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Abstract
Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung
cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the
multiple carcinogens, toxicants, co-carcinogens, tumor promoters and inflammatory compounds in
cigarette smoke. There are presently many agents both synthetic and naturally occurring that
prevent lung tumor development in well established animal models. It seems likely that logically
constructed mixtures of these agents, developed from the ground up, will be necessary for
prevention of lung carcinogenesis

Introduction
Lung cancer kills more than 3000 people every day in the world and is its leading cause of
cancer death. About 90% of this incredible toll is due to cigarette smoking. Clearly, we must
continue our successful efforts in tobacco control which have resulted in a significant
reduction in smoking prevalence in many countries. But there are still 1.3 billion smokers in
the world and wealthy multinational tobacco companies continue to introduce cancer
causing products designed to entice teenagers into a lifetime of nicotine addiction. While
70% of smokers attempt to quit each year, less than 5% succeed1, and the average success
rates at six months post-quit, even with the most advanced smoking cessation programs,
hover around 25%2.

In recent years, the rate of decrease in the prevalence of U.S. adult smoking has slowed
significantly3 and remaining at about 20% from 2004 to 20074. This plateau has been
observed even in some countries such as Ireland which has a significant tobacco control
program (e.g., comprehensive smoke-free worksite policies, high cigarette prices and bans
on tobacco advertising and promotion)5. This reduced rate of decline in smoking has been
attributed to a plateau in smoking cessation success3, leading some researchers to believe
that the remaining population of smokers is hardcore and are either unwilling or unable to
quit6. An appreciable number of these smokers may be experiencing mental health
disorders5.

The addicted smokers who fail as well as the ex-smokers who have succeeded in quitting are
at high risk for lung cancer, and we must do something to help prevent this devastating
disease with a 5 year survival rate of only 15%. Chemoprevention of lung carcinogenesis is
one way forward. While the cardiovascular community has identified high risk individuals
with biomarkers such as cholesterol and C reactive protein, and successfully treated them
with preventive statins7, we in cancer research have yet to succeed in developing an
effective lung carcinogenesis chemopreventive agent or strategy. The theme of this article is

*To whom correspondence should be addressed. Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420
Delaware St SE, Minneapolis, MN 55455, USA. ph: 612-624-7604 fax: 612-626-5135 hecht002@umn.edu.

NIH Public Access
Author Manuscript
Nat Rev Cancer. Author manuscript; available in PMC 2013 December 31.

Published in final edited form as:
Nat Rev Cancer. 2009 July ; 9(7): . doi:10.1038/nrc2674.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that a successful lung carcinogenesis chemopreventive agent will target tobacco smoke
carcinogens and toxicants, the cause of lung cancer in smokers and ex-smokers, and that a
successful strategy will integrate chemoprevention into the treatment portfolio of the
addicted smoker as well as being available for the confirmed ex-smoker.

Treat lung carcinogenesis, not lung cancer
In chemoprevention, we aim to treat lung carcinogenesis, not lung cancer8. Lung
carcinogenesis is barely in the vocabulary of the cancer research community, and certainly
not in that of the lay community. The distinction is crucial. Lung cancer is the end result of
lung carcinogenesis. Treatment of lung cancer is usually ineffective because a malignant
tumor is discovered at a late stage. Treating lung carcinogenesis has the potential to prevent
this disease.

How can we treat lung carcinogenesis? Since 90% of lung carcinogenesis is due to tobacco
smoke exposure, our target must be the carcinogenic activity of tobacco smoke. In previous
articles, we have presented a conceptual model for tobacco smoke-induced lung
carcinogenesis9,10 (Box 1). This model indicates that, in our treatment of lung
carcinogenesis, we would be wrong to focus on a single molecular pathway, because
multiple pathways are altered. Others have come to similar conclusions11. We need to focus
on the cause of the multiple aberrant biological pathways in lung carcinogenesis: the
activities of tobacco smoke. Of course, removing tobacco smoke exposure is the ideal
method for preventing lung carcinogenesis, but for reasons discussed above, this is only
partially successful.

Box 1

A conceptual model for tobacco smoke-induced lung carcinogenesis

In this widely accepted model, people become addicted to nicotine in cigarette smoke,
usually at a relatively young age when they experiment with cigarettes due to peer
pressure and advertising. Nicotine is not a carcinogen, but each puff of each cigarette
delivers a mixture of over 60 established carcinogens, along with toxicants, tumor
promoters, co-carcinogens, oxidants, free radicals, and inflammatory agents. The
carcinogens and their metabolites bind to DNA resulting in DNA adducts and subsequent
somatic mutations. When these mutations occur in critical genes such as oncogenes and
tumor suppressor genes, the result is loss of normal cellular growth control mechanisms,
genomic instability, and cancer. A recent study validates this model. DNA sequencing of
623 cancer related genes revealed more than 1000 somatic mutations in 188 human lung
adenocarcinomas, and 26 of these genes, including the tumor suppressor gene TP53 and
the oncogene KRAS, were mutated at significantly high frequencies. Alterations were
commonly observed in genes of the MAPK signaling, TP53 signaling, Wnt signaling,
cell cycle and mTOR pathways144. The multiple mutations caused by tobacco smoke
carcinogens are also consistent with the concept of field cancerization.

What are the activities of tobacco smoke that are critical in lung carcinogenesis? First and
foremost are the lung carcinogens. Of the over 60 established carcinogens in cigarette
smoke, there are at least 20 credible lung carcinogens9,10,12. These occur in both the gas
phase and the particulate phase of tobacco smoke. The gas phase constituents include 1,3-
butadiene, ethylene oxide, benzene, and aldehydes. The particulate phase constituents
include polycyclic aromatic hydrocarbons (PAH), the best known of which is
benzo[a]pyrene (BaP), and tobacco-specific nitrosamines such as the potent lung carcinogen
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Consistent with the presence of
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these carcinogens, both the gas phase and the particulate phase of tobacco smoke can induce
lung tumors in rodents upon exposure by inhalation13.

Second are the tumor promoters, co-carcinogens, and toxicants which have a variety of
deleterious activities. Tumor promoters are not carcinogenic themselves, but enhance the
activity of carcinogens when administered subsequently. The tumor promoting activities of
tobacco smoke and its condensate have been clearly demonstrated by inhalation and mouse
skin application studies14,15. These tumor promoters are only partially characterized, but
extensive data indicate that they are found mainly in the weakly acidic fraction of tobacco
smoke condensate16. Co-carcinogens are also not carcinogenic themselves, but enhance the
activity of carcinogens when administered concurrently. Catechol, methyl catechols, and
certain PAH are well established co-carcinogens in tobacco smoke, based on mouse skin
studies15. One of the major toxicants in cigarette smoke, with a demonstrated relationship to
lung carcinogenesis, is acrolein. While not strongly carcinogenic itself, acrolein is highly
toxic to cilia of the lung, thus impeding clearance of tobacco smoke constituents17. Acrolein
also reacts directly with DNA and protein to produce adducts with potentially important
consequences18–20. Other toxicants in tobacco smoke include nitric oxide and poorly
characterized free radicals, which may contribute to tumor promotion or co-carcinogenesis
by causing oxidative damage.

Third are the inflammatory agents. A number of pro-inflammatory changes have been
observed in smokers’ lungs, and inflammation is closely associated with tumor promotion
and activation of factors such as NFκB21–24. Inflammation has a role in COPD associated
with smoking25, and COPD (especially emphysema) in turn is an independent risk factor for
lung cancer26. The specific agents in cigarette smoke responsible for inflammation are
poorly defined, but the potential roles of oxidants and reactive aldehydes such as acrolein
have been discussed20,25. It is important to keep in mind that exposure to all agents in
cigarette smoke is simultaneous, thus concepts such as tumor initiation and tumor promotion
may be artificial, or even irrelevant.

It is apparent to us that a mixture of chemopreventive agents will be necessary to counteract
these three complex activities. This mixture should be developed from the ground up, by
first determining the efficacy of individual agents, and then assessing their chemopreventive
activities when tested as a mixture. Wattenberg has classified chemopreventive agents into
two broad groups: blocking agents which prevent the interaction of carcinogens with DNA,
and suppressing agents which prevent post-carcinogen treatment downstream effects27.
These definitions are still useful, and it is likely that an effective mixture would contain as a
minimum an agent with each type of activity. Two crucial requirements for any
chemopreventive agent or mixture are efficacy and lack of toxicity. One must demonstrate
efficacy in an animal model, or preferably models, before chemopreventive agents should be
seriously considered for use in people. Lack of toxicity is also critical, or clinical utility will
be compromised.

Animal models for pre-clinical evaluation of chemopreventive agents
In keeping with the theme of inhibiting the carcinogenic and toxic activities of tobacco
smoke, the ideal animal model would use tobacco smoke itself as the carcinogen.
Unfortunately, this is not so simple. Rodent models for inhalation of tobacco smoke pose
many difficulties13 (Box 2). In spite of the limitations, one relatively practical model using
strain A/J mice has been described by Witschi and co-workers28. A/J mice develop lung
tumors with age. Lung tumor multiplicity is significantly and reproducibly increased by
carcinogen treatment29,30. The cigarette smoke inhalation protocol leads to a reproducible
increase in lung tumor multiplicity in these mice, and in some cases, lung tumor incidence28.
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However, the increase in lung tumor multiplicity, from about 0.5–1 lung tumors per mouse
in controls to 1.1–2.8 lung tumors per mouse in the mice treated with cigarette smoke,
although significant, is relatively small. This creates severe practical problems when using
this model for chemoprevention studies. A number of chemoprevention experiments using
relatively small groups of animals have been reported using this smoke inhalation assay, but
most of the results were statistically insignificant, with the exception of a mixture of
dexamethasone and myo-inositol28. Several other mouse strains have been used in
experiments of similar design, but the tumorigenic response to cigarette smoke was
generally quite weak31.

Box 2

Problems with rodent models of smoke inhalation

Rodents are obligatory nose breathers with complex nasal structures different from those
in humans, leading to different deposition patterns in rodents versus humans. Rodents
will not inhale tobacco smoke voluntarily the way humans do, but rather adopt shallow
breathing patterns and avoidance reactions. The exposure systems that have been used
are problematic. Nose only exposure systems require extensive handling while whole
body exposure systems result in deposition of particles on the pelt and oral exposure
through grooming. Exposure in these systems can cause stress and lack of weight gain.
Lung tumors have been induced by cigarette smoke exposure in both rats and mice, but
lengthy whole body exposures are required, and the experiments used highly specialized
inhalation facilities which are not widely available145,146.

By far the most commonly employed model for evaluating chemopreventive agents is the
carcinogen-treated A/J mouse. The tumors induced by carcinogens have morphologic,
histogenic, and molecular features similar to human lung adenocarcinoma32. The
susceptibility of the A/J mouse to lung tumor development has been attributed to the
pulmonary adenoma susceptibility (Pas1) gene, which is tightly linked to the Kras2
oncogene33. Four carcinogens - BaP, NNK, ethyl carbamate (urethane), and vinyl carbamate
– have been extensively used for tumor induction in chemoprevention experiments (Box 3).
BaP and NNK are widely viewed as important lung carcinogens in cigarette smoke.
Urethane is the classic carcinogen used for lung tumor induction in A/J mice34, while vinyl
carbamate is its proximate carcinogenic metabolite. Urethane has been reported as a
constituent of cigarette smoke, but only sporadically, while vinyl carbamate has not been
analyzed in cigarette smoke or in smokers as a metabolite. The doses of pure carcinogens
used in these studies are thousands of times higher than the amounts present in cigarette
smoke.

Box 3

Typical procedures for inducing lung tumors in A/J mice

BaP: A/J mice were maintained on a semi-synthetic diet and, at age 9 weeks, were treated
with 2 mg (7.9 μmol) in cottonseed oil, by gavage 56. This was repeated 4 and 7 days
after the initial dose. The study was terminated 21 weeks after the last dose, giving about
13 lung tumors per mouse. A disadvantage is the induction of forestomach tumors which
become large after 21 weeks and may kill the animals before the scheduled termination.

NNK: A/J mice were maintained on a semi-synthetic diet and, at 7 weeks of age, were
treated with a single dose of 2 mg (10 μmol) by intraperitoneal injection. The experiment
was terminated 16 weeks later, producing 8 – 12 lung tumors per mouse, and. no
forestomach tumors. Use of an “open formula” diet significantly decreases tumor
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multiplicity147,148. The lung tumors observed at 16 weeks are all adenomas;
adenocarcinoma are observed 40–50 weeks after treatment149.

Urethane: 6 week old mice were given a single i.p. injection (1 mg, about 225 μmol) per
gram body weight, in saline. About 30 – 50 lung adenomas per mouse were observed 15
weeks after injection. Lung adenocarcinoma appeared 32 weeks after injection77.

Vinyl carbamate: Mice (7–8 weeks old) were injected i.p. with two doses (0.32 mg, 3.6
μmol) in saline, one week apart. The mice were sacrificed 16 weeks later and had 16 lung
tumors per mouse, all of which were described as invasive carcinoma90, although in
another study the carcinoma yield was apparently much lower79.

In studies with these carcinogens, statistically meaningful results can be obtained with only
15 mice per group. This approach is highly practical for examining potential
chemopreventive efficacy. The chemopreventive agent can be given during carcinogen
treatment, after carcinogen treatment, or throughout the experiment to decipher its potential
at different stages of the carcinogenic process. These assays are relatively rapid and
inexpensive. A variation on the use of single carcinogens is the use of BaP and NNK, given
in multiple doses35. The object of this design is to more closely approximate the effects of
cigarette smoke by using a mixture of two of its important carcinogens, and also to allow
intervention with chemopreventive agents at various points during carcinogen treatment to
reflect to some extent the situation in smokers who are transitioning to quitting36. This
aspect has been virtually completely overlooked in previous efficacy studies. A typical
design is illustrated in Figure 1. Treatment with chemopreventive agents in the diet could
begin one day after the 4th carcinogen treatment (or at other intervals if desired) to
approximate the transitioning smoker, or one week after the last carcinogen treatment, to
mimic the situation in ex-smokers37.

While the A/J mouse is a widely used and convenient model for the induction of
adenocarcinoma and investigation of the effects of chemopreventive agents, a similar model
for induction of squamous cell carcinoma became available only fairly recently. Lijinsky
and Reuber reported that application of N-nitroso-tris-chloroethylurea (NTCU) to the skin of
Swiss mice produced various tumors including squamous cell carcinoma of the lung38.
Wang et al treated 8 inbred strains of mice with NTCU by skin painting and observed that
squamous cell carcinoma of the lung were produced in a strain-specific manner, with A/J,
NIH Swiss and SWR/J being the most susceptible (tumor incidence 75 – 100%)39. This
model should be useful for investigating chemoprevention of squamous cell carcinoma of
the lung. However, it should be noted that NTCU is a synthetic carcinogen that is not
present in cigarette smoke.

Treatment of F-344 rats with NNK results in the production of lung adenoma and
adenocarcinoma, and this model has been used for investigating chemopreventive agents,
although less frequently than the A/J mouse40. The rat studies are more expensive than the
mouse experiments because 2 years are required for the development of lung tumors. The
F-344 rat is far less susceptible to lung tumor induction than the A/J mouse, and there is
virtually no background incidence of lung tumors. The rat model is an attractive one for
confirming lung chemoprevention activity observed in mice40. In another approach, the
induction and modification by chemopreventive agents of preneoplastic lesions of the lung
induced by intratracheal instillation of NNK in Wistar rats has been described41. A hamster
model of neuroendocrine lung carcinogenesis involving hyperoxic lung injury and treatment
with NNK has also been used, as has an adenocarcinoma model initiated by NNK treatment
of hamsters without hyperoxia42.
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Preclinical studies identify effective chemopreventive agents
Naturally occurring and synthetic agents that prevent lung carcinogenesis in laboratory
animals are summarized in Tables 1 and 2, and structures of individual compounds are
shown in Figure 2. Our purpose here is to present an overview of current effective agents
without a detailed evaluation of efficacy and potential toxicity which is beyond the scope of
this review. We focus on agents that have been the subject of relatively recent
investigations, mainly in this century. Previous reviews have summarized data on earlier
studies40,43,44. The diversity of chemical structures in Figure 2 reflects the multiple targets
that have been investigated for chemoprevention of lung carcinogenesis. This is appropriate
because cigarette smoke causes multiple alterations in critical growth control pathways.
Ultimately, rationally constructed mixtures of some of these agents will undoubtedly be
needed for successful chemoprevention.

Multiple studies carried out over the past three decades clearly demonstrate that
isothiocyanates inhibit lung carcinogenesis in animal models45. PEITC and its metabolite
PEITC-NAC have been investigated in the most detail and, among isothiocyanates, overall
have the best properties consistent with chemoprevention of lung carcinogenesis36,45–48.
PEITC and PEITC-NAC are particularly effective against carcinogenesis by NNK, as shown
in studies in both rats and mice, but they are less effective against lung carcinogenesis by
PAH, or in the post-carcinogen treatment period. Benzyl isothiocyanate (BITC) is a highly
effective inhibitor of PAH carcinogenesis49. In smokers, and in those transitioning to
quitting, PEITC or PEITC-NAC could potentially neutralize the lung carcinogenic effects of
NNK, at least based on animal studies in which these agents inhibit the metabolic activation
of NNK. PEITC is a strong inhibitor of cytochrome P450 2A13 (Ki 30 nM), the most
effective catalyst of NNK metabolic activation in the human respiratory tract50. BITC has
the potential to neutralize carcinogenesis by PAH. Thus, tobacco smoke carcinogens are
targets of isothiocyanates, but these compounds also have some favorable downstream
effects on pathways involved in apoptosis and proliferation of transformed cells51. Similar
to PEITC, 8-methoxypsoralen is an inhibitor of P450 2A enzymes and an effective inhibitor
of NNK induced mouse lung tumorigenesis52–54.

Wattenberg was the first to demonstrate that myo-inositol is an effective inhibitor of lung
carcinogenesis by both NNK and BaP55,56. It inhibits lung carcinogenesis by a mixture of
BaP plus NNK when given either during the carcinogen treatment period or afterwards, thus
suggesting potential efficacy in smokers and ex-smokers57. There appear to be virtually no
toxic effects associated with myo-inositol treatment, as recently confirmed in a Phase I
clinical trial in which the maximum tolerated dose was 18 g per day58. Although the major
mechanism(s) by which myo-inositol inhibits lung carcinogenesis are not clear, a recent
study demonstrates that it inhibits activation of Akt37. Tobacco smoke carcinogens and their
post-carcinogen treatment activities are targets of myo-inositol.

Many epidemiologic studies demonstrate that consumption of cruciferous vegetables is
associated with lower lung cancer risk, and this effect appears to be particularly strong in
people with GSTM1 and GSTT1 null genotypes, indicating a diet-gene interaction59. The
unique property of cruciferous vegetables is the presence of glucosinolates which, upon
consumption of the raw vegetable (or to a lesser extent, the cooked vegetable), yield
isothiocyanates and indole-3-carbinol among other products60. The chemopreventive
properties of isothiocyanates as noted above are consistent with these observations, but
among the major products to which humans are exposed when they consume common
cruciferous vegetables are indole-3-carbinol and its dimer, di-indolyl methane (DIM) which
forms in the stomach due to the low pH60–62. Indole-3-carbinol and DIM are both effective
inhibitors of lung carcinogenesis by BaP plus NNK, and the effects of indole-3-carbinol
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have been observed both in the carcinogen treatment and post-carcinogen treatment
phases63–65. Indole-3-carbinol enhances the hepatic clearance of NNK, and decreases levels
of some critical proteins such as hypoxia inducible factor 1α (HIF-1α) and fatty acid
synthase (FAS) in mouse lung tumors66. While indole-3-carbinol appears to have multiple
targets, specific inhibitors of FAS such as C75 have chemopreventive activity against mouse
lung tumorigenesis67.

A large body of experimental data demonstrates that tea and its constituents inhibit lung
carcinogenesis in laboratory animals68,69. Green tea, popular in Asia, contains 30–40% by
weight catechins such as (−)-epigallocatechin-3-gallate (EGCG) and others, whereas black
tea, more popular in Western nations, is processed in such a way as to release phenol
oxidase, thus oxidizing the catechins to oligomers such as theaflavins and to polymers called
thearubigins68,69. A standardized green tea polyphenol preparation called “Polyphenon E”
has also been used for chemoprevention studies. In the NNK lung carcinogenesis model, and
in other models, green tea, black tea, and their decaffeinated versions, as well as Polyphenon
E significantly inhibited tumor development68,69. Inhibition has also been seen in models
using a variety of other lung carcinogens including BaP68,69. Both black tea and Polyphenon
E inhibited the progression of adenoma to adenocarcinoma in mice treated with NNK70, and
Polyphenon E inhibited progression to large carcinoma in BaP-treated mice71. Multiple
mechanisms have been reported for the inhibitory properties of tea and its constituents
including induction of phase II enzymes, decreased oxidative damage, induction of
apoptosis, inhibition of cell proliferation, and others68,69. Synergistic inhibition was
observed with a combination of Polyphenon E and atorvastatin72. Another beverage which
has shown chemopreventive activity against lung carcinogenesis is kava, a root extract
consumed widely by South Pacific islanders. Kava inhibited lung tumorigenesis when given
in the carcinogen treatment or post-carcinogen treatment phases73.

A Chinese herbal mixture called Antitumor B, also known as Zeng Sheng Ping, is comprised
of six plants, and has a history of safety in clinical use. Antitumor B significantly decreased
tumor multiplicity and tumor load in mice treated with BaP74. Ginseng is also a traditional
medicine used in Asia. It had suppressing activity against lung tumor multiplicity in mice
treated with BaP75. Pomegranate fruit extract is another plant-based agent with considerable
inhibitory activity against lung tumorigenesis76.

Silibinin, a flavonone from milk thistle, is structurally related to tea polyphenols. It has been
used as a dietary supplement to improve liver function and as an anti-hepatotoxic drug77. It
apparently has very low toxicity. Silibinin added to the diet, at concentrations of 0.033 – 1%,
of mice treated with urethane significantly decreased lung tumor incidence recorded 20
weeks later77. Silibinin treatment decreased proliferation markers and tumor microvessel
density, as well as lung tumor expression of vascular endothelial growth factor, inducible
nitric oxide synthase, and cyclooxygenase-2, all believed to be involved in inflammation and
tumor progression77. Silibinin (0.05 – 0.1% in the diet) given prior to BaP had no effect on
tumor multiplicity or tumor load78. Thus, tumor promotion and inflammation are targets of
silibinin.

Dexamethasone and budesonide are glucocorticoids, which bind to and activate the cytosolic
glucocorticoid receptor. Dexamethasone had been shown to inhibit the promotion stage of
carcinogenesis in various models and was first applied in lung carcinogenesis studies by
Wattenberg55. In further studies, it demonstrated good activity in various mouse models, and
particularly in combination with myo-inositol56,79–81. This combination is the only one
reported to successfully inhibit lung tumorigenesis in the tobacco smoke inhalation model
described by Witschi81. Similarly, budesonide shows good activity in multiple mouse
models82–85. A potentially important approach to chemoprevention uses inhaled budesonide,
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greatly decreasing the risk of systemic side effects, while maintaining excellent efficacy at
low doses86. This approach was also successful when combined with dietary myo-inositol in
mouse models86. Difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase
involved in tumor promotion, is also effective as a chemopreventive agent against squamous
cell carcinoma when given by inhalation to hamsters87.

Oleanane and ursane triterpenoids are pentacyclic compounds derived biosynthetically from
squalene. Sporn, Gribble and co-workers have targeted inflammation with diverse structural
analogues which inhibit inducible nitric oxide synthase and cyclooxygenase-2, and are also
phase II enzyme inducers88,89. CDDO-methyl ester as well as CDDO-ethyl amide are potent
inhibitors of vinyl carbamate-induced mouse lung carcinogenesis in the post-carcinogen
phase90. Rexinoids, selective ligands for the retinoid X receptors RXRα, RXRβ, and RXRγ,
with anti-inflammatory activity, are also effective. Targretin and NRX194204 have shown
activity in the post carcinogen phase91,92.

Rapamycin, a natural product isolated from Streptomyces hygroscopicus, is an inhibitor of
mTOR (mammalian target of rapamycin), which is downstream from Akt and PI3K, a
pathway commonly activated in lung carcinogenesis. Rapamycin decreased lung tumor load,
but not tumor multiplicity, in a mouse anti-progression protocol in which BaP was the
carcinogen75.

Inflammation has also been targeted by non-steroidal anti-inflammatory drugs (NSAIDS)
such as sulindac. Cyclooxygenase (COX) enzymes play a key role in the synthesis of
prostanoids involved in inflammation. COX-1 is constitutive while COX-2 is inducible.
COX-2 is induced and becomes constitutively expressed as tumors progress. COX-2
expression is observed in human lung non-small cell lung cancer and expression of both
forms has been observed in normal mouse lung and lung tumors22,93,94. Sulindac, its sulfone
metabolite, and aspirin, as well as several other COX inhibitors, are effective
chemopreventive agents in NNK treated mice95–99. However, the specific COX-2 inhibitor
celecoxib, while reducing pulmonary inflammation, had no effect on lung tumor multiplicity
in A/J mice99. Interest in COX-2 inhibitors has been affected by cardiovascular toxicity22.
Lipoxygenase inhibitors, which inhibit the formation of leukotrienes involved in
inflammation, have also been effective. A-79175 and MK-866 are examples which inhibit
lung carcinogenesis100,101.

Human lung adenocarcinoma commonly have a mutated ras oncogene102. The ras proteins
are GTPases involved in regulation of signal transduction pathways controlling proliferation
and apoptosis. Ras proteins are typically farnesylated to become active, so
farnesyltransferase inhibitors are natural targets for chemoprevention. Several
farnesyltransferase inhibitors including R115777, FTI-276, and perillyl alcohol, have shown
activity in BaP or NNK induced mouse lung tumor models103,104.

Organoselenium compounds have emerged as an interesting class of agents. 1,4-
Phenylenebis(methylene)selenocyanate (XSC), a relatively non-toxic organoselenium
compound, inhibits BaP plus NNK induced mouse lung tumorigenesis when given either
during or after carcinogen administration, and has some favorable effects on phase I and
phase II enzymes105,106. XSC reduced the expression of COX-2, NF-κB, and cyclin D1 in
lung cells107. In contrast to XSC, selenium enriched yeast had no effect on NNK induced
mouse lung tumorigenesis108. Another interesting class of organoselenium compounds is the
selenazolidine carboxylic acids, prodrugs of selenocystine, which inhibit NNK induced lung
tumorigenesis109,110.
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Deguelin is an inhibitor of the PI3K/Akt pathway and decreases the expression of COX-2. It
was an effective inhibitor of BaP plus NNK mouse lung tumorigenesis in both the
carcinogen administration and post-carcinogen administration phases78,111. There is concern
about potential toxic effects of deguelin, and structural variants are being examined112.

Inhibition of endogenous DNA hypermethylation, which can inhibit transcription of tumor
suppressor genes, is another chemoprevention target. 5-Aza-2′-deoxycytidine (DAC)
inhibits DNA methylation by reducing cytosine-DNA methyltransferase 1 activity. DAC
inhibited NNK induced lung tumorigenesis in two different mouse models, and its effects
were potentiated by the histone deacetylase inhibitor phenylbutyrate113,114.

Collectively, the data reviewed here demonstrate that effective agents exist targeting the
main types of activities responsible for lung carcinogenesis: tobacco smoke carcinogens,
their multiple associated and post-carcinogen proliferative activities (e.g., tumor promotion
and co-carcinogenesis), and inflammation. Rationally constructed mixtures of selected
agents should logically be effective in antagonizing lung carcinogenesis.

Development of a mixture for chemoprevention of lung carcinogenesis:
PEITC-NAC plus myo-inositol as an example

The solid efficacy and low toxicity of PEITC-NAC and myo-inositol, along with evidence
that they have different targets in lung carcinogenesis, suggested that a combination of these
agents might be useful for chemoprevention of lung carcinogenesis in smokers transitioning
to quitting and in ex-smokers.

The first goal of this study was to test the agents alone in different temporal sequences that
reflect to some extent the situation in a smoker transitioning to quitting. No smoker would
begin using chemopreventive agents at the same time as initiating smoking, yet most of the
experiments described in the previous section, in which agents were tested during or before
the carcinogen administration phase, reflected that unlikely situation. Therefore, we tested
PEITC-NAC and myo-inositol, individually and in combination, starting 24h after the 4th or
6th carcinogen administration (see Figure 1) and continued their administration until the end
of the experiment, 19 weeks after the final carcinogen administration. The results were
compared to those obtained when the compounds were given for the entire experiment, or
only after carcinogen administration, the latter mimicking their use in ex-smokers. All
treatments led to significant reductions in lung tumor multiplicity, except PEITC-NAC
starting after the 6th carcinogen treatment, or given post-carcinogen. For both agents, there
was a significant trend for increased reduction in lung tumor multiplicity with increased
duration of treatment. Combinations of PEITC-NAC and myo-inositol were tested, using
non-toxic doses at which the individual compounds significantly reduced lung tumor
multiplicity. In general, the mixture of PEITC-NAC plus myo-inositol was more effective
than either agent alone, and when all results were combined, the combination was
significantly more effective, with the combined efficacy being roughly additive36.

These positive results set the stage for a more detailed investigation of the mixture of
PEITC-NAC plus myo-inositol. Toxicity studies were carried out which established non-
toxic doses of PEITC-NAC with the exception of the presence of eosinophilic granules in
the bladder mucosa. The mixture of PEITC-NAC plus MI, when given from the 50% point
of carcinogen administration until termination at 44 weeks, inhibited lung tumor multiplicity
by 46 – 72% (depending on the dose), and by 32% when given in the post-carcinogen phase
alone. All of these decreases were significant. There was also a significant reduction of up to
75% in adenocarcinoma formation by PEITC-NAC plus myo-inositol given from the 50%
time point, and a significant 53% reduction when given post-carcinogen only. A photograph
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of typical mouse lungs from this study is shown in Figure 337. Parallel mechanistic studies
demonstrated that the observed inhibition of lung tumorigenesis was attributable in part to
inhibition of cell proliferation and induction of apoptosis. While NNK plus BaP treatment
caused increased phosphorylation of Akt and BAD (resulting in loss of its proapoptotic
function), these were inhibited by both PEITC-NAC and myo-inositol. Further, proteomic
analysis demonstrated that PEITC-NAC plus myo-inositol altered levels of multiple critical
proteins in lung tumors from these mice66. Collectively, these results demonstrate that the
mixture of PEITC-NAC and myo-inositol is effective and can be advanced to the next stage
of development.

From Animal Models to Clinical Trials
There are presently no chemopreventive agents that have demonstrated efficacy against lung
cancer in clinical trials. All trials to date have yielded negative or even damaging results, as
reviewed previously22,44,115–120. While potential reasons for these negative results have
been discussed extensively in previous reviews, one major explanation is a violation in some
cases of rule number one: efficacy in laboratory animal models of lung carcinogenesis. In
this section we summarize some current clinical trials which are based at least partially on
the efficacy studies summarized in Table 1 and discussed above. These trials are described
on the National Cancer Institute web site121. Trial designs for chemoprevention have also
been reviewed122.

A phase II trial of PEITC is designed to determine, as the primary endpoint, whether PEITC
has the same inhibitory properties on the metabolic activation of NNK in smokers as it does
in rats, in a randomized, placebo controlled trial. As a secondary endpoint, the effects of
GSTM1 plus GSTT1 null status on the inhibitory activity of PEITC will be determined. In an
associated longer term study, the effects of PEITC on biomarkers of bronchial epithelial cell
apoptosis and proliferation will be assessed. This trial finds further support from the results
of two nested case control studies demonstrating a significant relationship of the NNK
biomarker total NNAL to lung cancer123,124.

Lam and co-workers obtained some evidence for regression of pulmonary dysplasia in
subjects enrolled in a Phase I trial of myo-inositol58. This observation, together with the
multiple efficacy studies described above and the established low toxicity of myo-inositol,
led to a Phase II study to compare myo-inositol vs. placebo in the reversion of bronchial
dysplasia in current or former smokers, as the primary endpoint. Secondary endpoints
include biomarkers of proliferation, apoptosis, and angiogenesis in bronchial biopsy samples
and biomarkers of inflammation in bronchial lavage and plasma samples.

A Phase II study with green tea will examine the effects of high dose green tea (four 12 oz.
servings per day) or Polyphenon E (4 capsules per day) on biomarkers of oxidative damage
in former smokers with COPD, as the primary endpoint. Secondary endpoints include body
antioxidant status and antioxidant enzymes, and markers of apoptosis and proliferation in
induced sputum. A second Phase II study of Polyphenon E will examine efficacy and safety
in current or former smokers with bronchial dysplasia and increased inflammatory load as
measured by C-reactive protein. Secondary endpoints in this trial include biomarkers of
oxidative stress, inflammation, apoptosis, aberrant methylation, phase I and II enzyme
expression, and proliferation.

A phase II trial of sulindac will examine the effects of sulindac vs. placebo on histologic
grade of bronchial dysplasia determined in bronchoscopy exams in smokers or former
smokers with bronchial dysplasia. Secondary endpoints include determination of the number
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of dysplastic lesions before and after treatment, and changes in biomarkers of the
arachidonic acid pathway, as well as biomarkers of apoptosis and proliferation.

It is notable that there are no ongoing trials of mixtures of chemopreventive agents. This
contrasts with a major theme of this article. The principal that mixtures can be effective in
chemoprevention clinical trials has recently been established in a study of sulindac and
DFMO for chemoprevention of recurrence of colon adenomas, without serious toxicity125.

The role of chemoprevention in treatment of smokers
The primary concern over the use of a chemopreventive agent against lung carcinogenesis is
that it may give smokers a false sense of security. They may feel that smoking is “safe” or is
significantly “safer,” which will result in their continuing to smoke, relapsing to smoking or
even initiating smoking. However, providing treatments to those individuals who continue to
practice behaviors that put them at high risk for disease is not uncommon. For example,
statins or anithypertensives are not withheld from patients with poor eating habits and a
sedentary lifestyle because the health care providers are concerned the use of these agents
might contribute to the obesity epidemic. A similar analogy can be made with
chemopreventive agents for smoking.

What is clear is that safeguards need to be in place so that smokers are not misled or have
the misconception that using a chemopreventive agent is the solution and makes smoking
safe. A chemopreventive agent may reduce the risk of one disease, such as lung cancer,
however, there are other diseases that are associated with cigarette smoking including other
cancers, heart disease and lung disease126. Therefore, smoking cessation must be the
primary goal for and message to the patient. Although some researchers have advocated for
the use of chemopreventive agents for only those who want to quit smoking, the rate of
success is low and smokers often transition in and out of quitting127 and in and out of being
motivated to quit128, making it difficult to determine who should and should not receive
chemopreventive treatment if the prescription criterion is based only on whether or not the
smoker is ready to quit. Therefore, we believe that smokers uninterested in quitting or
unable to quit should be considered for chemopreventive therapy, although this approach has
been barely recognized by those interested in tobacco harm reduction strategies129. In
addition to smokers, based on the mechanism of action, successful quitters or former
smokers potentially can benefit from chemopreventive agents.

According to the principles that are used to guide proposed public health interventions, it is
critical that the intervention reduces rather than increases morbidity and mortality on a
population level, that it results in no more harm than already exists, that the risks and
benefits are distributed equitably across different populations (no population benefited at the
expense of another), and that the autonomous choices of individuals and communities are
respected130,131. These are the criteria by which chemopreventive therapies for tobacco-
related diseases should be evaluated.

Conclusions
In spite of the lack of success in chemoprevention of lung carcinogenesis so far, there is
reason to be optimistic. The data summarized here clearly demonstrate that there are
multiple agents that are effective inhibitors of lung carcinogenesis in animal models, and
these agents operate by diverse mechanisms. It is likely that success will depend on
judicious use of a combination of these agents because cellular damage from years of
cigarette smoking is both complex and extensive. Single agents that target single pathways
or carcinogens are not likely to be successful. We need to target the multiple activities of
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cigarette smoke: its carcinogens and toxicants and their downstream, tumor promoting, and
inflammatory effects. The successful mixture will be assembled stepwise and driven by
efficacy testing in one or more of the animal models described here. This chemopreventive
mixture will have minimal toxicity in animal models and humans, which might be
achievable by using naturally occurring compounds in doses no greater than those present in
common foods such as vegetables. All smokers should be considered for chemoprevention
of lung carcinogenesis but with the strong message that no chemopreventive agent makes
smoking safe. In addition, chemoprevention should be given in the context of providing
smoking cessation advice and assistance. Ex-smokers should also benefit from
chemoprevention. Although not discussed here, genetic, molecular and phenotypic
biomarkers could be used to select those subjects at highest risk for lung cancer, and
treatment should be promptly delivered to such individuals. While avoidance of tobacco
products is the surest way to decrease lung cancer risk, chemoprevention promises to be a
useful adjunct strategy.
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At a Glance

• Lung cancer kills more than 3000 people every day in the world, and most of
this toll is due to cigarette smoking. Although tobacco control is clearly the most
desirable way to prevent lung cancer, cigarette smoking is addictive and despite
considerable success to date, there are still over a billion smokers in the world
who, along with ex-smokers, are at high risk for lung cancer. Chemoprevention
of lung carcinogenesis is one way forward in control of this devastating disease.

• In considering chemoprevention, it is crucial that we focus on treating lung
carcinogenesis, not lung cancer. The disease process is carcinogenesis.

• Lung carcinogenesis is caused by multiple carcinogens in cigarette smoke, along
with tumor promoters, co-carcinogens, toxicants, and inflammatory agents. In
devising chemoprevention strategies, these multiple agents should be our
targets. Targeting a single pathway in lung carcinogenesis is not likely to be
successful.

• Because there are multiple carcinogenic and toxic constituents of tobacco
smoke, we will need to develop a mixture of chemopreventive agents to
counteract them. This mixture should be developed from the ground up, using
animal models to demonstrate efficacy without appreciable toxicity.

• Well established animal models are available for evaluating chemopreventive
efficacy against lung carcinogenesis. The most commonly used model by far is
the carcinogen treated A/J mouse, which develop adenocarcinoma similar to
those seen in humans.

• Many agents have shown chemopreventive efficacy against lung carcinogenesis
in animal models. Examples include phenethyl isothiocyanate, indole-3-
carbinol, myo-inositol, green and black tea and its constituents, silibinin,
glucocorticoids, difluoromethylornithine, oleanane and ursane triterpenoids,
non-steroidal anti-inflammatory drugs, farnesyltrasferase inhibitors,
organoselenium compounds, and others. Some mixtures of these agents also
demonstrate efficacy.

• There have been no successful lung carcinogenesis clinical trials. Current trials
include examinations of some of the agents listed above, but no mixtures.

• In chemoprevention of lung carcinogenesis, we must target current smokers,
smokers transitioning to quitting, and ex-smokers. While cessation is clearly the
best way to decrease the probability of getting lung cancer, most smokers cannot
quit, even after many tries. It would be unethical not to offer these people
effective agents.
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Figure 1.
A design for evaluating chemopreventive agents against lung tumorigenesis in A/J mice.
Lung tumors are induced by weekly gavage doses of NNK + BaP.
Intervention can begin during the carcinogen treatment period (shown here at week 4) or
afterward. Adenoma can be scored at week 27 and adenocarcinoma at week 44.
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Figure 2.
Structures of diverse inhibitors of lung carcinogenesis discussed in the paper
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Figure 3.
Photographs of lungs from two mice, each treated with vehicle (cottonseed oil) only, or a
mixture of BaP plus NNK (2 μmol of each, once weekly for 8 weeks, as in Figure 1), or BaP
plus NNK and a mixture of PEITC-NAC and myo-inositol in the diet, starting 24h after the
4th administration of BaP plus NNK. The mice were sacrificed 44 weeks after the beginning
of the experiment, as in Figure 1.
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