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Abstract

A link between chromosome translocations and cancer has been recognized for several decades, as 

translocations sometimes generate fusion genes that deregulate normal cell growth. Fusion genes 

with oncogenic potential have now been described in many hematological and solid malignancies. 

Sequencing approaches have confirmed that numerous, non-clonal translocations are a typical 

feature of cancer cells, and have also revealed that many chromosome rearrangements are highly 

complex and contain sequence from multiple genomic sites. The factors and pathways that 

promote translocations are becoming clearer, with nonhomologous end-joining implicated as a 

major source of chromosome rearrangements.

Main text

Genomic instability, comprising sequence changes and chromosome rearrangements is 

considered to be the most prominent mechanism leading to the appearance of cancer1. Much 

research has therefore focused on the nature of the mutations that are present in cancer cells, 

and on the processes that lead to their appearance. While the importance of genetic changes 

in driving cancer has been appreciated for almost 100 years, recent technological advances 

have substantially increased our ability to study cancer-associated mutations. Furthermore, 

by studying DNA repair pathways that normally suppress the genomic instability that leads 

to mutation, we now understand better why mutations arise, and in several cases how we can 

manipulate cells to reduce the rate of mutation.

In this Review we focus on how translocations arise, with a particular emphasis on how 

[G]nonhomologous end-joining causes the appearance of many chromosome 

rearrangements, including the spectacularly complex chromosome translocations associated 

with [G]chromothrypsis2.

The nature of translocations

A translocation is an abnormal chromosome region containing rearranged genetic material, 

usually from two nonhomologous chromosomes (Fig 1 and Box 1). Translocations are not 
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exclusive to cancer cells; screening of cells from developing embryos has revealed that a 

significant number of embryos of the order of 0.7 per 1000 live births) have cells that 

contain translocations3, 4. Although these de novo translocations are associated with 

developmental abnormalities in some cases, many balanced translocations do not cause 

noticeable pathology, suggesting that balanced translocations are well-tolerated in many 

instances. Untransformed primary mouse blood cells also contain a wide range of 

chromosomal translocations5–8. However, there is no question that translocations are 

particularly common in cancer cells. A large number of translocations have been 

catalogued9, 10 and are listed in databases such as the Database of Chromosome 

Rearrangements in Disease (dbCRID; http://dbcrid.biolead.org) and the Catalogue of 

Somatic Mutations in Cancer (COSMIC; http://www.sanger.ac.uk/genetics/CGP/cosmic/). 

Although the majority of pathological translocations that contain gene fusions that 

deregulate cell growth, such as BCR–ABL1, have historically been found in haematological 

malignancies, a growing number of such mutations have been found in solid tumors9. This is 

exemplified in prostate cancer, in which at least 40% of cases feature translocations between 

TMPRSS2 and a gene encoding the ETS transcription factor, ERG11.

The frequency of recurrent gene fusions varies depending on the specific type of cancer, but 

currently-known translocations are estimated to drive ~20% of cancer cases9. Next-

generation sequencing of genomes and transcriptomes from primary human cancer cells is 

revealing new gene fusions that may be involved in driving tumorigenesis, including new 

examples found in colorectal carcinoma, breast cancer and acute lymphoblastic leukemia 

(ALL)12–14. Nonetheless, sequencing has shown that somatic mutations affecting the 

sequence of genes are significantly more common than chromosome rearrangements12–17.

Sequencing efforts have also revealed that cancer genomes do not typically contain a 

discrete number of coherent reciprocal translocations. Tumor cells more commonly contain 

a large number of complex translocations, featuring inter- and intra-chromosomal 

rearrangements (Fig 1). In most cases, it is not possible to draw definite conclusions about 

the mechanism or extent by which any one of these individual translocations contributed to 

the malignancy of the cancer cell. Furthermore, the frequency and type of translocations are 

not always shared among tumors of the same class. Sequence data from primary breast 

cancers showed between zero and 29 translocations per case13. Squamous cell lung cancer 

cells have a higher rate of translocations, with an average of 165 somatic rearrangements per 

cell, compared to 98 rearrangements per cell in non-small cell lung carcinoma and 90 

rearrangements per genome in prostate tumors15–17. Rearrangements in cancer cells affect 

genic and non-genic DNA at approximately equal rates; however, a study in prostate cancer 

cells found an enrichment of rearrangements in transcribed regions, as measured by RNA 

Pol II ChIP15. A study in breast cancer cells also reported a somewhat elevated rate of 

rearrangements within the total area (including introns) of protein coding genes13. A 

minority of translocations form gene fusion events, but translocations may also contribute to 

tumorigenesis by interrupting the sequence of tumor suppressor genes, as observed for the 

tumor suppressor TTC28 in certain cases of colorectal carcinoma12. As is the case with 

mutations affecting gene sequence, many translocations seen in cancer cells are probably 

bystander mutations as opposed to being drivers of the disease. The number of translocations 

in tumor cells from a cohort of patients with lung adenocarcinoma was found not to correlate 
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with clinical outcome17. Hence, tumors with a small number of translocations can be more 

aggressive and more difficult to treat than tumors with many translocations. Other types of 

mutations in addition to translocations clearly play an important role in driving growth and 

survival of cancer cells.

The frequency and complexity of cancer-associated translocations has required the 

development of new bioinformatic tools to analyse and display the huge volume of data that 

is being generated by cancer genome sequencing projects18 (Fig 1). A case of spectacular 

genomic rearrangement was revealed in a case of chronic myeloid leukemia (CML), with 42 

intrachromosomal rearrangements affecting chromosome 4q19. Such highly complex, 

clustered translocations are referred to as ‘chromothrypsis’. These rearrangements can affect 

one or more chromosomes in a cell and are thought to be generated in a single catastrophic 

event. An initial estimate indicates that as many as 3% of all cancers exhibit such clustered 

rearrangements20. It is plausible that the same mechanisms cause chromothrypsis as cause 

the complex translocations seen in other cancer cells2. Complex translocations similar to 

chromothrypsis have been described, based on sequencing the genomes of cells from 

prostate cancer and ALL14, 21.

NHEJ as a source of genomic instability

Several pathways have been proposed to be involved in the formation of translocations22 

(Fig 2). These pathways include non-homologous end-joining (NHEJ), breakage-fusion-

bridge cycles (Box 2 and Fig 3), and replication-based mechanisms, such as [G]break-

induced replication (BIR)23. Replication-based mechanisms are proposed to cause 

translocations by switching of the extending DNA strand from its template sequence to 

another homologous template during DNA replication, potentially resulting in non-

homologous sequence being copied into the new DNA strand24, 25. However, in the absence 

of an appropriate inducible model, or genetic evidence for the requirement of specific factors 

in mediating replication-based translocations, it is challenging to quantify the contribution of 

such pathways to the overall frequency of translocations. Mechanisms based on homologous 

recombination may also cause translocations, such as [G]non-allelic homologous 

recombination (NAHR), which has been implicated in chromosome rearrangements that 

occur in the germline26.

Translocations, in particular those translocations that generate gene fusions, are often 

assumed to form because of the joining of DNA double-strand breaks that arise at different 

sites on non-homologous chromosomes. In this case, the double-strand breaks are joined by 

an endogenous DNA repair pathway such as NHEJ (Fig 4). In mammalian cells, the best-

characterized pathway for nonhomologous end-joining, which has come to be known as 

‘classical’ NHEJ or C-NHEJ, initiates by binding of the Ku70 (also known as XRCC6)–

Ku80 (also known as XRCC5) heterodimer to broken DNA ends27. DNA-PKcs (also known 

as PRKDC)–Artemis (also known as DCLRE1C) subsequently binds to the Ku70–K7u80–

DNA complex and processes the DNA end through the nuclease activity of Artemis. Finally, 

a complex of XRCC4-like factor (XLF; also known as NEHJ1)–XRCC4–DNA ligase 4 

(LIG4) joins the DNA ends (Fig 4). The importance of the NHEJ pathway in maintaining 
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genomic stability is known from genetic studies in mice28–30 and from individuals with 

mutations in key NHEJ genes (Table 1).

Despite the appearance of chromosomal translocations in cells that lack NHEJ activity, 

several lines of evidence suggest that in certain cases, NHEJ contributes to the appearance of 

chromosomal translocations. Deficiency in RAD18 makes cells hypersensitive to 

camptothecin, an agent used in certain chemotherapy regimens on the basis of its ability to 

cause DNA double-strand breaks. However, this hypersensitivity is relieved by suppressing 

NHEJ31. Mutations in BRCA1, which is required for homologous recombination, or any of 

the Fanconi anaemia complementation group (FANC) genes, which excise DNA inter-strand 

crosslinks, predispose affected individuals to cancer owing to the requirement of these 

factors for normal DNA repair. However, several reports have concluded that ablation of 

NHEJ factors such as Ku70, Ku80 or LIG4 reduces genomic instability and the appearance 

of chromosome rearrangements in BRCA1- or FANC-deficient cells32–35. Chemical 

inhibition of DNA-PKcs has also been reported to reduce genomic instability in cell lines 

lacking BRCA1 and BRCA236. Collectively, these results suggest that when mammalian 

DNA repair pathways are defective, the NHEJ pathway can act to increase the amount of 

genomic instability and therefore accelerate the accumulation of mutations that contribute to 

cancer.

Genomic sequencing indicates that up to 50% of ovarian carcinoma cells have mutations 

affecting the homologous recombination pathway, making these cells particularly vulnerable 

to aberrant DNA repair by NHEJ37. Cells from breast cancer patients have a higher than 

expected frequency of mutations in FANCC, Bloom’s Syndrome gene (BLM; also known as 

RECQL3) and XRCC238–40. These genes are essential for error-free repair of DNA damage, 

hence cells with these mutations may over-use NHEJ for repair, leading to further 

accumulation of genetic abnormalities. Another form of evidence that NHEJ is important for 

chromosome translocations has come from study of the genetic requirements for the fusion 

of uncapped telomeres (Box 2). NHEJ is also considered to be the mechanism underlying 

the complex pattern of translocations and rearrangements seen in chromothrypsis19. NHEJ 

therefore plays an important role in shaping the genome of the cancer cell by contributing to 

error-prone pathways of DNA repair that lead to the appearance of mutation.

Classical versus alternative end-joining pathways

Early studies on the characteristics of end-joining activities in mammalian cells 

demonstrated the presence of two classes of products: those formed from the simple ligation 

of DNA ends, and those where small sections of shared sequence identity (microhomology) 

at the joined ends could be observed41, 42 (Fig 4). Yeast studies support the importance of 

Ku70–Ku80 for NHEJ, but additionally showed that in the absence of these factors, an 

alternative activity using microhomology can mediate joining with some deletion of DNA 

sequence around the break site43–45. Subsequent biochemical data and assays with end-

joining substrates with different amounts of terminal homology showed that joining of ends 

with 6–8 bp of homology is not dependent on the Ku-mediated ‘classical’ pathway for NHEJ 

(C-NHEJ)46, 47, and instead requires a Ku-independent NHEJ pathway called alternative end 

joining (A-EJ), or microhomology-mediated end-joining (MMEJ). The existence of A-EJ 
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accounts for translocations and chromosome rearrangements in cells lacking Ku70, Ku80 or 

LIG429. Notably, mice with targeted knockouts of Ku70-−Ku80, XRCC4 or LIG4, in 

combination with p53-deficiency, develop tumors with translocations featuring 

microhomology48, 49. Microhomology was also reported in 85% of translocations induced 

using a translocation reporter system in mouse embryonic stem (ES) cells50. A-EJ therefore 

appears to be capable of producing translocations, particularly when ‘classical’ NHEJ is 

deficient. In a system to measure the frequency of translocations between Igh and Myc in 

mouse B cells, deletion of Ku70 or LIG4 actually increased the rate of translocation, with A-

EJ apparently providing the joining activity51. Translocations were also increased in a 

reporter system in mouse ES cells when XRCC4−XLF was inactivated52. These results 

suggest that NHEJ causes a relatively low rate of translocations, but in its absence, A-EJ 

becomes active and produces an increased number of chromosome rearrangements.

A-EJ is of particular interest because microhomology signatures have been reported at the 

breakpoints of chromosome rearrangements in primary human cancer cells53, 54. This raises 

the possibility that A-EJ, or some other microhomology-based mechanism is responsible for 

the formation of translocations. The amount of microhomology used in repair of a double 

stranded DNA break is the standard measure for distinguishing between C-NHEJ and A-EJ 

joining, but it is not clear how much microhomology is optimal for each pathway. 

Understanding the importance of A-EJ in the formation of translocations will require better 

characterization of the components of the pathway. The identification of factors that are 

required for A-EJ in mammalian cells has been aided by studies in yeast, which have 

suggested that factors such as Mre11, Rad50 and Sae2 are involved in A-EJ53. Studies using 

translocation reporter constructs in mouse embryonic stem cells have shown that the 

frequency of translocations between induced double-strand breaks on different 

chromosomes is reduced after knockdown of CtIP, an exonuclease that is considered the 

closest mammalian homolog of Sae255. Furthermore, the translocations that do occur show a 

reduced amount of microhomology at the breakpoints, supporting a role for CtIP in a 

pathway that produces translocations using microhomology.

A role for CtIP in A-EJ is plausible, according to a model in which limited exonculease 

resection of DNA double-strand breaks is necessary to uncover stretches of microhomology 

that can anneal and mediate joining (Fig 4). Intrachromosomal joining assays in mammalian 

ES cells and cell lines have likewise supported an involvement of Mre11 in Ku70–Ku80–

XRCC4-independent end joining using microhomology56, 57. However, although modulation 

of end resection appears to be a key regulator of A-EJ, data from mouse B cells measuring 

induced intrachromosomal rearrangments showed no reduction of microhomology-mediated 

joining in cells after CtIP-knockdown or Mre11 inhibition58. The essential genetic makeup 

of A-EJ is therefore an ongoing question in the field, and multiple redundant processes may 

contribute to A-EJ. The DNA end-binding factor, Ku, has recently been suggested to have a 

key regulatory role in suppressing use of A-EJ, as depletion of human Ku86 was found to 

increase the use of A-EJ in cells lacking other C-NHEJ factors59

As A-EJ is active in the absence of LIG4 much interest has focused on which of the other 

two mammalian ligase enzymes, LIG1 or LIG3, is required for the joining of DNA ends in 

A-EJ. Depletion of either LIG1 or LIG3 reduces the use of microhomology-mediated end 
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joining of cut plasmids in cell-free extracts60. Cells with a specific deficiency in nuclear 

LIG3 show a reduced frequency of translocations between targeted double-strand breaks on 

chromosomes 6 and 11, with the small number of remaining translocations showing reduced 

use of microhomology61. This supports a role of LIG3 for mediating A-EJ translocations in 

mammalian cells, and suggests that A-EJ is active even when all the factors of the ‘classical’ 

NHEJ pathway are present. This study further demonstrated that LIG1 can act as a backup 

ligase for LIG3 in A-EJ, because depletion of both LIG3 and LIG1 together reduces 

translocations to a lower rate than that seen in nuclear LIG3-deficienct cells. However, data 

from conditional deletion of XRCC1, the co-factor of LIG3, in B lymphocytes has produced 

conflicting data regarding the importance of LIG3 in A-EJ62. In B cells with deficiencies in 

C-NHEJ, deletion of XRCC1 or knockdown of LIG3 had no effect on translocations 

between MYC and the IgH locus (IGH). The relative importance of LIG3 and LIG1 in A-EJ 

is therefore still somewhat unclear.

Although A-EJ is an important pathway for formation of translocations, several lines of 

evidence suggest that conventional NHEJ still accounts for the majority of rearrangements. 

First, the measured amount of microhomology found in translocation reporter cell lines is 

quite low, with a mean of 1.36 bp50. Second, in two different inducible systems that generate 

experimental inter-chromosomal translocations, microhomology-mediated joining was 

observed in a minority of cases63, 64. Third, data from next generation sequencing projects 

using human cancer patients indicate a minor role for A-EJ. For example, one recent study 

used next-generation sequencing technology to characterize the breakpoints of 52 germline 

chromosomal rearrangements from human patients65. The majority of these rearrangements 

were thought to be balanced translocations. However, at the molecular level they almost 

invariably featured deletion of genetic sequence at the breakpoint junction. A significant 

number of the translocations were not formed by the simple joining of DNA breaks, but 

involved local fragmenting of the DNA with reassembly of inverted local sequence at the 

final translocation join. Of the 141 breakpoints identified through next generation 

sequencing, just 30.5% had regions of microhomology. In addition, chromosome 

rearrangements in prostate cancer cells usually do not contain microhomology sequences, 

and in breast cancer cells, microhomology is generally either absent or limited to 2bp or 

less13, 21. These findings suggest that microhomology-based mechanisms are responsible for 

a minority of de novo human translocations and conventional NHEJ is the primary pathway 

for formation of chromosome translocations.

Regulation of choice of HR and NHEJ in mammalian cells

C-NHEJ is the only double-strand break repair pathway that can join DNA ends with no 

homology at the repair site. Furthermore, C-NHEJ acts at blunt or minimally processed 

DNA ends, whereas some degree of resection of the double-strand break is required for HR, 

single strand annealing (SSA) and A-EJ. The regulation of double-strand break resection 

therefore acts as the key determinant in committing repair of a double-strand break to C-

NHEJ or a homology-based pathway66, 67. One potential method for regulation of resection 

is kinetic: resection only proceeds after initial attempts at NHEJ of double-strand breaks 

have failed. This hypothesis has been supported by multiple lines of evidence using 

immunofluorescence to detect the accumulation of repair factors at break sites, plasmid 
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rejoining assays and reporter constructs68–70. NHEJ seals DNA breaks with minor 

nucleotide deletions and additions at the breakpoint, and is capable of joining DNA breaks 

on different chromosomes. It is therefore surprising that cells use ‘quick and dirty’ repair by 

NHEJ instead of the slower, more accurate repair by HR. HR, which is template-based and 

much less error-prone might be expected to be the preferred pathway for faithful repair of 

double-strand breaks.

Resection of a DNA double-strand break is initiated by Mre11, as part of a complex with 

Rad50–Nbs1 (MRN) complex, or, with Xrs2 in yeast cells (known as the MRX complex). 

Resection becomes extensive following the action of CtIP. EXO1 and BLM–DNA2 have 

also been reported to generate single-stranded DNA overhangs at break sites in mammalian 

cells. Cyclin-dependent kinase (CDK) signalling regulates the activity of the resection 

apparatus, such that it is mainly active in the S and G2 phases of the cell cycle. Nonetheless, 

components of the NHEJ pathway remain active in S-phase and G2-phase cells and compete 

with HR for repair of double-strand breaks69, 71. Extensive resection can also occur in G1, at 

least in the absence of 53BP1 and H2AX72, 73. Thus, in addition to CDK activity, other 

levels of regulation must be present to ensure use of error-free HR versus mutagenic NHEJ.

One important regulatory mechanism for DNA end resection in mammalian cells is 

mediated bythe DNA damage response factor, p53 binding protein 1 (53BP1). 53bp1−/− cells 

are mildly sensitive to ionizing radiation compared to other cells with deficiencies in the 

NHEJ pathway, but 53bp1−/− B cells have a marked defect in their ability to mediate class 

switch recombination74, 75. Several lines of evidence suggest that 53BP1 may act to repress 

HR through blocking resection33, 34, 58, 73, 76–78. Whether 53BP1-mediated blocking of 

resection acts to achieve rapid repair of breaks at the expense of potential mutagenicity, or 

evolved to enable repair of induced double-strand breaks during the assembly of antigen 

receptor genes is not clear. Several recent reports have shown that 53BP1 inhibits resection 

of DNA double-strand breaks by recruiting the DNA damage response factor Rif179–83. Rif1 

binds to sites within 53BP1 that are phosphorylated by the damage-response kinase, ATM. 

53BP1–Rif1 represses the recruitment of BRCA1 to DNA damage sites in the G1 phase of 

the cell cycle, whereas BRCA1, in coordination with CtIP, prevents accumulation of Rif1 at 

break sites during S phase and G2 (Fig 5). In the absence of Rif1, cells accumulate genomic 

instability and a higher frequency of IGH–MYC translocations, but as seen previously with 

53BP1, end-to-end fusions of deprotected telomeres are reduced in the absence of Rif1. 

These findings demonstrate the complex regulation of double strand break repair pathway 

choice in mammalian cells, and reinforce the idea that proper choice is essential to maintain 

genome integrity.

DNA-PKcs, which associates with C-NHEJ factors in mammalian cells but is not present in 

yeast, is a candidate regulator of NHEJ in mammalian cells. As measured by reporter 

substrates, increased expression of DNA-PKcs represses HR, but this effect is not seen with 

mutant forms of DNA-PKcs that lack kinase activity84, 85. Further mutagenesis studies of 

DNA-PKcs revealed that autophosphorylation of T946, S1004 and T3950 inactivates NHEJ 

and promotes HR. DNA-PKcs autophosphorylation is therefore likely to be a critical 

mechanism for ensuring appropriate use of HR. This idea is supported by the observation 

that mice with targeted substitution of multiple DNA-PKcs autophosophorylation sites die at 
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a very early age and are defective in HR86. Altogether, these findings are consistent with a 

model wherein NHEJ and HR factors are in active competition for repair of DNA double 

strand breaks. If NHEJ is not initially successful, displacement of NHEJ factors, perhaps by 

DSB resection, might enable error-free repair activities to dominate.

Factors favouring translocations

Experimentally-induced double-strand breaks on different chromosomes are known to 

significantly increase the rate of translocation between those chromosomes87. Evidence in 

favour of a DNA double-strand break intermediate in translocation has come from the study 

of translocations between the immunoglobulin constant region genes IGKC and IGLC1 and 

MYC in Burkitt’s lymphoma. First, double-strand breaks at the IgH locus are known to 

occur because of the action of the activation induced cytidine deaminase (AID) enzyme, 

which deaminates target cytidine residues leading to the appearance of staggered double-

strand breaks88. In the absence of AID, translocations between these two genetic loci occur 

at vanishingly low frequency89, demonstrating the importance of double-strand breaks as a 

substrate for translocation. Experimental systems using site-specific, inducible DNA double-

strand breaks have also shown that translocation between two sites is highly dependent on 

the frequency of double-strand breaks6, 7. Further evidence for a double-strand intermediate 

leading to translocation came from an analysis of translocation frequency in p53-knockout 

mice. One activity of the tumour suppressor gene TP53 is to promote apoptosis in cells with 

double-strand breaks, and deletion of p53 or upstream components of the DNA damage 

signalling pathway, such as the kinase ataxia telangiectasia mutated (ATM), increases the 

overall frequency of translocations90. This shows that providing an environment that is 

favourable to DNA double-strand breaks promotes translocation.

The appearance of recurrent translocations, such as IGH–MYC in Burkitt’s lymphoma, has 

posed the question of why certain translocations occur so commonly in specific 

malignancies. One possibility is that these recurrent translocations arise at no more common 

frequency than any other translocation, but are selected on the basis of their potential to 

drive survival and proliferation of the cancer cell. An additional, long-standing hypothesis is 

that recurrent translocations arise because the translocation partners are in particularly close 

proximity in the nuclei of cells from the affected tissue91, 92, 93. Chromosome Conformation 

Capture has been used to measure genomic interactions, and combining this technique with 

deep sequencing has recently enabled the measurement at base-pair resolution of how 

closely genomic loci interact. Using this approach, Hakim et al showed that IGH and MYC 
do not interact particularly closely in activated B cells5. In fact, even though IGH–MYC 
translocations are found in 85% of Burkitt’s lymphoma, 2,361 other genes interact with IGH 
more often than MYC. This suggests that nuclear proximity is not the key driver of 

recurrent, cancer-associated IGH–MYC translocations. Moreover, Rocha et al showed that 

there is a poor correlation between genes that physically interact with IGH and those that are 

AID targets94. The authors proposed that AID targets are situated within broader genomic 

domains that associate with IGH, but the current evidence seems to indicate that physical 

proximity within the nucleus is a minor determinant of translocation frequency between 

genes on different chromosomes.
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Quantification of how frequently a double-strand break at a specific site forms translocations 

with other genomic loci has recently become feasible owing to the development of two 

similar techniques: High-Throughput Genome-Wide Translocation Sequencing (HTGTS), 

and Translocation-Capture Sequencing (TC-Seq)6, 7. These studies were conducted in B 

cells, and focused again on understanding what factors determine the likely translocation 

partners of double-strand breaks at IGH or MYC. In both studies, there was a strikingly high 

correlation between AID target sites and translocation frequency. This suggests that genes 

that are more often affected by double-strand breaks form translocations more readily. 

Transcriptional status is another factor influencing translocation frequency, as the majority 

of translocations were to coding sequences, and transcribed genes were more commonly 

subject to translocation than silent genes. Translocation partners for double-strand breaks are 

not strictly limited to closely-interacting chromosome domains, but when a large number of 

double-strand breaks are present, there is an increased frequency of inter-chromosomal 

translocation between partners with higher physical interaction95. All deep sequencing 

studies to date have shown that double-strand breaks on the same chromosome, particularly 

those lying nearby on the same chromosome, have the highest rate of joining, matching a 

previous study of the frequency of joining of breaks induced by the RAG1 and RAG2 

recombinases96.

Taking these studies together, the primary predictor for whether genes take part in 

translocations is the frequency with which those genes undergo double-strand breakage. 

Hence, translocations between MYC and IGH are favoured in B cells because those regions 

are common sites for double-strand breaks in B cells. Active transcription also correlates 

with translocation, and up to 40% of translocations involve joining of a break to a sequence 

from the same chromosome. These intrachromosomal translocations are not seen recurrently 

in cancer cells. This suggests that many translocations do not contribute to tumorigenesis, 

and that oncogenic translocations that increase cell survival and proliferation are selected for 

during the evolution of a tumour.

As the frequency of double-strand breaks at a particular genomic site appears to be the key 

determinant of whether that site becomes involved in a translocation, it is obviously of major 

significance to understand the processes that produces double-strand breaks. DNA 

replication is a source of DNA double-strand breaks97. As the entire genome is replicated 

during cell division, any genomic site is a potential site for replication-associated double 

strand breaks. However, replication-associated DNA damage is not entirely random. 

Common Fragile Sites (CFSs) are regions of the genome that are prone to breakage during 

replication stress. Whereas CFSs are relatively stable in normal cells, cancer cells 

accumulate breaks and genomic aberrations, including translocations, at these sites98, 99. 

Breakage at CFSs in cancer cells appears to be a consequence of replication stress arising 

from accelerated, oncogene-mediated replication100–104. In addition to CFSs, a second class 

of genomic sites prone to double-strand breakage, and associated with translocations in 

human cancer, has recently been identified in murine B cells105. These ‘Early Replicating 

Fragile Sites’, or ERFSs, were identified using a chromatin immunoprecitipation (ChIP)–

deep sequencing (Seq) approach to reveal sites that are preferentially bound by DNA 

damage response proteins after replication stress. ERFSs are distinct from CFSs because 

they are found around early replication origins, whereas CFSs replicate late in S phase. 
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ERFSs also have a high-GC content, are commonly associated with repetitive DNA 

elements, and correlate with transcriptionally active genes in an open chromatin 

environment. Breakage at ERFSs is AID independent, hence these sites may also be present 

in other cell types. Some euchromatic regions are targets of both AID activity in G1 and 

ERFS fork collapse during S phase; however, whereas AID activity is limited to 1–2 kb of 

promoters, breakage at ERFS spans a much larger region ranging from 10–1000 kb105.

Chromatin and transcriptional status are likely to play a substantial role in determining the 

likelihood that a particular genomic site will be involved in a translocation. A correlation of 

translocations with transcriptional activity was noted from deep sequencing studies6, 7, and 

transcription has been reported to predispose genomic fragile sites to DNA breakage by 

causing increased collapse of DNA replication forks106. Although the existing data indicates 

that transcriptionally active regions are more prone to translocations, γH2AX, which signals 

DNA damage, accumulates more readily in euchromatic sites than in 

heterochromatin107, 108. Double-strand breaks also take longer to repair when located in 

heterochromatin109. Heterochromatin protein 1a (HP1α; also known as CBX5) paralogs are 

recruited to break sites110–112, and depletion of HP1α or the nucleosome assembly complex, 

chromatin assembly factor 1 (CAF1) inhibits repair by homologous recombination113.

Translational opportunities and perspectives

Sequencing-based approaches have enabled significant progress in recent years in 

understanding the nature and effect of chromosome translocations. We now have a much 

clearer idea of the frequency and complexity of translocations. Although translocations are 

almost invariably found when we study the genomic landscape of cancer cells, the 

importance of translocations to the onset of malignancy is still a matter of debate. In contrast 

to the situation with the characteristic clonal translocations identified in CML and Burkitt’s 

Lymphoma, many translocations do not appear to be primary drivers of cancer cell growth. 

We are still at an early stage in analysing the sequencing data that is pouring in, and making 

sense of how translocations influence cancer cell growth will be a major topic of research 

interest in the coming years. Another major challenge lies in understanding the cellular 

pathways that underpin the genomic complexity of cancer cells. What pathways are 

responsible for causing translocations? Is there a role for replication-based mechanisms in 

the formation of translocations, and what is the significance of microhomology at 

translocation junctions? Answering these questions will require us to build on our current 

understanding of the genes involved in translocation pathways, enabling us to test 

requirements for the appearance of translocations in vivo. Sequencing is demonstrating that 

many translocations are more complex than we had imagined before65. It will be interesting 

to see whether chromothrypsis2 arises by different pathways to translocations, or merely 

represents the most extreme end of a spectrum of chromosome rearrangements present in 

cancer cells.

Although we have made major progress in understanding nuclear phenomenon that 

influence the frequency of translocations, there are clearly outstanding issues to address 

relating to the impact of chromatin on genomic instability and translocation frequency. At 

the time of writing, there has been no published, genome-wide attempt to correlate 
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chromatin status with translocation frequency. Such work would shed light on several 

interesting studies that have demonstrated how chromatin can affect the processing of DNA 

breaks. Future work is also likely to identify other factors in mammalian cells, which, as is 

the case with 53BP1, Rif1, Ku and DNA-PKcs are able to modulate the use of 

nonhomologous end-joining pathways. The activity of such factors could determine the 

frequency of translocations, by biasing repair of DNA breaks to error-prone end-joining 

pathways.

As translocations appear to be produced mainly by the C-NHEJ and A-EJ pathways, 

selective inhibition of end-joining pathways could potentially be used to prevent the 

appearance of cancer, or to block the appearance of further mutations that drive cancer 

growth and survival. Global inhibition of end-joining is unlikely to be a beneficial long-term 

treatment modality, based on observations in gene-targeted mice that correlate loss of end-

joining activity with increased chromosome abnormalities and tumor incidence.

Nonetheless, cancer cells appear to make use of A-EJ pathways to join DNA double-strand 

breaks in aberrant ways that promote cancer growth114. Acquired resistance of BRCA2-

deficient cells to poly (ADP ribose) polymerase (PARP) inhibition has been shown to occur 

by A-EJ-mediated internal deletions within the BRCA2 gene that restore its activity115, 116. 

These observations reinforce the importance of understanding the genetic requirements of 

A-EJ to enable specific targeting of this pathway.

Inhibitors of DNA ligases have been identified and shown to be toxic towards cancer cell 

lines and to synergize with methyl methanesulfonate treatment to increase cell 

killing117, 118. Inhibitors of DNA-PK have likewise shown promise, potentially based on 

their ability to bias DNA repair towards HR instead of more toxic pathways119. Although at 

the present time animal studies are lacking, in the future, agents that enable repair to be 

shifted from mutagenic pathways towards repair pathways that promote faithful DNA repair, 

as has been proposed for inhibition of 53BP1 in patients with BRCA1 deficiency34 could 

provide a new avenue for cancer treatment based on the prevention of mutation.
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phosphorylation in signalling DNA breaks in mammalian cells, and continues to study the 

intersection of DNA repair, chromatin biology and cellular aging.

Glossary terms

Non-homologous end-joining.
Joining of DNA double-strand breaks without extensive sequence homology by ligation of 

DNA ends

Non-allelic homologous recombination (NAHR)
This process involves recombination between repetitive regions at different genomic sites 

and can lead to chromosome rearrangements as seen in genetic diseases such as Charcot-

Marie-Tooth syndrome.

Break-induced replication (BIR)
A modified homology-based repair pathway, where a broken DNA end is repaired by 

copying a large amount of sequence from an undamaged homologous partner, potentially 

leading to copying of the entire homologous sequence from the site of damage to the end of 

the chromosome23

Chromothrypsis
Highly complex chromosome rearrangement event, characterized by extensive re-assortment 

of genetic fragments from one or more chromosomes2
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At a Glance

• Cancer genome sequencing has demonstrated that translocations that fuse 

sequence from different chromosomes are typical features of cancer cells.

• Translocations that create neomorphic fusion genes occur in both lymphoid 

malignancies and solid tumors.

• A large number of translocations do not encode fusion genes and may not 

contribute to malignancy.

• Translocations are frequently complex and involve sequence from multiple 

chromosomes, similar to ‘chromothrypsis’.

• Many translocations arise as a consequence of ‘classical’ or ‘alternative’ 

pathways of non-homologous end-joining.

• Mammalian cells have regulatory systems to bias DNA repair toward repair 

pathways that are less likely to contribute to translocation.

• Frequency of DNA breakage is the metric that best predicts the likelihood of a 

particular genomic site being involved in a translocation.

• Therapeutic intervention to reduce translocation frequency is a potential 

mechanism for reducing the risk of cancer.
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Box 1: Types of chromosomal translocations

The development of techniques for visualizing and staining chromosomes using dyes 

such as quinacrine and Giemsa led to the identification of translocations starting in the 

1950s, and significant disease-causing rearrangements are still being discovered today. A 

chromosome containing a translocation is termed a ‘derivative chromosome’, and the 

nature of the rearrangements affecting that chromosome are described by a systematic 

nomenclature. Robertsonian translocations are those in which the long arms of two 

acrocentric chromosomes are joined around a single centromeric region. ‘Reciprocal’ 

translocations describe exchange of genetic material between two chromosome arms. 

Such translocations can be classified as ‘balanced’ or ‘unbalanced’ depending on whether 

the translocation affects the copy number of any section of the genome, with a balanced 

translocation causing no change in overall copy number.

Many well-known pathological translocations fall into the class of apparently-balanced, 

reciprocal translocations between two non-homologous chromosomes. This group 

includes the Philadelphia chromosome, t(9;22) (translocation between chromosome 9 and 

22); a translocation between chromosomes 11 and 22, t(11;22), seen in 85% of Ewing’s 

sarcoma; and a translocation of chromosomes 8 and 14, t(8;14), which is seen in 85% of 

cases of Burkitt’s lymphoma. Translocations such as these promote cancer by 

deregulating expression of key cellular transcription factors and signalling modulators to 

cause uncontrolled growth. In addition to the recurrent t(9;22) translocation in chronic 

myeloid leukaemia, which causes overexpression of ABL1 kinase, the t(11;22) 

translocation in Ewing’s sarcoma causes deregulated activity of Fli1, an ETS 

transcription factor, whereas t(8;14) in Burkitt’s lymphoma is a translocation that causes 

overexpression of the mitogenic MYC transcription factor.
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Box 2 Telomeres and translocations

Telomeres normally protect the end of chromosomes, but incipient tumor cells are known 

to suffer from acutely-short telomeres120, 121. When telomeres become shortened or 

uncapped by loss of shelterin, the chromosome end is signalled as a double-strand 

break122. Normally, p53 signalling triggers apoptosis in response to this signal, but in 

telomerase-null mice in the absence of p53, end-to-end chromosome fusions are observed 

that correlate with a high frequency of epithelial cancer123. End-to-end chromosome 

fusions are thought to cause genomic instability because the cell will try to pull both 

centromeres from the fused chromosome into separate daughter cells, causing the fused 

chromosome to break, generating translocations and new DNA ends that form substrates 

for additional breakage-fusion-bridge cycles (Fig 3)124. Key intermediates in this process, 

i.e. dicentric chromosomes and anaphase bridges, have been observed in primary human 

tumors125. Cycles of BFB have been observed leading to amplification of genetic 

sequence near DNA break sites and complex translocation involving multiple 

chromosomes in B cells with combined deletion of DNA repair genes and p5348, 49. 

These complex translocations feature amplification of the c-myc oncogene, which is an 

essential driver of tumorigenesis in these cells. End-to-end fusion of uncapped telomeres 

is also dependent on the NHEJ factors, Ku70 and ligase 4 (LIG4)126, 127. Whereas loss of 

the shelterin component, TRF2, causes chromosome fusion by classical non homologous 

end joining (C-NHEJ) DNA repair pathways128, alternative end joining (A-EJ)-mediated 

chromosome fusions are observed in TRF2-deficient cells when Ku80 is absent. In mice, 

the shelterin proteins TRF1, TPP1, POT1a and POT1b combine with TRF2 to suppress 

A-EJ events78, 129. Although the significance of this effect in human cancer in not fully 

clear, mouse models of cancer arising from defective telomere function share many 

genomic features in common with human tumors130. Hence, both classical and 

alternative end-joining pathways are active in causing chromosome rearrangements 

arising from end-to-end fusions.
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Fig 1. Visualizing translocations
(A) The normal human chromosome set contains no rearrangements between chromosomes. 

The Circos plot18 shows this as a ring with the uninterrupted sequence of the chromosome 

running around the circumference. (B) Certain cancer cells contain balanced, reciprocal 

translocations, which join sequence from different chromosomes, such as the T(9;22) 

translocation from CLL, which exchanges sequence from chromosomes 9 and 22. Viewed as 

a Circos plot, this translocation can be visualized as a line connecting the breakpoints of the 

translocation on chromosomes 9 and 22. (C) Many translocations are more complex 

rearrangements involving multiple chromosomes. In this example, chromosome 1 contains a 

rearrangement involving translocated sequence from chromosomes 14 and 21, and an 

internal sequence inversion. Such complex translocations can be pictured using the Circos 

plot, where the blue lines indicate interchromosomal translocations and the red line shows 

the intra-chromosomal inversion.
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Fig 2. Pathways to translocation
(A) Balanced reciprocal translocations are hypothesized to form as a consequence of fusion 

of two double-strand breaks that arise in the same cell. Following appearance of double-

strand breaks, a signaling pathway is activated, which leads to ligation of the free DNA ends 

mediated by factors of the non-homologous end-joining pathway. (B) Telomere uncapping 

or attrition generates a DNA double-strand break response, potentially leading to fusion of 

telomeres generating end-to-end fusions. During anaphase, dicentric fusion chromosomes 

are pulled apart leading to the formation of translocations and double-strand breaks. Broken 

chromosomes act as substrates for additional rounds of fusion and breakage, generating 

increasingly complex translocations. (C) Hypothetically, translocations could arise by a 

replication-based mechanism by ‘switching’ of the DNA replication machinery to a site on a 

different chromosome with some degree of sequence homology to the original template. 

Extension of the replication fork at a site on a different chromosome would lead to a 

composite daughter strand being produced, containing sequence from two chromosomes. 

This composite chromosome would appear as a translocation. Highly complex translocations 

could be generated by multiple template switching events, generating an aberrant 

chromosome containing sequence from several different parts of the genome.
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Fig 3. Oncogene Amplification by Breakage Fusion Bridge Cycles
(A) Chromosomes are normally protected by telomeres (gray box). A sub-telomeric 

oncogene, shown in red, can become amplified by breakage fusion bridge cycles. (B) 

Telomere loss or double-strand breakage creates an unprotected DNA end, which triggers a 

DNA damage response. (C) Cancer cells with checkpoint defects will continue to grow 

despite DNA damage signaling, leading to duplication of the broken chromosome. (D) 

Ligation of broken chromatid ends produces an ‘anaphase bridge’, with a chromatin 

connection between the two sister chromatids. (E) As chromatids are drawn apart during 

anaphase, the anaphase bridge is subjected to increasing stress as centromeres are pulled to 

opposite poles of the dividing nucleus. Eventually, the anaphase bridge will shear, producing 

uneven derivative chromosomes as shown in (F). One derivative chromosome may capture 

sequence including a second copy of the oncogene from the broken sister chromatid. The 

broken chromosomes can act as substrates for further breakage fusion bridge cycles (B–F), 

potentially leading to dramatic amplification of oncogenes near telomeric sites. Oncogene 

amplification is a driver of malignant cell growth. If breakage fusion bridge cycles are 

combined with fusion of double strand breaks from other chromosomes, complex 

translocations can be built up featuring sequence from multiple chromosomes.
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Fig 4. Steps in classical and alternative end-joining
Upon appearance of a DNA double-strand break, two pathways can be active. Classical Non-

Homologous End-Joining (C-NHEJ) involves binding of Ku70−Ku80 to the DNA break, 

followed by recruitment of DNA-PKcs and several other factors that mediate blunt-end 

ligation of the break by ligase 4 (LIG4). This process has no sequence requirements and may 

cause small-scale mutation such as the addition or deletion of a small number of nucleotides 

at the break junction. Alternative End-Joining (‘A-EJ’) involves exonucleolytic processing 

of the double-strand break to reveal stretches of potentially complementary sequence 

(microhomology, indicated in red) on either side of the break. This resection process may be 

mediated by the exonuclease CtIP. Following base-pairing at regions of microhomology, the 

ends are joined by an undetermined ligase enzyme (LIG).
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Fig 5. Regulation of DNA double-strand break repair pathways
Non-homologous End-Joining is favored in G1, when the activities of BRCA1 and CtIP are 

repressed by a complex of 53BP1 and Rif1 that coats the chromatin in the vicinity of 

double-strand breaks. During the transition to S/G2, BRCA1 acquires the ability to bind at 

break sites despite the repressive effect of 53BP1 and Rif1. The mechanism for BRCA1 

activation and recruitment is still unknown. Depletion of Rif1 and activation by cyclin 

dependent kinase 1 (CDK1)-mediated phosphorylation allows CtIP to become active at the 

break site, where it resects duplex DNA to form a 5′ single-strand overhang. This favors 

resection-dependent repair pathways, including A-EJ and HR. Commitment to HR is 

mediated by loading of Replication Protein A (RPA) and Rad51 at the break site.
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Table 1

Phenotypes of loss-of-function NHEJ mutations Bunting and Nusseznweig, 2013.

NHEJ gene Mouse knockout phenotype Patient phenotype

XRCC6 (encoding Ku70) Viable, SCID, small size, radiosensitivity, thymoma48, 49 None known

XRCC5 (encoding Ku80) Viable, SCID, small size, radiosensitivity, genomic instability and 
tumors especially with p53 deletion.45, 50–52

None known

PRKDC (encoding DNA-PKcs) Viable, SCID, some genomic instability, tumors with p5353–55 Human hypomorph has SCID, 
radiosensitivity56

DCLRE1C (encoding Artemis) Viable, SCID, radiosensitivity, genomic instability57 Null is SCID, radiosensitivity. 
Hypomorph is reduction in 
lymphocytes, instability, 
lymphoma58, 59

NHEJ1 (encoding XLF) Mild lymphocytopenia, radio-sensitivity60 Cernunnos syndrome; 
Immunodeficiency, developmental 
delay, microcephaly, reduced 
growth, genomic instability61

XRCC4 Null is lethal with neuronal apoptosis; rescue with p53 is SCID, 
radiosensitivity, early B lymphoma, genomic instability47, 62

None known

LIG4 Knockout is lethal, neural apoptosis; rescue with p53 gives pro-B 
lymphoma, radiosensitivity; hypomorph is small, lymphopenic, 
reduced hematopoietic stem cell function.63, 64

Lig4 syndrome; 
immunodeficiency, reduced 
growth, developmental issues, 
microcephaly, malignancy65, 66

DCLRE1C, DNA cross-link repair 1C; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; LIG4, DNA ligase 4; NHEJ, non-homologous 
end-joining; NHEJ1, NHEJ factor 1; PRKDC, protein kinase, DNA-activated, catalytic polypeptide; SCID, severe combined immunodeficiency; 
XLF, XRCC4-like factor; XRCC, X-ray repair cross-complementing protein.
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