Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prostate-specific antigen and prostate cancer: prediction, detection and monitoring

A Corrigendum to this article was published on 01 May 2008

Key Points

  • Prostate-specific antigen (PSA) is one of the few molecular markers routinely used for detection, risk stratification and monitoring of a common cancer.

  • PSA is specific to the prostate but not to prostate cancer: benign prostate diseases often cause increases in serum PSA and most men with increased PSA do not have prostate cancer.

  • PSA strongly discriminates different cancer stages: it is higher in men with localized disease than in cancer-free controls, is associated with stage and grade in localized disease and is higher in patients with metastatic compared with localized disease.

  • Men with a higher PSA at the time of initial therapy have increased risk of recurrence.

  • PSA is a sensitive indicator of recurrence after radical prostatectomy, but far less sensitive as an indicator of recurrence after radiation therapy.

  • PSA before age 50 is a strong predictor of prostate cancer occurring up to 25 years later.

  • The introduction of PSA as a screening test has led to a sharp increase in the incidence of prostate cancer because there has been a shift to diagnosis at earlier stages and there is probably substantial 'overdiagnosis' — men diagnosed with prostate cancer whose cancer would never have affected their lives if they had not had a PSA test.

  • The effects of PSA screening on prostate cancer mortality are not yet clear.

Abstract

Testing for prostate-specific antigen (PSA) has profoundly affected the diagnosis and treatment of prostate cancer. PSA testing has enabled physicians to detect prostate tumours while they are still small, low-grade and localized. This very ability has, however, created controversy over whether we are now diagnosing and treating insignificant cancers. PSA testing has also transformed the monitoring of treatment response and detection of disease recurrence. Much current research is directed at establishing the most appropriate uses of PSA testing and at developing methods to improve on the conventional PSA test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of prostate-specific antigen (PSA) values among men of different age groups.
Figure 2: Early prediction of prostate cancer risk.
Figure 3: Three non-exclusive hypotheses to explain the association between prostate-specific antigen (PSA) level in younger men and prostate cancer diagnosed up to 25 years subsequently.
Figure 4: Prostate-specific antigen (PSA) subforms and interactions.

Similar content being viewed by others

References

  1. Lilja, H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J . Clin. Invest. 76, 1899–1903 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herrala, A. M., Porvari, K. S., Kyllonen, A. P. & Vihko, P. T. Comparison of human prostate specific glandular kallikrein 2 and prostate specific antigen gene expression in prostate with gene amplification and overexpression of prostate specific glandular kallikrein 2 in tumor tissue. Cancer 92, 2975–2984 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Lintula, S., Stenman, J., Bjartell, A., Nordling, S. & Stenman, U. H. Relative concentrations of hK2/PSA mRNA in benign and malignant prostatic tissue. Prostate 63, 324–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ahlgren, G., Rannevik, G. & Lilja, H. Impaired secretory function of the prostate in men with oligo-asthenozoospermia. J. Androl. 16, 491–498 (1995).

    CAS  PubMed  Google Scholar 

  5. Lilja, H., Oldbring, J., Rannevik, G. & Laurell, C. B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J. Clin. Invest. 80, 281–285 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lundwall, A., Clauss, A. & Olsson, A. Y. Evolution of kallikrein-related peptidases in mammals and identification of a genetic locus encoding potential regulatory inhibitors. Biol. Chem. 387, 243–249 (2006).

    CAS  PubMed  Google Scholar 

  7. Olsson, A. Y., Lilja, H. & Lundwall, A. Taxon-specific evolution of glandular kallikrein genes and identification of a progenitor of prostate-specific antigen. Genomics 84, 147–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Savblom, C. et al. Blood levels of free-PSA but not complex-PSA significantly correlates to prostate release of PSA in semen in young men, while blood levels of complex-PSA, but not free-PSA increase with age. Prostate 65, 66–72 (2005).

    Article  PubMed  Google Scholar 

  9. Niemela, P., Lovgren, J., Karp, M., Lilja, H. & Pettersson, K. Sensitive and specific enzymatic assay for the determination of precursor forms of prostate-specific antigen after an activation step. Clin. Chem. 48, 1257–1264 (2002).

    CAS  PubMed  Google Scholar 

  10. Piironen, T. et al. Measurement of circulating forms of prostate-specific antigen in whole blood immediately after venipuncture: implications for point-of-care testing. Clin. Chem. 47, 703–711 (2001).

    CAS  PubMed  Google Scholar 

  11. Christensson, A., Laurell, C. B. & Lilja, H. Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors. Eur. J. Biochem. 194, 755–763 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, S. D. et al. In situ hybridization of prostate-specific antigen mRNA in human prostate. J. Urol. 144, 1550–1556 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Ung, J. O., Richie, J. P., Chen, M. H., Renshaw, A. A. & D'Amico, A. V. Evolution of the presentation and pathologic and biochemical outcomes after radical prostatectomy for patients with clinically localized prostate cancer diagnosed during the PSA era. Urology 60, 458–463 (2002).

    Article  PubMed  Google Scholar 

  14. Aus, G. et al. Individualized screening interval for prostate cancer based on prostate-specific antigen level: results of a prospective, randomized, population-based study. Arch. Intern. Med. 165, 1857–1861 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gann, P. H., Hennekens, C. H. & Stampfer, M. J. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. Jama 273, 289–294 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Stenman, U. H. et al. Serum concentrations of prostate specific antigen and its complex with α1-antichymotrypsin before diagnosis of prostate cancer. Lancet 344, 1594–1598 (1994). This classic paper was the first to suggest that PSA is powerful as a long-term predictor of prostate cancer. The study is, however, limited by the small number of cancer cases analysed and by the degradation of PSA in archived serum samples.

    Article  CAS  PubMed  Google Scholar 

  17. Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004). Unique study showing cancer incidence among men of ages 62–91 with PSA levels of 0–4 ng/ml, based on end-of-study biopsies of the men randomized to the control arm of the Prostate Cancer Prevention Trial.

    Article  CAS  PubMed  Google Scholar 

  18. Ulmert, D. et al. Long-term prediction of prostate cancer: PSA velocity is predictive but does not improve the predictive accuracy of a single PSA measurement 15 years or more before cancer diagnosis in a large, representative, unscreened population. J. Clin. Oncol. 26, 835–841 (2008).

    Article  PubMed  Google Scholar 

  19. Andriole, G. L. et al. Prostate cancer screening in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial: findings from the initial screening round of a randomized trial. J. Natl Cancer Inst. 97, 433–438 (2005).

    Article  PubMed  Google Scholar 

  20. Crawford, E. D. et al. Serum prostate-specific antigen and digital rectal examination for early detection of prostate cancer in a national community-based program. The Prostate Cancer Education Council. Urology 47, 863–869 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hugosson, J., Aus, G., Lilja, H., Lodding, P. & Pihl, C. G. Results of a randomized, population-based study of biennial screening using serum prostate-specific antigen measurement to detect prostate carcinoma. Cancer 100, 1397–1405 (2004).

    Article  PubMed  Google Scholar 

  22. Thompson, I. M. et al. Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J. Natl Cancer Inst. 98, 1128–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Thompson, I. M. et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294, 66–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Thompson, I. M. et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J. Natl Cancer Inst. 98, 529–34 (2006). Describes an online calculator that estimates a man's risk of prostate cancer from his PSA level, age, race, family history of prostate cancer, results of digital rectal examination and any prior biopsy results.

    Article  PubMed  Google Scholar 

  25. Marks, L. S., Andriole, G. L., Fitzpatrick, J. M., Schulman, C. C. & Roehrborn, C. G. The interpretation of serum prostate specific antigen in men receiving 5α-reductase inhibitors: a review and clinical recommendations. J. Urol. 176, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. D'Amico, A. V. & Roehrborn, C. G. Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol. 8, 21–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Thompson, I. M. et al. Prediction of prostate cancer for patients receiving finasteride: results from the Prostate Cancer Prevention Trial. J. Clin. Oncol. 25, 3076–3081 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Verhamme, K. M. et al. Incidence and prevalence of lower urinary tract symptoms suggestive of benign prostatic hyperplasia in primary care — the Triumph project. Eur. Urol. 42, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Morgan, T. O. et al. Age-specific reference ranges for prostate-specific antigen in black men. N. Engl. J. Med. 335, 304–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Oesterling, J. E. et al. Free, complexed and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios. J. Urol. 154, 1090–1095 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Borer, J. G., Sherman, J., Solomon, M. C., Plawker, M. W. & Macchia, R. J. Age specific prostate specific antigen reference ranges: population specific. J. Urol. 159, 444–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Fang, J. et al. Low levels of prostate-specific antigen predict long-term risk of prostate cancer: results from the Baltimore Longitudinal Study of Aging. Urology 58, 411–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Loeb, S. et al. Baseline prostate-specific antigen compared with median prostate-specific antigen for age group as predictor of prostate cancer risk in men younger than 60 years old. Urology 67, 316–320 (2006).

    Article  PubMed  Google Scholar 

  34. Lilja, H. et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J. Clin. Oncol. 25, 431–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ulmert, D. et al. Prostate-specific antigen at or before age 50 as a predictor of prostate cancer of unquestionable significance up to 25 years later: a case-control study. BMC Med. 6, 6 (2008). This paper shows that a single PSA test taken at or before age 50 is a strong predictor of advanced prostate cancer diagnosed up to 25 years later, with advanced cancer defined as cancer that is locally advanced or metastatic at the time of diagnosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vickers, A. J. et al. The predictive value of prostate cancer biomarkers depends on age and time to diagnosis: towards a biologically-based screening strategy. Int. J. Cancer 121, 2212–2217 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Grossklaus, D. J. et al. The free/total prostate-specific antigen ratio (%fPSA) is the best predictor of tumor involvement in the radical prostatectomy specimen among men with an elevated PSA. Urol. Oncol. 7, 195–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987). This classic paper demonstrated that PSA is elevated in blood of patients with prostate cancer or BPH, and that it is associated with clinical stage and tumor volume.

    Article  CAS  PubMed  Google Scholar 

  39. Pinsky, P. F. et al. Prostate-specific antigen velocity and prostate cancer gleason grade and stage. Cancer 109, 1689–1695 (2007).

    Article  PubMed  Google Scholar 

  40. Hoedemaeker, R. F. et al. Pathologic features of prostate cancer found at population-based screening with a four-year interval. J. Natl Cancer Inst. 93, 1153–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Sakr, W. A. et al. Age and racial distribution of prostatic intraepithelial neoplasia. Eur. Urol. 30, 138–144 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Jemal, A. et al. Cancer statistics, 2007. CA Cancer J. Clin. 57, 43–66 (2007).

    Article  PubMed  Google Scholar 

  43. Telesca, D. Etzioni, R. & Gulati, R. Estimating lead time and overdiagnosis associated with PSA screening from prostate cancer incidence trends. Biometrics 14 May 2007 (doi: 10.1111/j.1541–0420.2007.00825.x). This study provides estimates of lead time and rates of overdiagnosis of prostate cancer resulting from PSA testing, based on trends in the incidence of prostate cancer.

  44. Postma, R. et al. Cancer detection and cancer characteristics in the European Randomized Study of Screening for Prostate Cancer (ERSPC) — Section Rotterdam. A comparison of two rounds of screening. Eur. Urol. 52, 89–97 (2007).

    Article  PubMed  Google Scholar 

  45. Bill-Axelson, A. et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 352, 1977–1984 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Aus, G., Bergdahl, S., Lodding, P., Lilja, H. & Hugosson, J. Prostate cancer screening decreases the absolute risk of being diagnosed with advanced prostate cancer--results from a prospective, population-based randomized controlled trial. Eur. Urol. 51, 659–664 (2007). Early results from a randomized trial of PSA screening, showing that screening reduced both frequency and absolute number of prostate cancer cases that were metastatic at diagnosis.

    Article  PubMed  Google Scholar 

  47. Karazanashvili, G. & Abrahamsson, P. A. Prostate specific antigen and human glandular kallikrein 2 in early detection of prostate cancer. J. Urol. 169, 445–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Ohori, M., Dunn, J. K. & Scardino, P. T. Is prostate-specific antigen density more useful than prostate-specific antigen levels in the diagnosis of prostate cancer? Urology 46, 666–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Lilja, H. et al. Prostate-specific antigen in serum occurs predominantly in complex with α1-antichymotrypsin. Clin. Chem. 37, 1618–1625 (1991).

    CAS  PubMed  Google Scholar 

  50. Stenman, U. H. et al. A complex between prostate-specific antigen and α 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res. 51, 222–226 (1991).

    CAS  PubMed  Google Scholar 

  51. Christensson, A. et al. Serum prostate specific antigen complexed to α 1-antichymotrypsin as an indicator of prostate cancer. J. Urol. 150, 100–105 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Catalona, W. J. et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 279, 1542–1547 (1998). This report, based on a large cohort, was the first to propose a cut-off for the percentage of free PSA as criterion for prostate biopsy.

    Article  CAS  PubMed  Google Scholar 

  53. Ulmert, D. et al. Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs plasma after long-term storage at −20 degrees C. Clin. Chem. 52, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Morote, J. et al. The percentage of free prostatic-specific antigen is also useful in men with normal digital rectal examination and serum prostatic-specific antigen between 10.1 and 20 ng/ml. Eur. Urol. 42, 333–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Roddam, A. W. et al. Use of prostate-specific antigen (PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2–10 ng/ml: systematic review and meta-analysis. Eur. Urol. 48, 386–399; discussion 398–399 (2005). This thorough meta-analysis demonstrates the improvement in diagnostic performance gained by measuring the percentage of free PSA in addition to tPSA.

    Article  CAS  PubMed  Google Scholar 

  56. Stephan, C., Lein, M., Jung, K., Schnorr, D. & Loening, S. A. The influence of prostate volume on the ratio of free to total prostate specific antigen in serum of patients with prostate carcinoma and benign prostate hyperplasia. Cancer 79, 104–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Peter, J., Unverzagt, C., Krogh, T. N., Vorm, O. & Hoesel, W. Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer Res. 61, 957–962 (2001).

    CAS  PubMed  Google Scholar 

  58. Catalona, W. J. et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. J. Urol. 170, 2181–2185 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Mikolajczyk, S. D. et al. Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clin. Chem. 50, 1017–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Mikolajczyk, S. D. et al. A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer Res. 60, 756–759 (2000).

    CAS  PubMed  Google Scholar 

  61. Nurmikko, P., Pettersson, K., Piironen, T., Hugosson, J. & Lilja, H. Discrimination of prostate cancer from benign disease by plasma measurement of intact, free prostate-specific antigen lacking an internal cleavage site at Lys145-Lys146. Clin. Chem. 47, 1415–1423 (2001).

    CAS  PubMed  Google Scholar 

  62. Steuber, T. et al. Association of free-prostate specific antigen subfractions and human glandular kallikrein 2 with volume of benign and malignant prostatic tissue. Prostate 63, 13–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Slawin, K. M., Shariat, S. & Canto, E. BPSA: A novel serum marker for benign prostatic hyperplasia. Rev. Urol. 7 (Suppl. 8), 52–56 (2005).

    Google Scholar 

  64. Carter, H. B. et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 267, 2215–2220 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D'Amico, A. V., Chen, M. H., Roehl, K. A. & Catalona, W. J. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N. Engl. J. Med. 351, 125–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. D'Amico, A. V., Renshaw, A. A., Sussman, B. & Chen, M. H. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA 294, 440–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. D'Amico, A. V. et al. Predictors of mortality after prostate-specific antigen failure. Int. J. Radiat. Oncol. Biol. Phys. 65, 656–660 (2006).

    Article  PubMed  Google Scholar 

  68. Leibovici, D. et al. Prostate cancer progression in the presence of undetectable or low serum prostate-specific antigen level. Cancer 109, 198–204 (2007).

    Article  PubMed  Google Scholar 

  69. Nishio, R., Furuya, Y., Nagakawa, O. & Fuse, H. Metastatic prostate cancer with normal level of serum prostate-specific antigen. Int. Urol. Nephrol. 35, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Stephenson, A. J. et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J. Clin. Oncol. 24, 3973–3978 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Amling, C. L., Bergstralh, E. J., Blute, M. L., Slezak, J. M. & Zincke, H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J. Urol. 165, 1146–1151 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Vaisanen, V., Peltola, M. T., Lilja, H., Nurmi, M. & Pettersson, K. Intact free prostate-specific antigen and free and total human glandular kallikrein 2. Elimination of assay interference by enzymatic digestion of antibodies to F(ab′)2 fragments. Anal. Chem. 78, 7809–7815 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. Diamandis, E. P. & Yu, H. Nonprostatic sources of prostate-specific antigen. Urol. Clin. North Am. 24, 275–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Kupelian, P. et al. Improved biochemical relapse-free survival with increased external radiation doses in patients with localized prostate cancer: the combined experience of nine institutions in patients treated in 1994 and 1995. Int. J. Radiat. Oncol. Biol. Phys. 61, 415–419 (2005). This study showed that PSA level after radiation therapy reflects the radiation dose, which is in turn associated with relapse-free survival.

    Article  PubMed  Google Scholar 

  75. Miller, N., Smolkin, M. E., Bissonette, E. & Theodorescu, D. Undetectable prostate specific antigen at 6–12 months: a new marker for early success in hormonally treated patients after prostate brachytherapy. Cancer 103, 2499–2506 (2005).

    Article  PubMed  Google Scholar 

  76. Hanlon, A. L., Moore, D. F. & Hanks, G. E. Modeling postradiation prostate specific antigen level kinetics: predictors of rising postnadir slope suggest cure in men who remain biochemically free of prostate carcinoma. Cancer 83, 130–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Ray, M. E. et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int. J. Radiat. Oncol. Biol. Phys. 64, 1140–1150 (2006).

    Article  PubMed  Google Scholar 

  78. Critz, F. A. et al. Post-treatment PSA ≤0.2 ng/mL defines disease freedom after radiotherapy for prostate cancer using modern techniques. Urology 54, 968–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Cavanagh, W., Blasko, J. C., Grimm, P. D. & Sylvester, J. E. Transient elevation of serum prostate-specific antigen following 125I/103Pd brachytherapy for localized prostate cancer. Semin. Urol. Oncol. 18, 160–165 (2000).

    CAS  Google Scholar 

  80. Reed, D., Wallner, K., Merrick, G., Buskirk, S. & True, L. Clinical correlates to PSA spikes and positive repeat biopsies after prostate brachytherapy. Urology 62, 683–688 (2003).

    Article  PubMed  Google Scholar 

  81. Crook, J. et al. PSA kinetics and PSA bounce following permanent seed prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 69, 426–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Patel, C. et al. PSA bounce predicts early success in patients with permanent iodine-125 prostate implant. Urology 63, 110–113 (2004).

    Article  PubMed  Google Scholar 

  83. Toledano, A. et al. PSA bounce after permanent implant prostate brachytherapy may mimic a biochemical failure: a study of 295 patients with a minimum 3-year followup. Brachytherapy 5, 122–126 (2006).

    Article  PubMed  Google Scholar 

  84. Hanlon, A. L., Pinover, W. H., Horwitz, E. M. & Hanks, G. E. Patterns and fate of PSA bouncing following 3D-CRT. Int. J. Radiat. Oncol. Biol. Phys. 50, 845–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Horwitz, E. M. et al. Biochemical and clinical significance of the posttreatment prostate-specific antigen bounce for prostate cancer patients treated with external beam radiation therapy alone: a multiinstitutional pooled analysis. Cancer 107, 1496–1502 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Rosser, C. J. et al. Is patient age a factor in the occurrence of prostate-specific antigen bounce phenomenon after external beam radiotherapy for prostate cancer? Urology 66, 327–331 (2005).

    Article  PubMed  Google Scholar 

  87. Thames, H. et al. Comparison of alternative biochemical failure definitions based on clinical outcome in 4839 prostate cancer patients treated by external beam radiotherapy between 1986 and 1995. Int. J. Radiat. Oncol. Biol. Phys. 57, 929–943 (2003).

    Article  CAS  Google Scholar 

  88. Roach, M. 3rd et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int. J. Radiat. Oncol. Biol. Phys. 65, 965–974 (2006).

    Article  PubMed  Google Scholar 

  89. Horwitz, E. M. et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J. Urol. 173, 797–802 (2005). A demonstration that the Phoenix definition of biochemical recurrence after radiation therapy (a rise of 2 ng/ml above PSA nadir) is a better predictor of clinical failure and of metastases than is the ASTRO definition.

    Article  PubMed  Google Scholar 

  90. Kuban, D. A. et al. Comparison of biochemical failure definitions for permanent prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 65, 1487–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Stamey, T. A., Kabalin, J. N., Ferrari, M. & Yang, N. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. IV. Anti-androgen treated patients. J. Urol. 141, 1088–1090 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Benaim, E. A., Pace, C. M., Lam, P. M. & Roehrborn, C. G. Nadir prostate-specific antigen as a predictor of progression to androgen-independent prostate cancer. Urology 59, 73–78 (2002).

    Article  PubMed  Google Scholar 

  93. Kwak, C., Jeong, S. J., Park, M. S., Lee, E. & Lee, S. E. Prognostic significance of the nadir prostate specific antigen level after hormone therapy for prostate cancer. J. Urol. 168, 995–1000 (2002). This study demonstrated that PSA nadir after initiation of hormonal therapy is an important predictor of both time to hormone-refractory disease and survival.

    Article  PubMed  Google Scholar 

  94. Miller, J. I., Ahmann, F. R., Drach, G. W., Emerson, S. S. & Bottaccini, M. R. The clinical usefulness of serum prostate specific antigen after hormonal therapy of metastatic prostate cancer. J. Urol. 147, 956–961 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Ryan, C. J. et al. Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: an early predictor of relapse or incomplete androgen suppression. Urology 68, 834–839 (2006).

    Article  PubMed  Google Scholar 

  96. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Arai, Y., Yoshiki, T. & Yoshida, O. Prognostic significance of prostate specific antigen in endocrine treatment for prostatic cancer. J. Urol. 144, 1415–1419 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Furuya, Y. et al. Prognostic significance of changes in prostate-specific antigen in patients with metastasis prostate cancer after endocrine treatment. Int. Urol. Nephrol 32, 659–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Matzkin, H., Eber, P., Todd, B., van der Zwaag, R. & Soloway, M. S. Prognostic significance of changes in prostate-specific markers after endocrine treatment of stage D2 prostatic cancer. Cancer 70, 2302–2309 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Zanetti, G. et al. Prognostic significance of prostate-specific antigen in endocrine treatment for prostatic carcinoma. Eur. Urol. 21 (Suppl. 1), 96–98 (1992).

    Article  PubMed  Google Scholar 

  101. Furuya, Y., Nagakawa, O. & Fuse, H. Prognostic significance of changes in short-term prostate volume and serum prostate-specific antigen after androgen withdrawal in men with metastatic prostate cancer. Urol. Int. 70, 195–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Morote, J., Trilla, E., Esquena, S., Abascal, J. M. & Reventos, J. Nadir prostate-specific antigen best predicts the progression to androgen-independent prostate cancer. Int. J. Cancer 108, 877–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Armstrong, A. J. et al. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J. Clin. Oncol. 25, 3965–3970 (2007).

    Article  PubMed  Google Scholar 

  104. Bjork, T. et al. Rapid exponential elimination of free prostate-specific antigen contrasts the slow, capacity-limited elimination of PSA complexed to α1-antichymotrypsin from serum. Urology 51, 57–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Becker, C., Piironen, T., Pettersson, K., Hugosson, J. & Lilja, H. Testing in serum for human glandular kallikrein 2, and free and total prostate specific antigen in biannual screening for prostate cancer. J. Urol. 170, 1169–1174 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Raaijmakers, R. et al. hK2 and free PSA, a prognostic combination in predicting minimal prostate cancer in screen-detected men within the PSA Range 4–10 ng/ml. Eur. Urol. 52, 1358–1364 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Steuber, T. et al. Comparison of free and total forms of serum human kallikrein 2 and prostate-specific antigen for prediction of locally advanced and recurrent prostate cancer. Clin. Chem. 53, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Fowler, J. E., Bigler, S. A., Kilambi, N. K. & Land, S. A. Relationships between prostate-specific antigen and prostate volume in black and white men with benign prostate biopsies. Urology 53, 1175–1178 (1999).

    Article  PubMed  Google Scholar 

  110. Moul, J. W. et al. Prostate-specific antigen values at the time of prostate cancer diagnosis in African-American men. JAMA 274, 1277–1281 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Catalona, W. J. et al. Percentage of free PSA in black versus white men for detection and staging of prostate cancer: a prospective multicenter clinical trial. Urology 55, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Stanford, J. L . et al. Prostate Cancer Trends 1973–1995 (SEER Program; National Cancer Institute, Bethesda, 1999).

    Google Scholar 

  113. Mettlin, C. J., Murphy, G. P., Ho, R. & Menck, H. R. The National Cancer Data Base report on longitudinal observations on prostate cancer. Cancer 77, 2162–2166 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Finne, P. et al. Use of the complex between prostate specific antigen and α 1-protease inhibitor for screening prostate cancer. J. Urol. 164, 1956–1960 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Lilja, H. et al. Significance and metabolism of complexed and noncomplexed prostate specific antigen forms, and human glandular kallikrein 2 in clinically localized prostate cancer before and after radical prostatectomy. J. Urol. 162, 2029–2034; discussion 2034–2035 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, W. M. et al. Characterization and immunological determination of the complex between prostate-specific antigen and α2-macroglobulin. Clin. Chem. 44, 2471–2479 (1998).

    CAS  PubMed  Google Scholar 

  117. Lane, J. A. et al. Detection of prostate cancer in unselected young men: prospective cohort nested within a randomised controlled trial. BMJ 335, 1139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Donovan, J. et al. Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. Health Technol. Assess 7, 1–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Shibata, A. & Whittemore, A. S. Re: Prostate cancer incidence and mortality in the United States and the United Kingdom. J. Natl Cancer Inst. 93, 1109–1110 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Oliver, S. E., Gunnell, D. & Donovan, J. L. Comparison of trends in prostate-cancer mortality in England and Wales and the USA. Lancet 355, 1788–1789 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Roehl, K. A. et al. Survival results in patients with screen-detected prostate cancer versus physician-referred patients treated with radical prostatectomy: early results. Urol. Oncol. 24, 465–471 (2006).

    Article  PubMed  Google Scholar 

  122. Oberaigner, W. et al. Reduction of prostate cancer mortality in Tyrol, Austria, after introduction of prostate-specific antigen testing. Am. J. Epidemiol. 164, 376–384 (2006).

    Article  PubMed  Google Scholar 

  123. Shaw, P. A. et al. An ecologic study of prostate-specific antigen screening and prostate cancer mortality in nine geographic areas of the United States. Am. J. Epidemiol. 160, 1059–1069 (2004).

    Article  PubMed  Google Scholar 

  124. Kopec, J. A. et al. Screening with prostate specific antigen and metastatic prostate cancer risk: a population based case-control study. J. Urol. 174, 495–499; discussion 499 (2005).

    Article  PubMed  Google Scholar 

  125. Concato, J. et al. The effectiveness of screening for prostate cancer: a nested case-control study. Arch. Intern. Med. 166, 38–43 (2006).

    Article  PubMed  Google Scholar 

  126. Weinmann, S. et al. Screening by prostate-specific antigen and digital rectal examination in relation to prostate cancer mortality: a case-control study. Epidemiology 16, 367–376 (2005).

    Article  PubMed  Google Scholar 

  127. Lu-Yao, G. et al. Natural experiment examining impact of aggressive screening and treatment on prostate cancer mortality in two fixed cohorts from Seattle area and Connecticut. BMJ 325, 740 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ciatto, S. et al. Prostate cancer specific mortality in the Florence screening pilot study cohort 1992–1993. Eur. J. Cancer 42, 1858–1862 (2006).

    Article  PubMed  Google Scholar 

  129. Coldman, A. J., Phillips, N. & Pickles, T. A. Trends in prostate cancer incidence and mortality: an analysis of mortality change by screening intensity. CMAJ 168, 31–35 (2003).

    PubMed  PubMed Central  Google Scholar 

  130. Labrie, F. et al. Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate 59, 311–318 (2004).

    Article  PubMed  Google Scholar 

  131. Sandblom, G., Varenhorst, E., Lofman, O., Rosell, J. & Carlsson, P. Clinical consequences of screening for prostate cancer: 15 years follow-up of a randomised controlled trial in Sweden. Eur. Urol. 46, 717–723; discussion 724 (2004).

    Article  PubMed  Google Scholar 

  132. van der Cruijsen-Koeter, I. W. et al. Comparison of screen detected and clinically diagnosed prostate cancer in the European randomized study of screening for prostate cancer, section Rotterdam. J. Urol. 174, 121–125 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. M. Cronin of Memorial Sloan–Kettering Cancer Center for compiling data on the distribution of PSA levels. We also thank J. Novak of Helix Editing for assistance with writing the manuscript. She was paid for her work by Memorial Sloan–Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lilja.

Ethics declarations

Competing interests

Dr Hans Lilja is patent holder for free PSA and hK2 blood assays.

Related links

Related links

DATABASES

National cancer institute

prostate cancer

National cancer institute Drug Dictionary

dutasteride

finasteride

FURTHER INFORMATION

Hans Lilja's homepage

Glossary

Stage migration

The decrease over time in the proportion of men with prostate cancer who are found to have advanced stage disease at diagnosis, commonly attributed to the introduction of PSA testing, which identifies prostate cancer at an earlier stage in the disease process.

Specificity

The number of people who test negative for a disease and who are disease-free, divided by the total number of people who are disease-free and who were tested. For a PSA test this is the proportion of men with no prostate cancer who have a low level of PSA.

Sensitivity

The number of people who test positive for a disease and who have the disease, divided by the total number of people who have disease and who were tested. For a PSA test this is the proportion of men with prostate cancer who have increased PSA.

AUC

Area under the receiver-operating characteristic curve. This value gives the probability that, in a pair of patients, one of whom had the event and the other of whom did not, the patient who had the event was given the higher risk by the predictive model.

External beam therapy

The use of radiation from a high-energy source external to the patient as a treatment for cancer.

Brachytherapy

Implantation of radioactive pellets, approximately the size of a grain of rice, into the tissue being treated for cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilja, H., Ulmert, D. & Vickers, A. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8, 268–278 (2008). https://doi.org/10.1038/nrc2351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing