Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design and development of polymers for gene delivery

Key Points

  • Human gene therapy utilizes genetic material – DNA or RNA – as a therapeutic for genetic, acquired and infectious diseases. Gene therapy's potential is great, but the lack of safe and efficient gene delivery methods is a limiting obstacle to clinical implementation.

  • Gene delivery methods include recombinant viruses and synthetic materials such as lipids, polypeptides and polymers. Safety concerns limit the use of viral vectors. Non-viral gene delivery is typically much safer but suffers from generally unsatisfactory delivery efficiency.

  • Gene delivery vectors should protect the genetic material from nucleolytic enzymes, provide potentially long lifetime in the blood, and direct delivery to a specific tissue or cells. Furthermore, the vector must provide a mechanism for entering the target cell, transiting the cytosol, crossing the nuclear membrane and releasing the genetic material at the appropriate point in this process. Non-viral vectors typically lack one or more of the necessary functions.

  • The earliest synthetic vehicles reported in the literature are off-the-shelf materials, not originally designed for gene delivery. These include polylysine, polyethylenimine, and poly(amido amine) dendrimers. The gene delivery efficacy of such materials is serendipitous and, perhaps not surprisingly, typically insufficient for clinical application.

  • In recent years, a variety of polymers have been designed specifically for gene delivery. Often, such polymers are designed to be non-toxic and to address particular steps in the gene delivery process, for example, escape from endocytic vesicles into the cytoplasm. While many of these materials are better than off-the-shelf polymers, their delivery efficiency remains several orders of magnitude below that of recombinant viruses.

  • Based on the large number of studies of off-the-shelf and specifically designed gene delivery polymers, much has been learned about the structure-function relationships of polymer vectors. With growing understanding of polymer gene delivery mechanisms and continued efforts of creative and talented polymer chemists, it is likely that polymer-based gene delivery systems will become an important tool for human gene therapy.

Abstract

The lack of safe and efficient gene-delivery methods is a limiting obstacle to human gene therapy. Synthetic gene-delivery agents, although safer than recombinant viruses, generally do not possess the required efficacy. In recent years, a variety of effective polymers have been designed specifically for gene delivery, and much has been learned about their structure–function relationships. With the growing understanding of polymer gene-delivery mechanisms and continued efforts of creative polymer chemists, it is likely that polymer-based gene-delivery systems will become an important tool for human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyplex formation.
Figure 2: Barriers to intracellular trafficking of polyplexes.
Figure 4: Schematic of the proton-sponge mechanism.
Figure 3: Structures of off-the-shelf gene-delivery polymers.
Figure 5: Structures of several polymers designed for gene delivery.

Similar content being viewed by others

References

  1. Mulligan, R. C. The basic science of gene therapy. Science 260, 926–932 (1993). An early review describing the key problems facing clinical implementation of human gene therapy.

    CAS  PubMed  Google Scholar 

  2. Walsh, C. E. Gene therapy progress and prospects: gene therapy for the hemophilias. Gene Ther. 10, 999–1003 (2003).

    CAS  PubMed  Google Scholar 

  3. van Deutekom, J. C. T. & van Ommen, G. J. B. Advances in Duchenne muscular dystrophy gene therapy. Nature Rev. Genet. 4, 774–783 (2003).

    CAS  PubMed  Google Scholar 

  4. Ferrari, S., Geddes, D. M. & Alton, E. W. F. W. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv. Drug Deliv. Rev. 54, 1373–1393 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dzau, V. J., Deatt, K., Pompilio, G. & Smith, K. Current perceptions of cardiovascular gene therapy. Am. J. Cardiol. 92, 18–23 (2003).

    Google Scholar 

  6. Burton, E. A., Glorioso, J. C. & Fink, D. J. Gene therapy progress and prospects: Parkinson's disease. Gene Ther. 10, 1721–1727 (2003).

    CAS  PubMed  Google Scholar 

  7. Alisky, J. M. & Davidson, B. L. Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases. Hum. Gene Ther. 11, 2315–2329 (2000).

    CAS  PubMed  Google Scholar 

  8. Tuszynski, M. H. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol. 1, 51–57 (2002).

    PubMed  Google Scholar 

  9. Bunnell, B. A. & Morgan, R. A. Gene therapy for infectious diseases. Clin. Microbiol. Rev. 11, 42–52 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cutroneo, K. R. Gene therapy for tissue regeneration. J. Cell. Biochem. 88, 418–425 (2003).

    CAS  PubMed  Google Scholar 

  11. Vile, R. G., Russell, S. J. & Lemoine, N. R. Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2–8 (2000).

    CAS  PubMed  Google Scholar 

  12. Kerr, D. Clinical development of gene therapy for colorectal cancer. Nature Rev. Cancer 3, 615–622 (2003).

    CAS  Google Scholar 

  13. McNeish, L. A., Bell, S. J. & Lemoine, N. R. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther. 11, 497–503 (2004).

    CAS  PubMed  Google Scholar 

  14. Nabel, E. G. Gene therapy for cardiovascular diseases. J. Nucl. Cardiol. 6, 69–75 (1999).

    CAS  PubMed  Google Scholar 

  15. Liu, M. A. DNA vaccines: a review. J. Intern. Med. 253, 402–410 (2003).

    CAS  PubMed  Google Scholar 

  16. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    CAS  PubMed  Google Scholar 

  17. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000). This paper reports the first 'successful' gene therapy trial in humans.

    Article  CAS  PubMed  Google Scholar 

  18. Kay, M. A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 24, 257–261 (2000).

    CAS  PubMed  Google Scholar 

  19. Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).

    CAS  PubMed  Google Scholar 

  20. Gene Therapy Clinical Trials [online] <http://www.wiley.co.uk/genetherapy/clinical/> (2005). Website tabulating important statistics regarding gene therapy clinical trials, including their classification by disease and type of vector.

  21. Verma, I. M. & Somia, N. Gene therapy — promises, problems and prospects. Nature 389, 239–242 (1997).

    CAS  PubMed  Google Scholar 

  22. During, M. J. Adeno-associated virus as a gene delivery system. Adv. Drug Deliv. Rev. 27, 83–94 (1997).

    CAS  PubMed  Google Scholar 

  23. Vile, R. G., Tuszynski, A. & Castleden, S. Retroviral vectors: from laboratory tools to molecular medicines. Mol. Biotechnol. 5, 139–158 (1996).

    CAS  PubMed  Google Scholar 

  24. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413 (1987). This is the first report of gene delivery to mammalian cells using cationic lipids as the DNA carrier.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koltover, I., Salditt, T., Radler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998). A key study that for the first time correlates the three-dimensional structures of lipoplexes with their transfection activity.

    CAS  PubMed  Google Scholar 

  26. Zabner, J. Cationic lipids used in gene transfer. Adv. Drug Deliv. Rev. 27, 17–28 (1997).

    CAS  PubMed  Google Scholar 

  27. Fillion, M. C. & Phillips, N. C. Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pharm. 162, 159–170 (1998).

    Google Scholar 

  28. Abdelhady, H. G. et al. Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I. Nucleic Acids Res. 31, 4001–4005 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997).

    CAS  PubMed  Google Scholar 

  30. Wagner, E., Cotten, M., Foisner, R. & Birnstiel, M. L. Transferrin–polycation–DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl Acad. Sci. USA 88, 4255–4259 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansma, H. G. et al. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic Acids Res. 26, 2481–2487 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai, E. & van Zanten, J. H. Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. Biophys. J. 80, 864–873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kabanov, A. V. et al. DNA interpolyelectrolyte complexes as a tool for efficient cell transformation. Biopolymers 31, 1437–1443 (1991).

    CAS  PubMed  Google Scholar 

  34. Wadhwa, M. S., Collard, W. T., Adami, R. C., McKenzie, D. L. & Rice, K. G. Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug. Chem. 8, 81–88 (1997).

    CAS  PubMed  Google Scholar 

  35. Plank, C., Tang, M. X., Wolfe, A. R. & Szoka, F. C. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther. 10, 319–332 (1999).

    CAS  PubMed  Google Scholar 

  36. Schaffer, D. V., Fidelman, N. A., Dan, N. & Lauffenburger, D. A. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67, 598–606 (2000). The first direct investigation of the effects of polymer–DNA interaction strength on gene-delivery efficiency.

    CAS  PubMed  Google Scholar 

  37. Wolfert, M. A. et al. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 10, 993–1004 (1999).

    CAS  PubMed  Google Scholar 

  38. Zelphati, O. & Szoka, F. C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dash, P. R., Read, M. L., Barrett, L. B., Wolfert, M. A. & Seymour, L. W. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6, 643–650 (1999).

    CAS  PubMed  Google Scholar 

  40. Ogris, M., Brunner, S., Schuller, S., Kircheis, R. & Wagner, E. PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6, 595–605 (1999).

    CAS  PubMed  Google Scholar 

  41. Toncheva, V. et al. Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochim. Biophys. Acta 1380, 354–368 (1998).

    CAS  PubMed  Google Scholar 

  42. Oupicky, D. et al. Steric stabilization of poly-L-lysine/DNA complexes by the covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjug. Chem. 11, 492–501 (2000).

    CAS  PubMed  Google Scholar 

  43. Dash, P. R. et al. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J. Biol. Chem. 275, 3793–3802 (2000).

    CAS  PubMed  Google Scholar 

  44. Howard, K. A. et al. Influence of cationic polymers on the biophysical properties of polyelectrolyte complexes formed by self-assembly with DNA. Biochim. Biophys. Acta 1475, 245–255 (2000).

    CAS  PubMed  Google Scholar 

  45. Wang, W., Tetley, L. & Uchegbu, I. F. The level of hydrophobic substitution and the molecular weight of amphiphilic poly-L-lysine-based polymers strongly affects their assembly into polymeric bilayer vesicles. J. Colloid. Int. Sci. 237, 200–207 (2001).

    CAS  Google Scholar 

  46. Erbacher, P. et al. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum. Gene Ther. 7, 721–729 (1996).

    CAS  PubMed  Google Scholar 

  47. Nishikawa, M., Takemura, S., Takakura, Y. & Hashida, M. Targeted delivery of plasmid DNA to hepatocytes in vivo optimization of the pharmacokinetics of plasmid DNA galactosylated poly(L-lysine) complexes by controlling their physicochemical properties. J. Pharm. Exp. Ther. 287, 408–415 (1998).

    CAS  Google Scholar 

  48. Kircheis, R. et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8, 28–40 (2001).

    CAS  PubMed  Google Scholar 

  49. Mishra, S., Webster, P. & Davis, M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111 (2004).

    CAS  PubMed  Google Scholar 

  50. Erbacher, P., Roche, A. C., Monsigny, M. & Midoux, P. Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjug. Chem. 6, 401–410 (1995).

    CAS  PubMed  Google Scholar 

  51. Ferkol, T., Perales, J. C., Mularo, F. & Hanson, R. W. Receptor-mediated gene transfer into macrophages. Proc. Natl Acad. Sci. USA 93, 101–105 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zanta, M. -A., Boussif, O., Adib, A. & Behr, J. -P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug. Chem. 8, 839–844 (1997).

    CAS  PubMed  Google Scholar 

  53. Bettinger, T., Remy, J. S. & Erbacher, P. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug. Chem. 10, 558–561 (1999).

    CAS  PubMed  Google Scholar 

  54. Leamon, C. P., Weigl, D. & Hendren, R. W. Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. 10, 947–957 (1999).

    CAS  PubMed  Google Scholar 

  55. Wu, G. Y. & Wu, C. H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432 (1987).

    CAS  PubMed  Google Scholar 

  56. Wu, G. Y. & Wu, C. H. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 263, 14621–14624 (1988).

    CAS  PubMed  Google Scholar 

  57. Wu, C. H., Wilson, J. M. & Wu, G. Y. Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264, 16985–16987 (1989).

    CAS  PubMed  Google Scholar 

  58. Wu, G. Y. et al. Receptor-mediated gene delivery in vivo. J. Biol. Chem. 266, 14338–14342 (1991).

    CAS  PubMed  Google Scholar 

  59. Cotten, M. et al. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proc. Natl Acad. Sci. USA 87, 4033–4037 (1990). References 55–59 were the first reports of targeted gene delivery to specific cells using a polymer-based carrier.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wagner, E., Zenke, M., Cotten, M., Beug, H. & Birnstiel, M. L. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Natl Acad. Sci. USA 87, 3410–3414 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zenke, M. et al. Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc. Natl Acad. Sci. USA 87, 3655–3659 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zatloukal, K. et al. Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann. NY Acad. Sci. 660, 136–153 (1992).

    CAS  PubMed  Google Scholar 

  63. Schaffer, D. V., Neve, R. L. & Lauffenburger, D. A. Use of the green fluorescent protein as a quantitative reporter of epidermal growth factor receptor-mediated gene delivery. Tissue Eng. 3, 53–63 (1997).

    CAS  Google Scholar 

  64. Schaffer, D. V. in Chemical Engineering 125 (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1998).

    Google Scholar 

  65. Kircheis, R. et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4, 409–418 (1997).

    CAS  PubMed  Google Scholar 

  66. Harbottle, R. P. et al. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum. Gene Ther. 9, 1037–1047 (1998).

    CAS  PubMed  Google Scholar 

  67. Schaffer, D. V. & Lauffenburger, D. A. Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem. 273, 28004–28009 (1998).

    CAS  PubMed  Google Scholar 

  68. Tseng, W. C., Haselton, F. R. & Giorgio, T. D. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 272, 25641–25647 (1997).

    CAS  PubMed  Google Scholar 

  69. Mukherjee, S., Ghosh, R. N. & Maxfield, F. R. Endocytosis. Physiol. Rev. 77, 759–803 (1997).

    CAS  PubMed  Google Scholar 

  70. Mislick, K. A. & Baldeschwieler, J. D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl Acad. Sci. USA 93, 12349–12354 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Erbacher, P., Roche, A. C., Monsigny, M. & Midoux, P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp. Cell Res. 225, 186–194 (1996).

    CAS  PubMed  Google Scholar 

  72. Curiel, D. T., Agarwal, S., Wagner, E. & Cotten, M. Adenovirus enhancement of transferrin–polylysine-mediated gene delivery. Proc. Natl Acad. Sci. USA 88, 8850–8854 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cristiano, R. J., Smith, L. c. & Woo, S. L. C. Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc. Natl Acad. Sci. USA 90, 2122–2126 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wagner, E. et al. Coupling of adenovirus to transferrin–polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc. Natl Acad. Sci. USA 89, 6099–6103 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cotten, M. et al. High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc. Natl Acad. Sci. USA 89, 6094–6098 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wagner, E., Plank, C., Zatloukal, K., Cotten, M. & Birnstiel, M. L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin–polylysine–DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl Acad. Sci. USA 89, 7934–7938 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Plank, C., Zatloukal, K., Cotten, M., Mechtler, K. & Wagner, E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3, 533–539 (1992).

    CAS  PubMed  Google Scholar 

  78. Plank, C., Oberhauser, B., Mechtler, K., Koch, C. & Wagner, E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. 269, 12918–12924 (1994).

    CAS  PubMed  Google Scholar 

  79. Midoux, P. et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21, 871–878 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wyman, T. B. et al. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36, 3008–3017 (1997).

    CAS  PubMed  Google Scholar 

  81. Lee, H., Jeong, J. H. & Park, T. G. A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release 76, 183–192 (2001).

    CAS  PubMed  Google Scholar 

  82. Vaysse, L., Burgelin, I., Merlio, J. P. & Arveiler, B. Improved transfection using epithelial cell line-selected ligands and fusogenic peptides. Biochim. Biophys. Acta 1475, 369–376 (2000).

    CAS  PubMed  Google Scholar 

  83. Luby-Phelps, K., Castle, P. E., Taylor, D. L. & Lanni, F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl Acad. Sci. USA 84, 4910–4913 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lukacs, G. L. et al. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275, 1625–1629 (2000). This is an important paper demonstrating that plasmid DNA is too large to diffuse through the cytosol and, as a result, some form of active transport or mixing must be responsible for transport of DNA to the nuclear membrane.

    CAS  PubMed  Google Scholar 

  85. Lechardaeur, D. et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999).

    Google Scholar 

  86. Suh, J., Wirtz, D. & Hanes, J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl Acad. Sci. USA 100, 3878–3882 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Subramanian, A., Ranganathan, P. & Diamond, S. L. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol. 17, 873–877 (1999).

    CAS  PubMed  Google Scholar 

  88. Brunner, S. et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 7, 401–407 (2000).

    CAS  PubMed  Google Scholar 

  89. Chan, C. K. & Jans, D. A. Enhancement of polylysine-mediated transferrinfection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum. Gene Ther. 10, 1695–1702 (1999).

    CAS  PubMed  Google Scholar 

  90. Chan, C. K., Senden, T. & Jans, D. A. Supramolecular structure and nuclear targeting efficiency determine the enhancement of transfection by modified polylysines. Gene Ther. 7, 1690–1697 (2000).

    CAS  PubMed  Google Scholar 

  91. Sebestyén, M. G. et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nature Biotechnol. 16, 80–85 (1998).

    Google Scholar 

  92. Brandén, L. J., Mohamed, A. J. & Smith, C. I. E. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nature Biotechnol. 17, 784–787 (1999).

    Google Scholar 

  93. Ciolina, C. et al. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin α. Bioconjug. Chem. 10, 46–55 (1999).

    Google Scholar 

  94. Bremner, K. H., Seymour, L. W., Logan, A. & Read, M. L. Factors influencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery. Bioconjug. Chem. 15, 152–161 (2004).

    CAS  PubMed  Google Scholar 

  95. Wilson, G., Dean, B. S., Wang, G. & Dean, D. A. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. J. Biol. Chem. 16, 80–85 (1998).

    Google Scholar 

  96. Erbacher, P., Roche, A. C., Monsigny, M. & Midoux, P. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta 1324, 27–36 (1997).

    CAS  PubMed  Google Scholar 

  97. Banaszczyk, M. G. et al. Poly-L-lysine-graft-PEG-comb-type polycation copolymers for gene delivery. J. Macromol. Sci. A 36, 1061–1084 (1999).

    Google Scholar 

  98. Zauner, W., Ogris, M. & Wagner, E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. 30, 97–113 (1998).

    CAS  PubMed  Google Scholar 

  99. Cotten, M., Wagner, E. & Birnstiel, M. L. Receptor-mediated transport of DNA into eukaryotic cells. Meth. Enz. 217, 618–644 (1993).

    CAS  Google Scholar 

  100. Perales, J. C., Ferkol, T., Geegen, H., Ratnoff, O. D. & Hanson, R. W. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl Acad. Sci. USA 91, 4086–4090 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wadhwa, M. S., Knoell, D. L., Young, A. P. & Rice, K. G. Targeted gene delivery with a low molecular weight glycopeptide carrier. Bioconjug. Chem. 6, 283–291 (1995).

    CAS  PubMed  Google Scholar 

  102. Hashida, M., Takemura, S., Nishikawa, M. & Takakura, Y. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). Adv. Drug Deliv. Rev. 53, 301–310 (1998).

    CAS  Google Scholar 

  103. Suh, W., Chung, J. -K., Park, S. -H. & Kim, S. W. Anti-JL1 antibody-conjugated poly(L-lysine) for targeted gene delivery to leukemia T cells. J. Control. Release 72, 171–178 (2001).

    CAS  PubMed  Google Scholar 

  104. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995). The first report of polyethylenimine as a gene-delivery vector.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Diebold, S. S., Kursa, M., Wagner, E., Cotten, M. & Zenke, M. Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J. Biol. Chem. 274, 19087–19094 (1999).

    CAS  PubMed  Google Scholar 

  106. Kircheis, R., Blessing, R., Brunner, S., Wightman, L. & Wagner, E. Tumor targeting with surface-shielded ligand–polycation DNA complexes. J. Control. Release 72, 165–170 (2001).

    CAS  PubMed  Google Scholar 

  107. Wojda, U. & Miller, J. L. Targeted transfer of polyethylenimine–avidin–DNA bioconjugates to hematopoietic cells using biotinylated monoclonal antibodies. J. Pharm. Sci. 89, 674–681 (2000).

    CAS  PubMed  Google Scholar 

  108. Abdallah, B. et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7, 1947–1954 (1996).

    CAS  PubMed  Google Scholar 

  109. Goula, D. et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5, 712–717 (1998).

    CAS  PubMed  Google Scholar 

  110. Boletta, A. et al. Nonviral gene delivery to the rat kidney with polyethylenimine. Hum. Gene Ther. 8, 1243–1251 (1997).

    CAS  PubMed  Google Scholar 

  111. Goula, D. et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5, 1291–1295 (1998).

    CAS  PubMed  Google Scholar 

  112. Ferrari, S. et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim. Biophys. Acta 1447, 219–225 (1999).

    CAS  PubMed  Google Scholar 

  113. Coll, J. L. et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum. Gene Ther. 10, 1659–1666 (1999).

    CAS  PubMed  Google Scholar 

  114. Behr, J. -P. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51, 34–36 (1997). This review paper provides the first clear description of the proton-sponge hypothesis.

    CAS  Google Scholar 

  115. Suh, J., Paik, H. J. & Hwang, B. K. Ionization of polyethylenimine and polyallylamine at various pHs. Bioorg. Chem. 22, 318–327 (1994).

    CAS  Google Scholar 

  116. Forrest, M. L., Meister, G. E., Koerber, J. T. & Pack, D. W. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. 21, 365–371 (2004).

    CAS  PubMed  Google Scholar 

  117. Thomas, M. & Klibanov, A. M. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 99, 14640–14645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tomalia, D. A., Naylor, A. M. & Goddard, W. A. Starburst cascade polymers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Eng. 29, 138–175 (1990).

    Google Scholar 

  119. Haensler, J. & Szoka, F. C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379 (1993).

    CAS  PubMed  Google Scholar 

  120. Tanaka, S. et al. Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamido amine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Ther. 7, 1241–1249 (2000).

    CAS  PubMed  Google Scholar 

  121. Rudolph, C., Lausier, J., Naundorf, S., Muller, R. H. & Rosenecker, J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2, 269–278 (2000).

    CAS  PubMed  Google Scholar 

  122. Harada, Y. et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by Epstein–Barr virus-based plasmid vectors combined with polyamidoamine dendrimer. Cancer Gene Ther. 7, 27–36 (2000).

    CAS  PubMed  Google Scholar 

  123. Marayuma-Tabata, H. et al. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Ther. 7, 53–60 (2000).

    Google Scholar 

  124. Tang, M. X., Redemann, C. T. & Szoka, F. C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703–714 (1996).

    CAS  PubMed  Google Scholar 

  125. Tang, M. X. & Szoka, F. C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4, 823–832 (1997).

    CAS  PubMed  Google Scholar 

  126. Midoux, P., LeCam, E., Coulaud, D., Delain, E. & Pichon, C. Histidine containing peptides and polypeptides as nucleic acid vectors. Somat. Cell Mol. Genet. 27, 27–47 (2002).

    CAS  PubMed  Google Scholar 

  127. Pack, D. W., Putnam, D. & Langer, R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 67, 217–223 (2000).

    CAS  PubMed  Google Scholar 

  128. Ihm, J. -E. et al. High transfection efficiency of poly(4-vinylimidazole) as a new gene carrier. Bioconjug. Chem. 14, 707–708 (2003).

    CAS  PubMed  Google Scholar 

  129. Midoux, P. & Monsigny, M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10, 406–411 (1999).

    CAS  PubMed  Google Scholar 

  130. Pichon, C., Roufai, M. B., Monsigny, M. & Midoux, P. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides. Nucleic Acids Res. 28, 504–512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Putnam, D., Gentry, C. A., Pack, D. W. & Langer, R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side chain termini. Proc. Natl Acad. Sci. USA 98, 1200–1205 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Grimm, D. & Kay, M. A. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 3, 281–304 (2003).

    CAS  PubMed  Google Scholar 

  133. Skehel, J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    CAS  PubMed  Google Scholar 

  134. Ren, J., Sharpe, J. C., Collier, R. J., London, R. J. & Loneon, E. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry 38, 976–984 (1999).

    CAS  PubMed  Google Scholar 

  135. Tolstikov, V. V., Cole, R., Fang, H. & Pincus, S. H. Influence of endosome-destabilizing peptides on efficacy of anti–HIV immunotoxins. Bioconjug. Chem. 8, 38–43 (1997).

    CAS  PubMed  Google Scholar 

  136. Subbarao, N. K., Parente, R. A., Szoka, F. C., Nadasdi, L. & Pongraca, K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26, 2964–2972 (1987).

    CAS  PubMed  Google Scholar 

  137. Parente, R. A., Nir, S. & Szoka, F. C. pH-dependent fusion of phosphatidylcholine small vesicles. J. Biol. Chem. 263, 4724–4730 (1988).

    CAS  PubMed  Google Scholar 

  138. Stayton, P. S. et al. in Biomimetic Materials and Design: Biointerfacial Strategies, Tissue Engineering, and Targeted Drug Delivery (eds Dillow, A. K. & Lowman, A. M.) 471–506 (Marcel Dekker Inc., 2002).

    Google Scholar 

  139. Thomas, J. L. & Tirrell, D. A. Polyelectrolyte-sensitized phospholipid vesicles. Acc. Chem. Res. 25, 336–342 (1992).

    CAS  Google Scholar 

  140. Thomas, J. L., Barton, S. W. & Tirrell, D. A. Membrane solubilization by a hydrophobic polyelectrolyte: surface activity and membrane binding. Biophys. J. 67, 1101–1106 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S. & Hoffman, A. S. The design and synthesis of polymers for eukaryotic membrane disruption. J. Control. Release 61, 137–143 (1999).

    CAS  PubMed  Google Scholar 

  142. Murthy, N., Chang, I., Stayton, P. S. & Hoffman, A. S. pH-sensitive hemolysis by random copolymers of alkyl acrylates and acrylic acid. Macromol. Symp. 172, 49–55 (2001).

    CAS  Google Scholar 

  143. Cheung, C. Y., Murthy, N., Stayton, P. S. & Hoffman, A. S. A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug. Chem. 12, 906–910 (2001).

    CAS  PubMed  Google Scholar 

  144. Kyriakides, T. R. et al. pH-sensitive polymers that enhance intracellular drug delivery in vivo. J. Control. Release 78, 295–303 (2002).

    CAS  PubMed  Google Scholar 

  145. Kiang, T. et al. Formulation of chitosan/DNA nanoparticles with poly(propylacrylic acid) enhances gene expression. J. Biomater. Sci. Polym. Ed. 15, 1405–1422 (2005).

    Google Scholar 

  146. Cheung, C. Y., Stayton, P. S. & Hoffman, A. S. Poly(propylacrylic acid)-mediated serum stabilization of cationic lipoplexes. J. Biomater. Sci. Polym. Ed. 16, 163–179 (2005).

    CAS  PubMed  Google Scholar 

  147. Henry, S., Pirie, C., Stayton, P. S. & Hoffman, A. S. Membrane–disruption ability of maleic anhydride copolymers at endosomal pHs. Biomacromolecules (in the press).

  148. Stephan, D. & Nabel, E. G. Gene and other biological therapies for vascular diseases. Fundam. Clin. Pharmacol. 11, 97–110 (1997).

    CAS  PubMed  Google Scholar 

  149. Bulmus, V., Woodward, M., Lin, L., Stayton, P. S. & Hoffman, A. S. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93, 105–120 (2003).

    CAS  PubMed  Google Scholar 

  150. El-Sayed, M., Hoffman, A. S. & Stayton, P. S. Influence of composition of novel pH-sensitive and glutathione-reactive polymeric carriers on their membrane-destabilizing activity. J. Control. Release (in the press).

  151. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S. & Stayton, P. S. Bioinspired polymeric carriers than enhance intracellular delivery of biomolecular therapeutics. Bioconjug. Chem. 14, 412–419 (2003).

    CAS  PubMed  Google Scholar 

  152. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S. & Stayton, P. S. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides to hepatocytes. J. Control. Release 89, 365–374 (2003).

    CAS  PubMed  Google Scholar 

  153. Gonzalez, H., Hwang, S. & Davis, M. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 10, 1068–1074 (1999). First report of a gene delivery polymer containing cyclodextrin as part of the polymer backbone.

    CAS  PubMed  Google Scholar 

  154. Hwang, S. J., Bellocq, N. C. & Davis, M. E. Effects of structure of cyclodextrin-containing polymers on gene delivery. Bioconjug. Chem. 12, 280–290 (2001).

    CAS  PubMed  Google Scholar 

  155. Reineke, T. M. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from change centers. Bioconjug. Chem. 14, 247–254 (2003).

    CAS  PubMed  Google Scholar 

  156. Reineke, T. M. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type. Bioconjug. Chem. 14, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  157. Popielarski, S. R., Mishra, S. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 3. cyclodextrin type and functionalization. Bioconjug. Chem. 14, 672–678 (2003).

    CAS  PubMed  Google Scholar 

  158. Davis, M. E. et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11, 179–197 (2004).

    CAS  PubMed  Google Scholar 

  159. Pun, S. H. & Davis, M. E. in Polymeric Gene Delivery (ed. Amiji, M.) 187–210 (CRC, Boca Raton; 2005).

    Google Scholar 

  160. Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: past, present, and future. Nature Rev. Drug Discov. 3, 1023–1035 (2004).

    CAS  Google Scholar 

  161. Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F. & Uekama, K. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjug. Chem. 13, 1211–1219 (2002).

    CAS  PubMed  Google Scholar 

  162. Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F. & Uekama, K. In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug. Chem. 14, 342–350 (2003).

    CAS  PubMed  Google Scholar 

  163. Arima, H., Kihara, F., Hirayama, F. & Uekama, K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug. Chem. 12, 476–484 (2001).

    CAS  PubMed  Google Scholar 

  164. Forrest, M. L., Gabrielson, N. & Pack, D. W. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng. 89, 416–423 (2005).

    CAS  PubMed  Google Scholar 

  165. Pun, S. H. et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 15, 831–840 (2004).

    CAS  PubMed  Google Scholar 

  166. Pun, S. H. & Davis, M. Development of a non-viral gene delivery vehicle for systemic application. Bioconjug. Chem. 13, 630–639 (2002).

    CAS  PubMed  Google Scholar 

  167. Bellocq, N., Pun, S. & Davis, M. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14, 1122–1132 (2003).

    CAS  PubMed  Google Scholar 

  168. Pun, S. et al. Biodistribution of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther. 3, 641–650 (2004).

    CAS  PubMed  Google Scholar 

  169. Putnam, D. & Langer, R. Poly(4-hydroxy-L-proline ester): low-temperature polycondensation and plasmid DNA complexation. Macromolecules 32, 3568–3662 (1999).

    Google Scholar 

  170. Lim, Y. -B., Choi, Y. H. & Park, J. -S. A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester). J. Am. Chem. Soc. 121, 5633–5639 (1999).

    CAS  Google Scholar 

  171. Lim, Y. -B., Kim, C. -H., Kim, K., Kim, S. W. & Park, J. -S. Development of a safe gene delivery system using biodegradable polymer, poly[α-(4-aminobutyl)-L-glycolic acid]. J. Am. Chem. Soc. 122, 6524–6525 (2000).

    CAS  Google Scholar 

  172. Lim, Y. -B. et al. Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc. 123, 2460–2461 (2001).

    CAS  PubMed  Google Scholar 

  173. Koh, J. J. et al. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice. Gene Ther. 7, 2099–2104 (2000).

    CAS  PubMed  Google Scholar 

  174. Lynn, D. M. & Langer, R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 10761–10768 (2000).

    CAS  Google Scholar 

  175. Lynn, D. M., Amiji, M. M. & Langer, R. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew. Chem. Int. Ed. Eng. 40, 1707–1710 (2001).

    CAS  Google Scholar 

  176. Lynn, D. M., Anderson, D. G., Putnam, D. & Langer, R. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123, 8155–8156 (2001). One of the first reports of a combinatorial approach to synthesis of materials for gene delivery.

    CAS  PubMed  Google Scholar 

  177. Little, S. R. et al. Poly-β amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl Acad. Sci. USA 101, 9534–9539 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Anderson, D. G. et al. A polymer library approach to suicide gene therapy for cancer. Proc. Natl Acad. Sci. USA 101, 16028–16033 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Forrest, M. L., Koerber, J. T. & Pack, D. W. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14, 934–940 (2003).

    CAS  PubMed  Google Scholar 

  180. Pichon, C. et al. Poly[Lys–(AEDTP)]: a cationic polymer that allows dissociation of pDNA/cationic polymer complexes in a reductive medium and enhances polyfection. Bioconjug. Chem. 13, 76–82 (2002).

    CAS  PubMed  Google Scholar 

  181. Gosselin, M. A., Guo, W. & Lee, R. J. Efficient gene transfer using reversible cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 12, 989–994 (2001).

    CAS  PubMed  Google Scholar 

  182. Sonawane, N. D., Szoka, R. C. & Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. J. Biol. Chem. 278, 44826–44831 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Pack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

American Society of Gene Therapy

Controlled Release Society

Gene Therapy Clinical Trials Worldwide

Glossary

LIPOPLEXES

Nanoparticles similar to polyplexes but formed by complexation of cationic lipids (or liposomes containing cationic lipids) and DNA.

POLYPLEXES

Nanoparticles, typically ∼100 nm in diameter, formed by electrostatic complexation of cationic polymers (or polypeptides) and DNA.

RECEPTOR-MEDIATED ENDOCYTOSIS

The process by which cells internalize various nutrients and signalling molecules. Binding of the ligand to a specific plasma membrane-bound receptor protein generally initiates the formation of clathrin-coated pits and subsequently formation of a vesicle (the endosome) inside the cell. Viruses, drugs and delivery vectors can also be internalized by displaying the natural ligand or an analogue.

TRANSFECTION

Delivery of biomolecules, usually DNA or RNA, into mammalian cells in culture mediated by synthetic reagents such as polymers, polypeptides or lipids.

ENDOLYSOSOMES

Cytoplasmic vacuoles formed by inward budding of the cell membrane during endocytosis. The organelles, first known as endosomes, acidify and fuse with enzyme-carrying vesicles from the Golgi to become lysosomes.

IMPORTINS

Cytoplasmic proteins that bind nuclear localization signal peptides and, therefore, target proteins for transport across the nuclear membrane. Importins are recognized by the nuclear pore complex, a macromolecular assembly of more than 100 different proteins, and translocated (along with their cargo molecule) through the pore by an energy-dependent mechanism.

INCLUSION COMPLEXES

Bi-molecular complexes in which the 'host' forms a cavity into which the 'guest' molecule binds through non-covalent (van der Waals) interactions.

SUICIDE GENE

A gene that, once expressed in a target cell, causes death of the cell — for example, by initiating apoptosis or making the cell susceptible to the activity of a prodrug. One example of the latter is herpes simplex thymidine kinase, which activates drugs such as acyclovir and ganciclovir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pack, D., Hoffman, A., Pun, S. et al. Design and development of polymers for gene delivery. Nat Rev Drug Discov 4, 581–593 (2005). https://doi.org/10.1038/nrd1775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing