb. Blood Flow Metab. 18, 130–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Hasselbalch, S. G. et al. No effect of insulin on glucose blood–brain barrier transport and cerebral metabolism in humans. Diabetes 48, 1915–1921 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Bondy, C. A & Cheng, C. M. Signalling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol. 490, 25–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bingham, E. M. et al. The role of insulin in human brain glucose metabolism. Diabetes 51, 3384–3390 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Anthony, K. et al. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance. Diabetes 55, 2986–2992 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Berthoud, H.-R. & Morrison, C. The brain, appetite, and obesity. Annu. Rev. Psychol. 59, 55–92 (2008).

    Article  PubMed  Google Scholar 

  74. Zhu, J. N. & Wang, J. J. The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol. 28, 469–478 (2008).

    Article  PubMed  Google Scholar 

  75. Figlewicz, D. P. & Benoit, S. C. Insulin, leptin, and food reward: update 2008. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R9–R19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, G.-J. et al. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport 13, 1151–1155 (2002).

    Article  PubMed  Google Scholar 

  77. Kullmann, S. et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp. 33, 1052–1061 (2012).

    Article  PubMed  Google Scholar 

  78. Hallschmid, M., Benedict, C., Schultes, B., Born, J. & Kern, W. Obese men respond to cognitive but not to catabolic brain insulin signalling. Int. J. Obes. (Lond.) 32, 275–282 (2008).

    Article  CAS  Google Scholar 

  79. Hallschmid, M. et al. Intranasal insulin reduces body fat in men but not in women. Diabetes 53, 3024–3029 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Benedict, C., Kern, W., Schultes, B., Born, J. & Hallschmid, M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J. Clin. Endocrinol. Metab. 93, 1339–1344 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Benedict, C. et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60, 114–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Hallschmid, M., Higgs, S., Thienel, M., Ott, V. & Lehnert, H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes 61, 782–789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tschritter, O. et al. The cerebrocortical response to hyperinsulinaemia is reduced in overweight humans: a magnetoencephalographic study. Proc. Natl Acad. Sci. 103, 12103–12108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tschritter, O. et al. Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans. Diabetologia 50, 2602–2603 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Tschritter, O. et al. High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabeteologia 55, 175–182 (2012).

    Article  CAS  Google Scholar 

  86. Amiel, S. A., Sherwin, R. S., Simonson, D. C., Lauritano, A. A. & Tamborlane, W. V. Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. N. Engl. J. Med. 315, 215–219 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Amiel, S. A. et al. Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J. Clin. Endocrinol. Metab. 72, 277–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Wallner-Liebmann, S. et al. Insulin and hippocampus activation in response to images of high-calorie food in normal weight and obese adolescents. Obesity (Silver Spring) 18, 1552–1557 (2010).

    Article  CAS  Google Scholar 

  89. Le, D. S. N. et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am. J. Clin. Nutr. 84, 725–731 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Le, D. S. N. et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am. J. Clin. Nutr. 86, 573–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. DelParigi, A. et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int. J. Obes. Relat. Metab. Disord. 28, 370–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. van de Sande-Lee, S. et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 60, 1699–1704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van der Laan, L. N., de Ridder, D. T., Viergever, M. A & Smeets, P. A. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 57, 296–303 (2011).

    Article  Google Scholar 

  94. Small, D. M. & Prescott, J. Odour/taste integration and the perception of flavour. Exp. Brain Res. 166, 345–357 (2005).

    Article  PubMed  Google Scholar 

  95. Rothemund, Y. et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–421 (2007).

    Article  PubMed  Google Scholar 

  96. Stoeckel, L. E. et al. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41, 636–647 (2008).

    Article  PubMed  Google Scholar 

  97. Martin, L. E. et al. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity (Silver Spring) 18, 254–260 (2010).

    Article  Google Scholar 

  98. Guthoff, M. et al. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS ONE 6, e19482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stoeckel, L. E. et al. Effective connectivity of a reward network in obese women. Brain Res. Bull. 79, 388–395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cornier, M.-A. et al. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals. PLoS ONE 4, e6310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, H. et al. Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci. Lett. 473, 5–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Chechlacz, M. et al. Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: a functional magnetic resonance imaging study. Diabetologia 52, 524–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Volkow, N. D. et al. 'Nonhedonic' food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44, 175–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, P. S. et al. Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers—a SPECT study. Neuroimage 40, 275–279 (2008).

    Article  PubMed  Google Scholar 

  105. Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42, 1537–1543 (2008).

    Article  PubMed  Google Scholar 

  107. Haltia, L. T. et al. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 61, 748–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Killgore, W. D. S. et al. Citicoline affects appetite and corticolimbic responses to images of high-calorie foods. Int. J. Eat. Disord. 43, 6–13 (2010).

    PubMed  PubMed Central  Google Scholar 

  109. Baker, L. D. et al. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 68, 51–57 (2011).

    Article  PubMed  Google Scholar 

  110. Seaquist, E. R. et al. Insulin reduces the BOLD response but is without effect on the VEP during presentation of a visual task in humans. J. Cereb. Blood Flow Metab. 27, 154–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Guthoff, M. et al. Insulin modulates food-related activity in the central nervous system. JCEM 95, 748–755 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the Wellcome Trust; Juvenile Diabetes Research Foundation; the Comprehensive Biomedical Research Centre of Guy's and St Thomas' NHS Foundation Trust, and King's College London and the King's College Hospital Charity.

Author information

Authors and Affiliations

Authors

Contributions

Y.-S. Cheah and S. A. Amiel contributed equally to researching the data for the article, discussions of its content, writing the article, and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Stephanie A. Amiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheah, YS., Amiel, S. Metabolic neuroimaging of the brain in diabetes mellitus and hypoglycaemia. Nat Rev Endocrinol 8, 588–597 (2012). https://doi.org/10.1038/nrendo.2012.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing