Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Artificial viruses: a nanotechnological approach to gene delivery

Abstract

Nanotechnology is a rapidly expanding multidisciplinary field in which highly sophisticated nanoscale devices are constructed from atoms, molecules or (macro)molecular assemblies. In the field of gene medicine, systems for delivering nucleic acids are being developed that incorporate virus-like functions in a single nanoparticle. Although their development is still in its infancy, it is expected that such artificial viruses will have a great impact on the advancements of gene therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Commonly used cationic molecules for the condensation of plasmid DNA.
Figure 2: Extracellular and intracellular barriers to local and systemic gene delivery.
Figure 3: A conceptual model of the assembly of a multi-layered artificial virus.

Similar content being viewed by others

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  2. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum. Gene Ther. 13, 3–13 (2002).

  3. Cavazzana-Calvo, M., Lagresle, C., Hacein-Bey-Abina, S. & Fischer, A. Gene therapy for severe combined immunodeficiency. Annu. Rev. Med. 56, 585–602 (2005).

    Article  CAS  Google Scholar 

  4. Houk, B. E., Martin, R., Hochhaus, G. & Hughes, J. A. Pharmacokinetics of plasmid DNA in the rat. Pharm. Res. 18, 67–74 (2001).

    Article  CAS  Google Scholar 

  5. Chary, S. R. & Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86, 5385–5389 (1989).

    Article  CAS  Google Scholar 

  6. Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    Article  CAS  Google Scholar 

  7. Lechardeur, D. et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999).

    Article  CAS  Google Scholar 

  8. Dauty, E. & Verkman, A. S. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J. Biol. Chem. (2005).

  9. Dowty, M. E., Williams, P., Zhang, G., Hagstrom, J. E. & Wolff, J. A. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc. Natl Acad. Sci. USA 92, 4572–4576 (1995).

    Article  CAS  Google Scholar 

  10. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol. 15, 607–660 (1999).

    Article  CAS  Google Scholar 

  11. Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell. 13, 425–434 (2002).

    Article  CAS  Google Scholar 

  12. Fasbender, A., Zabner, J., Zeiher, B. G. & Welsh, M. J. A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther. 4, 1173–1180 (1997).

    Article  CAS  Google Scholar 

  13. Scheule, R. K. The role of CpG motifs in immunostimulation and gene therapy. Adv. Drug Deliv. Rev. 44, 119–134 (2000).

    Article  CAS  Google Scholar 

  14. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003).

    Article  CAS  Google Scholar 

  15. Moreau, E., Domurado, M., Chapon, P., Vert, M. & Domurad, D. Biocompatibility of polycations: in vitro agglutination and lysis of red blood cells and in vivo toxicity. J. Drug Target 10, 161–173 (2002).

    Article  CAS  Google Scholar 

  16. Mastrobattista, E. et al. Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Ther. 8, 405–413 (2001).

    Article  CAS  Google Scholar 

  17. Verbaan, F. J. et al. Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. J. Gene Med. 6, 64–75 (2004).

    Article  CAS  Google Scholar 

  18. Metselaar, J. M. et al. A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 14, 1156–1164 (2003).

    Article  CAS  Google Scholar 

  19. Schiffelers, R. M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149 (2004).

    Article  Google Scholar 

  20. Chiu, S. J., Ueno, N. T. & Lee, R. J. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J. Control Release 97, 357–369 (2004).

    Article  CAS  Google Scholar 

  21. van Steenis, J. H. et al. Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes. J. Control Release 87, 167–176 (2003).

    Article  CAS  Google Scholar 

  22. Wagner, E., Plank, C., Zatloukal, K., Cotten, M. & Birnstiel, M. L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin–polylysine–DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl Acad. Sci. USA 89, 7934–7938 (1992).

    Article  CAS  Google Scholar 

  23. Wagner, E. Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev. 38, 279–289 (1999).

    Article  CAS  Google Scholar 

  24. Saito, G., Amidon, G. L. & Lee, K. D. Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential. Gene Ther. 10, 72–83 (2003).

    Article  CAS  Google Scholar 

  25. Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221 (2000).

    Article  CAS  Google Scholar 

  26. Kelkar, S. A., Pfister, K. K., Crystal, R. G. & Leopold, P. L. Cytoplasmic dynein mediates adenovirus binding to microtubules. J. Virol. 78, 10122–10132 (2004).

    Article  CAS  Google Scholar 

  27. Cohen, R. N., Rashkin, M. J., Wen, X. & Szoka, F. C. Jr. Molecular motors as drug delivery vehicles. Drug Discov. Today: Technologies (in the press).

  28. Mesika, A., Kiss, V., Brumfeld, V., Ghosh, G. & Reich, Z. Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum. Gene Ther. 16, 200–208 (2005).

    Article  CAS  Google Scholar 

  29. Pollard, H. et al. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J. Gene Med. 3, 153–164 (2001).

    Article  CAS  Google Scholar 

  30. Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  31. Ludtke, J. J., Zhang, G., Sebestyen, M. G. & Wolff, J. A. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J. Cell Sci. 112, 2033–2041 (1999).

    CAS  PubMed  Google Scholar 

  32. Bremner, K. H., Seymour, L. W., Logan, A. & Read, M. L. Factors influencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery. Bioconjug. Chem. 15, 152–161 (2004).

    Article  CAS  Google Scholar 

  33. Escriou, V., Carriere, M., Scherman, D. & Wils, P. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv. Drug Deliv. Rev. 55, 295–306 (2003).

    Article  CAS  Google Scholar 

  34. van der Aa, M. A. et al. An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J. Gene Med. 7, 208–217 (2004).

    Article  Google Scholar 

  35. Zanta, M. A., Belguise-Valladier, P. & Behr, J. P. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl Acad. Sci. USA 96, 91–96 (1999).

    Article  CAS  Google Scholar 

  36. Clackson, T. Regulated gene expression systems. Gene Ther. 7, 120–125 (2000).

    Article  CAS  Google Scholar 

  37. Rivera, V. M. et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 105, 1424–1430 (2005).

    Article  CAS  Google Scholar 

  38. Glover, D. J., Lipps, H. J. & Jans, D. A. Towards safe, non-viral therapeutic gene expression in humans. Nature Rev. Genet. 6, 299–310 (2005).

    Article  CAS  Google Scholar 

  39. Muller, K., Nahde, T., Fahr, A., Muller, R. & Brusselbach, S. Highly efficient transduction of endothelial cells by targeted artificial virus-like particles. Cancer Gene Ther. 8, 107–117 (2001).

    Article  CAS  Google Scholar 

  40. Kabanov, A. V. & Kabanov, V. A. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug. Chem. 6, 7–20 (1995).

    Article  CAS  Google Scholar 

  41. Read, M. L. et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33, e86- (2005).

    Article  Google Scholar 

  42. Gosselin, M. A., Guo, W. & Lee, R. J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 12, 989–994 (2001).

    Article  CAS  Google Scholar 

  43. Yew, N. S. Controlling the kinetics of transgene expression by plasmid design. Adv. Drug Deliv. Rev. 57, 769–780 (2005).

    Article  CAS  Google Scholar 

  44. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  Google Scholar 

  45. Bergen, M., Chen, R. & Gonzalez, R. Efficacy and safety of HLA-B7/β-2 microglobulin plasmid DNA/lipid complex (Allovectin-7) in patients with metastatic melanoma. Expert Opin. Biol. Ther. 3, 377–384 (2003).

    CAS  PubMed  Google Scholar 

  46. Stopeck, A. T. et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin. Cancer Res. 7, 2285–2291 (2001).

    CAS  PubMed  Google Scholar 

  47. Chiocca, E. A. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol. Ther. 10, 958–966 (2004).

    Article  CAS  Google Scholar 

  48. Makower, D. et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin. Cancer Res. 9, 693–702 (2003).

    PubMed  Google Scholar 

  49. Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 2181–2187 (2004).

    Article  CAS  Google Scholar 

  50. Moss, R. B. et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 125, 509–521 (2004).

    Article  Google Scholar 

  51. Kloeckner, J., Prasmickaite, L., Hogset, A., Berg, K. & Wagner, E. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J. Drug Target 12, 205–213 (2004).

    Article  CAS  Google Scholar 

  52. Walker, G. F. et al. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11, 418–425 (2005).

    Article  CAS  Google Scholar 

  53. Miyata, K. et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc. 126, 2355–2361 (2004).

    Article  CAS  Google Scholar 

  54. Oupicky, D., Carlisle, R. C. & Seymour, L. W. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 8, 713–724 (2001).

    Article  CAS  Google Scholar 

  55. Martinez-Moreno, M. et al. Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett. 544, 262–267 (2003).

    Article  CAS  Google Scholar 

  56. Vaysse, L. et al. Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein. J. Biol. Chem. 279, 5555–5564 (2004).

    Article  CAS  Google Scholar 

  57. Xu, Z. L. et al. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272, 149–156 (2001).

    Article  CAS  Google Scholar 

  58. Edelman, G. M., Meech, R., Owens, G. C. & Jones, F. S. Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl Acad. Sci. USA 97, 3038–3043 (2000).

    Article  CAS  Google Scholar 

  59. Sando, S., Sasaki, T. & Aoyama, Y. Encapsulation of DNA with neutral glycocluster nanoparticles. A step toward artificial viruses. Nucleic Acids Res. Suppl. 289–290 (2003).

  60. Dauty, E., Behr, J. P. & Remy, J. S. Development of plasmid and oligonucleotide nanometric particles. Gene Ther. 9, 743–748 (2002).

    Article  CAS  Google Scholar 

  61. Zuber, G., Zammut-Italiano, L., Dauty, E. & Behr, J. P. Targeted gene delivery to cancer cells: directed assembly of nanometric DNA particles coated with folic acid. Angew Chem. Int. Ed. Engl 42, 2666–2669 (2003).

    Article  CAS  Google Scholar 

  62. Kakudo, T. et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43, 5618–5628 (2004).

    Article  CAS  Google Scholar 

  63. Kim, W. J. et al. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control. Release (2005).

  64. Peluffo, H. et al. Nonviral gene delivery to the central nervous system based on a novel integrin-targeting multifunctional protein. Hum. Gene Ther. 14, 1215–1223 (2003).

    Article  CAS  Google Scholar 

  65. Aris, A. & Villaverde, A. Modular protein engineering for non-viral gene therapy. Trends Biotechnol. 22, 371–377 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mastrobattista.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gene Therapy Clinical Trials Worldwide

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastrobattista, E., van der Aa, M., Hennink, W. et al. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 5, 115–121 (2006). https://doi.org/10.1038/nrd1960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing