
Despite the important advances that have enabled 
better stroke prevention in atrial fibrillation (AF) and 
more effective maintenance of sinus rhythm over the 
past decades, a large unmet need to improve the pre-
vention and treatment of AF remains. Mortality for AF 
remains at 3.5% per year, and death is often experi-
enced as sudden death or as a result of heart failure1,2. 
Each year, approximately 20% of patients with AF 
need to be hospitalized3,4, and stroke occurs in 1.5% 
of patients with AF who are receiving anticoagulant 
drugs5. Furthermore, more than half of the patients 
with AF are symptomatic despite adequate anticoagula-
tion and rate control4,6. In view of the projected increase 
in the incidence and prevalence of AF7–9, as well as 

the substantial burden of death and disability that is 
still associated with this condition10, the status quo 
is unacceptable.

Current management of patients with AF com-
prises treatment of the accompanying cardiovascular 
conditions, oral anticoagulation, rate control — with 
medications that slow atrioventricular nodal recovery 
or, rarely, with atrioventricular nodal ablation — and 
rhythm-control therapy with antiarrhythmic drugs, 
electrical cardioversion, catheter ablation or, at times, 
AF surgery11,12. Unfortunately, most of these current 
approaches are disconnected from our understanding 
of the major mechanisms that cause AF1,13,14 (BOX 1). AF 
is a heterogeneous condition with multiple aetiologies 
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Abstract | Despite remarkable advances in antiarrhythmic drugs, ablation procedures, and 
stroke-prevention strategies, atrial fibrillation (AF) remains an important cause of death and 
disability in middle-aged and elderly individuals. Unstructured management of patients with AF 
sharply contrasts with our detailed, although incomplete, knowledge of the mechanisms that 
cause AF and its complications. Altered calcium homeostasis, atrial fibrosis and ageing, 
ion-channel dysfunction, autonomic imbalance, fat-cell infiltration, and oxidative stress, in 
addition to a susceptible genetic background, contribute to the promotion, maintenance, and 
progression of AF. However, clinical management of patients with AF is currently guided by stroke 
risk parameters, AF pattern, and symptoms. In response to this apparent disconnect between the 
known pathophysiology of AF and clinical management, we propose a roadmap to develop a set 
of clinical markers that reflect the major causes of AF in patients. Thereby, the insights into the 
mechanisms causing AF will be transformed into a format that can underpin future personalized 
strategies to prevent and treat AF, ultimately informing better patient care.
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and mechanisms, and which presents with a variety of 
symptoms and evolution patterns2,15–23. However, none 
of the current management decisions considers the vari
able pathophysiology of AF, thereby ignoring the oppor-
tunity for tailored, personalized approaches that target 
the major drivers for AF24.

At present, anticoagulation is recommended on the 
basis of clinical risk scores for stroke, irrespective of 
the type or cause of AF. Rate-control therapy is titrated 
on the basis of resting heart rate and symptoms, without 
individualized discrimination between patients. Only 
symptoms and, to some degree, the temporal pattern of 
AF, comorbidities, and life expectancy, are considered 
when making the decision about rhythm-control ther-
apy25. Even the ‘simple’ distinction between paroxysmal 
and chronic AF is often incorrect, and correlates poorly 
with the real AF burden26,27.

The indiscriminate use of upstream AF thera-
pies has led to some disappointment. Experimental 

and observational clinical data supported renin–
angiotensin–aldosterone blockers in AF prevention 
schemes28,29, but subsequent large randomized trials did 
not demonstrate a clinical benefit in patients without an 
established indication for these substances30,31. Drugs 
with anti-inflammatory and antioxidative properties 
that were tested for the prevention of AF in several set-
tings showed mixed outcomes23,32–35. Finding markers 
for the major disease mechanisms — or ‘health modi
fiers’ — causing AF in a given patient would enable some 
of these treatment modalities to be used successfully. 
Furthermore, if information on the individual drivers 
for AF were available, personalized, preventive, and 
therapeutic strategies against this major threat to healthy 
ageing could be developed36.

In this Consensus Statement, we critically assess 
how the current knowledge on the mechanisms of AF 
is identified in daily clinical practice, and the extent to 
which it is translated into therapeutic improvements. 
To bridge the current gap between basic knowledge and 
clinical management, we propose a series of steps to build 
a clinically useful, mechanistic classification of AF, and 
describe the starting point for developing a set of clinical 
markers for the major health modifiers causing AF.

Guidance through AF characterization
In recognition of the current shortfalls in AF manage-
ment, several research groups and consensus panels 
have proposed methods and approaches for improved 
characterization of the causes of AF in patients. Some 
groups have recommended the use of cardiac MRI-
detected left atrial delayed gadolinium enhancement37–39 
for the identification of patients in whom AF is likely to 
recur after catheter ablation38,40,41, although an external 
validation of the feasibility of this technique is needed42. 
The CHARGE AF consortium identified a set of clinical 
parameters and biomarkers that could be used to pre-
dict AF incidence during follow‑up, but did not provide 
information on the most appropriate prevention or ther-
apy approach43. Similarly, the CHADS2 score predicts 
new-onset AF incidence44, but does not add information 
on the causes or the mechanisms involved. Delegates at 
the 4th AFNET/EHRA consensus conference proposed 
a classification of AF that reflected the different disease 
mechanisms. The proposed AF types were: mono-
genic AF, focally induced AF, postoperative AF, valvu-
lar AF, AF in the elderly, polygenic AF, and unclassified 
AF45,46. Unfortunately, however, prospective validation 
of such a classification is currently lacking, resulting 
in many patients being classified as ‘other’. Moreover, 
many patients, including those with unclassified AF, will 
show overlapping mechanisms of AF according to this 
expert consensus.

A more precise classification of patients with AF that 
recognizes and accounts for the major disease mech
anisms is needed. Characterizing the major health modi
fiers causing AF would provide the basis for tailored 
management, thereby yielding a maximum benefit and 
limiting adverse effects, in comparison with the current 
‘one-size-fits-all’ therapeutic approach. For example, 
weight reduction can help to prevent AF recurrence 
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Box 1 | Disconnect between known mechanism of AF and management

At present, a disconnect exists between the known mechanisms of atrial fibrillation (AF), 
and the current management of AF, which is based on a useful, but weak, estimation 
scheme of the risk of stroke and on AF duration and symptoms (see the figure).
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Known pathophysiological 
mechanisms 
• Atrial fibrosis 
• Abnormal Ca2+ homeostasis
• Ion-channel dysfunction 

(genetic or acquired)
• Autonomic dysfunction
• Increased oxidative stress
• microRNA-mediated dysregulation
• Paracrine fat-cell activity

Current management strategies 
• Therapy of concomitant conditions 

in all patients 
• Anticoagulation stratified by 

stroke risk factors
• Rate control in all patients, 

titrated to rate
• Rhythm control in symptomatic 

patients, partially based on AF duration 
or AF pattern
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in overweight patients with AF47,48, and physical activ-
ity reduction might contribute to the prevention of AF 
in athletes49. Specialized, nurse-led, AF clinics improve 
guideline adherence50, and might also prove valuable 
in targeting risk factors, such as weight reduction, in 
identifying warning signs and symptoms, and by rais-
ing patient awareness of their disease. Upstream therapy 
might help to prevent AF in patients with heart failure. 
Notably, other less obvious major health modifiers 
that cause AF might not have yet been detected and, 
therefore, would not be treated via targeted therapy. 
Identifying the unknown factors, and implementing 
these into a health-modifier-based characterization 
in the future, could markedly improve patient care. 
This Consensus Statement should be considered a 
starting point.

Defining patient health modifiers of AF
A list of the major health modifiers causing AF, and of 
the corresponding clinical markers, would form a valid 
basis for stratified or personalized approaches to pre-
vention and treatment (BOX 2). We therefore propose, 
first, to identify the major health modifiers causing AF 
in patients in a systematic, concerted effort, and second, 
to generate a pathophysiological classification of patients 
with AF using the identified health modifiers.

We have chosen the term ‘health modifiers’ to refer to 
the major mechanisms driving AF in patients as they are 
meant to inform preventive and therapeutic approaches 
for AF. We selected the major mechanisms of AF on the 
basis of a group discussion and a review of the literature. 
The mechanisms described here are thought to be cred-
ible drivers for AF and to have a relevant effect in terms 
of pathogenic potential and prevalence in patients with 
AF, thus qualifying as candidates for the major health 
modifiers causing AF (BOX 2). Clearly, this list is a starting 
point that needs scientific evaluation.

Mechanisms of AF
At the molecular and cellular levels, several drivers of AF 
have been identified, including ageing and atrial fibro-
sis, abnormal calcium homeostasis, sarcoplasmic reticu
lum calcium leak, ion-channel dysfunction (genetic or 

acquired), and autonomic dysfunction (for example, 
in athletes with elevated vagal tone). In addition, accu-
mulating data support important contributions to the 
pathogenesis of AF of high levels of oxidative stress, infil-
tration of fat into the atria, as well as increases in the 
paracrine activity of atrial adipocytes and maladaptation 
owing to chronic kidney disease. All these mechanisms 
of AF (BOX 1) have the potential to lead to atrial dysfunc-
tion (FIG. 1), although the involvement of each candidate 
for a major health modifier requires further validation.

Atrial fibrosis and ageing
AF leads to profound structural alterations, including 
an increased formation of extracellular matrix, deposi-
tion of fibrous material, and a marked change in gene 
expression patterns51. Both AF itself and various clini
cal conditions associated with AF, such as inflamma-
tion, hypertension, cardiac hypertrophy, or mitral valve 
disease, can cause increased atrial fibrosis resulting in 
different fibrotic patterns21,23. In addition, the ageing 
heart is constantly losing cardiomyocytes (estimated at 
0.5–1.0% cardiomyocyte-loss per year52–54), and fibrous 
tissue often forms in lieu of cardiomyocytes in older 
individuals. Impaired electrical coupling between myo-
cytes within the epicardial layer, as well as between the 
epicardial layer and the endocardial bundle network, 
fosters three-dimensional, temporospatial conduction 
events (breakthroughs)55, thereby maintaining AF.

Altered calcium homeostasis
In the presence of AF, high atrial rates and early reacti
vation of cardiomyocytes elevate diastolic Ca2+ and 
intracellular Ca2+ storage56,57. Adaptation to this new 
situation results in profound changes in the ion chan-
nels controlling Ca2+ reuptake and release by the sarco-
plasmic reticulum13,21. These changes persist for some 
time after the restoration of a normal sinus rhythm (for 
example, after cardioversion), rendering the recurrence 
of AF more likely58. Increases in spontaneous electri-
cal activity have been suggested to have a major role 
in abnormal intracellular Ca2+handling in the genesis 
of AF59. Although this theory has been challenged by 
reports demonstrating improved Ca2+‑handling stabil
ity, and even Ca2+ silencing, after AF56,60, increases in 
the sympathetic activity in the atrial tissue might still 
underlie the increase in the rate of ectopic activity 
during AF.

Ion-channel dysfunction
AF and other structural heart diseases result in changes 
in the expression, or in the post-translational regulation, 
of ion channels21. These changes not only contribute to 
a shortening of atrial refractoriness, favouring re‑entry, 
but also to prolongation of the atrial action potential and 
the triggered electrical activity13,21. In addition to these 
adaptive changes in ion-channel regulation, the local 
milieu within atrial myocytes — influenced for example 
by shear stress16, metabolic factors, atrial work load, or 
cellular age — also alters the expression and function 
of ion channels, possibly contributing to changes in 
refractoriness or in ectopic activity occurrence61.

Box 2 | Candidates for health modifiers of AF

•	Ageing and replacement of cardiomyocytes with 
extracellular matrix

•	Adaptive changes to increased work load

•	Delayed left atrial activation

•	Spontaneous atrial electrical activity

•	Genetic and genomic predisposition for atrial 
dysfunction

•	Infiltration of fat cells in the atria and activation of 
atrial fat tissue

•	Elevated atrial oxidative stress

•	Renal dysfunction

•	Prothrombotic dysregulation

•	Yet unknown modifiers to be identified
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Genetic causes
AF has a strong familial component. Some pedigrees of 
early-onset AF are driven by mutations in ion-channel 
genes, which are also found in patients with inherited 
electrical diseases, such as the long QT syndrome, 
Brugada syndrome, and hypertrophic or arrhythmo-
genic right ventricular cardiomyopathy62–64. Many 
inherited arrhythmia syndromes, which are character-
ized by mutations in cardiac ion channels, cause AF in 
structurally normal hearts64,65. Patients with AF who 
have these mutations have been referred to as patients 
with ‘monogenic AF’ (REF. 1). Early-onset AF is associ
ated with common genetic variants (17 independent 
loci have been identified to date), with a hotspot for 
such variants on chromosome 4q25 (REFS 18,66). The 
gene most closely located to the risk variants encodes 
the two-domain transcription factor, PITX2. Low 
expression levels of PITX2 mRNA induce complex 
left atrial gene expression changes, without apparent 
structural alterations, that predispose to AF19,67. Thus, 
altered expression of atrial ion channels as a result of 
genetic alterations in the atria could be a common 
path by which subtle genetic changes predispose 
patients to AF, subsequently influencing the response 
to antiarrhythmic drugs68.

Autonomic dysfunction
Atrial function is tightly regulated by the autonomic 
nervous system, which in turn can be an important fac-
tor that promotes the new onset of AF. Changes in sym-
pathetic or parasympathetic tone alter the atrial action 
potential, as well as the refractory period, provoking 
depolarizations and triggered activity69–71. One in three 
patients with paroxysmal AF, and up to 70% of younger 
patients, present with well-defined adrenergic or vagal 
triggers72,73. Low-level vagal stimulation prevents AF by 
decreasing sympathetic and parasympathetic cardiac 
responsiveness in animal models susceptible to AF74. 
High-intensity endurance training is an evolving risk 
factor underlying AF in middle-aged Europeans without 
overt structural heart disease75,76, which can be mediated 
by an elevated parasympathetic tone, structural changes, 
or by changes in ion-channel expression14,73,77. Similarly, 
AF in patients with obstructive sleep apnoea can be pro-
voked by autonomic imbalance14,78. Ganglionated plexi, 
heterogeneous sympathetic hyperinnervation, and nerve 
sprouting can contribute to AF in some patients79,80.

Oxidative stress
Experimental studies have suggested that changes in the 
nitric oxide–redox balance of the atrial myocardium can 
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Figure 1 | Hypothetical network of the clinical conditions and mechanisms associated with AF. Proposed interaction 
between the clinical parameters that have been associated with atrial fibrillation (AF), the known mediators of atrial 
damage, the dysfunction that might be driven by these conditions (orange), and the major electrical consequences causing 
AF (red). APD, action-potential duration; ERP, effective refractory period; RAAS, renin–angiotensin–aldosterone system.
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have an important role in the new onset and progres-
sion of AF, by mediating the effects of systemic inflam-
mation on the atrial myocardium, and by acting on 
a number of relevant mechanisms. In humans, the 
cytokine-stimulated gp91phox NADPH oxidase (Nox2) 
is the main source of reactive oxygen species in isolated 
atrial myocytes81. Atrial Nox2 activity was significantly 
increased shortly after AF induction in goats, and in atrial 
samples from patients in sinus rhythm who developed AF 
after cardiac surgery20. These findings suggest that Nox2 
inhibition with statins might prevent the new onset of 
AF. However, the Statins In Cardiac Surgery trial82 has 
provided good evidence against this assumption, suggest-
ing that either the level of Nox2 inhibition achieved by 
therapeutic doses of statins in humans is not sufficient to 
prevent postoperative AF, or that the association between 
atrial Nox2 activity and AF is not causal.

Fat-cell infiltration and activation
The profound and swift effects of weight loss on AF47,48 
cannot be explained by long-term cardiovascular protec-
tion83. Obesity not only creates atrial fibrosis84, but also 
increases epicardial fat84,85. Furthermore, obesity leads to 
the infiltration of fat cells into the atrial tissue and to the 
activation of atrial fat cells, thus modifying atrial electrical 
function22,86, providing a possible mechanism linking obe-
sity and pericardial fat to AF. Therefore, epicardial adipose 
tissue could be an important health modifier for AF.

Chronic kidney disease
In large, unselected study populations, the risk of develop
ing AF is increased in patients with a reduced estimated 
glomerular filtration rate of 30–59 ml/min/1.73 m2 com-
pared with those with normal renal function (HR 1.32), 
independently of other risk factors87,88. Additionally, 
microalbuminuria and macroalbuminuria were associ
ated with increased risk of AF87,88. In patients with 
both chronic kidney disease and AF, the risk of stroke 
and the risk of bleeding are further increased com-
pared with patients with AF only87,88. However, neither 
vitamin K antagonist anticoagulant therapies, nor the 
non-vitamin‑K antagonist oral anticoagulants, such as 
apixaban, dabigatran, edoxaban, or rivaroxaban, have 
been sufficiently tested in patients with severe chronic 
kidney disease to suggest safe use at present87,88.

From atrial tissue to clinical markers
Several mechanisms that can cause AF have been identi
fied and verified, but often in animal models of AF. This 
knowledge requires verification in patients, and trans-
lation into clinical markers that can be measured in 
clinical practice without needing access to atrial tissue 
(FIG. 2). These mechanisms have plausible links to clinical 
conditions and to markers that can be used to identify 
patients at risk of AF (FIG. 1), which provides good reason 
to explore putative markers for relevant health modifiers 
for AF. Thereby, a set of clinical markers to define the 
major health modifiers causing AF in specific patients 
can be developed, which subsequently will require valid
ation in independent cohorts (FIG. 2). Identification and 
validation of these markers could underpin new per-
sonalized approaches to AF prevention and therapy 
in the future, and ideally will be accessible in a wide 
variety of health-care settings. Such a set of markers 
would also accommodate the concept that several mech
anisms can coexist and synergistically promote AF in 
individual patients.

A new classification of AF: a call to action
A major, direct benefit of a mechanistic classification 
of AF would be a personalized therapeutic approach on 
the basis of the most active processes in each patient, 
in addition to more accurate disease stratification, as 
well as better prevention of AF, and detection of silent 
AF (FIG. 3). By identifying the leading health modifiers 
causing AF in individual patients, more effective thera
pies than those currently available could be selected 
at an earlier stage for primary preventive intervention 
or for the prevention of AF recurrence (FIG. 2). Such 
personalized concepts will add to the existing practice of 
cardiovascular risk reduction. These interventions will 
comprise targeted treatment of reversible health modi-
fiers, such as antifibrotic treatment in patients prone to 
atrial fibrosis, weight reduction in patients with atrial 
fat-cell infiltration, or selection of antiarrhythmic drugs 
on the basis of the atrial electrical function as deter-
mined by age or genetic predisposition36,45. Although a 
complex network of arrhythmogenic processes is likely 
to culminate in AF, a balance between simplicity and the 
integration of the major mechanisms of AF is essential.

New, stratified preventative and therapeutic approaches to
counter the major health modifiers causing AF in patients
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• Determine AF-related changes in human atrial tissue
 e.g. ion-channel expression, fibrosis, infiltration of fat cells,
 amyloidosis, complex genetics
• Determine the major clinical phenotypes predisposing patients to AF
 e.g. concomitant cardiovascular conditions, genetic
 and genomic predisposition, biometrics

Distill markers for the main mechanisms causing AF in patients
e.g. clinical parameters, ECG, blood

Validate indicators and quantify the relevance of each 
health modifier in large, independent cohorts

Current approach to AF treatment
• Clinical risk scores
• AF pattern
• Acute presentation (often ‘random’)

Mechanisms causing AF
Multiple have been described in great
molecular detail, often in AF models
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Figure 2 | Disconnect between the mechanisms and the clinical treatment of AF, 
and the proposed strategy to overcome it. Comparison of the current approach to 
atrial fibrillation (AF) management, which is disconnected from the established insights 
into AF pathophysiology, and the proposed approach to AF management in which the 
major changes leading to AF will lead to a classification of patients with AF and provide 
a basis for personalized prevention and management. ECG, electrocardiogram.
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Given the identified potential for personalized pre-
vention and management of AF, scientists, clinician 
researchers, experts in statistical methods, and those 
with access to biobanks urgently need to collaborate 
in characterizing the major health determinants of AF. 
Most of the pieces in this puzzle are probably avail
able, but we need to put them together by making use 
of existing biobanks, large databases, as well as inter-
disciplinary, integrated, and specialist AF expertise. 
Subsequently, scientific rigour and robust validation of 
clinical markers for different types of AF are necessary 
for the new classification of AF to become useful.

The context of health-care delivery is also impor-
tant. Specific AF services, for example in the form of 
specialist AF clinics89 and integrated AF services50,90, 
will have an important role in the validation and clin-
ical evaluation of the major health modifiers of AF91. 
Such expert services will also be seminal points for the 
wider use of the new classification of patients with AF.

Conclusions
The current clinical approach to patients with AF has 
yet to consider and incorporate our knowledge on the 
diverse health modifiers that can cause AF, such as 
atrial fibrosis and ageing, altered calcium homeostasis, 
ion-channel dysfunction and genetic susceptibility, 
autonomic imbalance, oxidative stress, infiltration of 
fat cells, and chronic kidney disease. A classification 
of AF reflecting these well-established health modi
fiers, which could be present alone or in combination, 
should be able to overcome the current disconnect 
between our knowledge of the major health modi-
fiers causing AF and its clinical management, thus 
informing strategies to personalize the prevention and 
management of AF in patients. In addition, a deeper 
knowledge of a patient’s disease would enable a better-
informed joint patient–physician decision on which 
therapeutic strategies to employ. A coordinated effort 
of researchers from multiple disciplines is warranted 
to achieve this new, mechanism-based classification of 
patients with AF.

Quantitative description
of the major causes of AF in patients

A classification of AF
integrating AF mechanisms to guide

personalized management
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Mechanisms of AF
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Based on stroke risk and AF pattern  

Definition of the major health modifiers
that cause AF in patients

Definition of a set of clinical markers
identifying patients with different causes of AF

Validation of the major health modifiers
in representative patient cohorts

Better informed
health-care
professionals

Better informed
patients and
general public

Targteted diagnosis
of ‘silent’ undiagnosed AF

Development of testable
hypotheses for
personalized therapy

Stratified approaches
to prevent AF-related
complications in
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Stratified preventative
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the major health
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Quantification of each mechanism
and its contribution to AF
In human atrial tissue and
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Quantification of the major factors
causing incident and recent-onset AF

In representative patient cohorts

Figure 3 | Proposed roadmap for developing a classification of AF based on the 
major health modifiers leading to AF. Ideal steps towards a mechanistic classification 
of atrial fibrillation (AF) based on the major heath modifiers that will help to progress 
from the current disconnect between AF mechanisms and management, to an approach 
to AF prevention and therapy that is informed by the different health modifiers causing 
AF in patients. The lower section of the flow chart illustrates some of the potential health 
benefits of a new classification of AF.
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