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Abstract

Recent studies across multiple tumour types are starting to reveal a recurrent regulatory 

architecture in which genomic alterations cluster upstream of functional master regulator (MR) 

proteins, the aberrant activity of which is both necessary and sufficient to maintain tumour cell 

state. These proteins form small, hyperconnected and autoregulated modules (termed tumour 

checkpoints) that are increasingly emerging as optimal biomarkers and therapeutic targets. 

Crucially, as their activity is mostly dysregulated in a post-translational manner, rather than by 

mutations in their corresponding genes or by differential expression, the identification of MR 

proteins by conventional methods is challenging. In this Opinion article, we discuss novel methods 

for the systematic analysis of MR proteins and of the modular regulatory architecture they 

implement, including their use as a valuable reductionist framework to study the genetic 

heterogeneity of human disease and to drive key translational applications.

There is an intriguing yet largely unexplored paradox in cancer. On the one hand, 

transcriptional programmes are highly conserved across samples that represent the same 

tumour subtype1 — even compared with normal tissue (FIG. 1a) — suggesting the existence 

of relatively stable tumour states. On the other hand, the genetic and epigenetic alterations 
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(henceforth referred to as genomic alterations) that determine these states are remarkably 

heterogeneous on a sample by sample basis (BOX 1).

Box 1

The tumour subtype paradox

The past decade has witnessed marked proliferation of tumour subtypes, mostly 

identified by gene expression clustering. For example, breast cancer has been divided into 

4–10 subtypes4,5 and glioma into 3 or 4 subtypes3,79. Yet, there is little consistency 

between expression-based subtypes and stratification based on genetic alterations. For 

example, consider the breast cancer cohort in The Cancer Genome Atlas (TCGA; see 

Further information). We used standard unsupervised cluster analysis108 to identify the 

best four clusters based on distinct data types – somatic coding mutations (SCMs; part a 
of the figure), copy number variants (CNVs; part b of the figure), gene expression 

profiles (GEPs; part c of the figure) and master regulator activity (MRA; part d of the 

figure). This enables comparison of clustering results across these four data types and 

also against the clinically relevant Perou classification16 — including luminal A (LumA), 

luminal B (LumB), HER2+ (HER2) and basal-like (Basal). Silhouette score (shaded 

waterfall plots) and Perou classification (colour coded bars) are shown above and below 

the heat maps in parts a–d, respectively.

Surprisingly, but consistent with the tumour checkpoint hypothesis, three out of four of 

the clusters identified by either SCM or CNV analysis presented relatively low silhouette 

score (SS) significance, suggesting low internal consistency, and relatively low overlap 

with GEP-based clusters. One SCM cluster was not even statistically significant (SSSCM 

= −0.01, P = 1). Furthermore, part e shows the fraction of overlapping samples (above the 

expected background), for each cluster compared with each Perou subtype. As shown, the 

Perou classification was poorly recapitulated by SCM and CNV analysis, except for the 

Basal (SCM) and LumA (CNV) subtypes. Compared with SCM and CNV analysis, 

unsupervised GEP analysis improved cluster significance as well as Perou classification 

consistency, yet failed to fully differentiate between LumA, LumB and HER2 samples 

(parts c and e of the figure), which are intermixed in three out of four clusters. By 

contrast, MRA clustering (part d of the figure) not only improved the statistical 

significance of the four inferred clusters—a measure of cluster self-consistency—but also 

most closely recapitulated the Perou classification, with highly significant enrichment of 

cluster 1 (Basal, P = 3.1×10−17), cluster 2 (LumA, P = 3.1×10−19), clusters 3 (LumB, P = 

3.6×10−4) and cluster 4 (HER2, P = 2.6×10−14).

These data suggest that subtype proliferation may have resulted, at least in part, from 

three sources of variability: noisy gene expression profiles (part c), independent 

clustering and heterogeneity of genetic alterations (parts a and b), potential coexistence 

of distinct tumour states in the same mass (tumour heterogeneity107) and stroma 

infiltration. Indeed, most tumour subtypes (including those of Perou) were identified by 

analysing a subset of the genes rather than by unbiased genome-wide analysis — with 

slight changes in gene selection producing significant variability in subtype 

identification.
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To show the poor reproducibility of gene expression measurement, we plotted the 

distribution of the 10 most differentially expressed genes in each sample across all other 

same-subtype samples (part f of the figure). As shown, high differential expression in one 

sample is not predictive of differential expression across the full subtype. By contrast, the 

rank of the 10 most differentially active proteins in each sample, as inferred by Virtual 

Inference of Protein Activity by Enriched Regulon Analysis (VIPER), is extremely well 

conserved across the corresponding subtypes. Consistently, the most differentially active 

proteins in the LumA and LumB subtypes — see, for example, forkhead box A1 

(FOXA1), GATA binding protein 3 (GATA3), oestrogen receptor 1 (ESR1) — represent 

established luminal lineage driver and subtype-specific tumour dependencies. As such, 

they are bona fide members of the LumA and LumB tumour checkpoints.

Consistent with these observations, although genomic alterations represent valuable 

predictors of targeted inhibitor sensitivity against the corresponding oncoproteins, they have 

proved less effective in stratifying more general properties of cancer, such as tumour 

subtype, metastatic potential and clinical outcome2,3, which are more often captured by 

transcriptional or proteomic profiles4,5 (BOX 1). For example, immunohistochemistry 

assays, as well as gene expression-based tests such as Oncotype DX and MammaPrint6, are 

routinely used in the clinic to assess the risk of breast cancer recurrence following hormonal 

therapy.

The ability of tumours to present similar transcriptional signatures, despite having radically 

distinct somatic mutational profiles, suggests the existence of regulatory mechanisms that 

are responsible for decoupling (that is, buffering) the tumour cell state from its genetic, 

epigenetic and signalling determinants7,8. Specifically, this Opinion article provides an 

overview of the emergence of a universal gene-regulatory architecture (henceforth referred 

to as oncotecture), in which a handful of master regulator (MR) proteins — organized into 

tightly autoregulated tumour checkpoint modules — implement and maintain the 

transcriptional state of a tumour cell largely independent of initiating events, as well as of 
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endogenous and exogenous perturbations7,8. Much like a highway checkpoint, these 

modular structures canalize the effect of mutations and other aberrant signals in their 

upstream pathways to implement key downstream transcriptional programmes (FIG. 1b). 

Thus, although individual MR proteins are highly tumour specific9–11, the resulting tumour 

checkpoint oncotecture is virtually tumour independent7.

The term MR was initially introduced by developmental biologists to describe gene products 

(mostly transcription factors) at the top of regulatory hierarchies that are both necessary and 

sufficient to induce morphogenesis12 or specific steps in lineage differentiation13. By 

contrast, cancer biologists have adopted a looser definition of the term to indicate genetic 

determinants or functional drivers, the aberrant activity of which is sufficient — yet not 

strictly necessary — to induce transformation. According to the latter, TP53 (which encodes 

p53) and ERBB2 (which encodes HER2) are often presented as cancer MRs14,15, even 

though many alternative genomic alterations may induce transcriptional tumour states that 

are virtually indistinguishable from those in which those genes are mutated (BOX 1). For 

instance, several tumours classified as basal-like or HER2+ by gene expression profile 

analysis lack the hallmark genetic alterations in TP53 and ERBB2, respectively16. In this 

Opinion article, not only do we adopt the stricter MR definition from developmental biology 

but we further require MRs to directly regulate the transcriptional state of the tumour cell 

(FIG. 1b). Under this definition, a classic cancer driver such as p53 may not be considered a 

MR unless it is necessary and sufficient to implement a subset of tumours with a common 

transcriptional signature and it directly participates in its signature regulation. By contrast, 

the MYC proton coprotein, the locus of which is translocated in 100% of Burkitt 

lymphomas17 and which regulates their signature18, would emerge as a bona fide MR 

protein in that context.

This stricter terminology is not arbitrary. Instead, it is necessary to address the currently 

ambiguous use of the term in the literature, thus making identification of MR proteins a 

more rational and systematic process. Consistently, it separates the methodologies and 

studies discussed in this Opinion article from those aimed at identifying more loosely 

defined functional drivers or genetic determinants of cancer, for instance, by integrating 

mutational and gene expression profiles19, by network hub analysis20 or by other integrative 

network analyses21. A specific advantage of such stricter nomenclature is its ability to 

differentiate proteins representing effective pharmacological targets because of their 

necessary and direct role in maintaining tumour state from those that may be only sufficient, 

thus representing less crucial targets.

Cellular homeostasis and cancer

A large subset of the cell’s regulatory logic presides over homeostasis, a concept that can be 

traced back to the French physiologist Claude Bernard in 1865 and its refinement by Walter 

Cannon in 1929 (REF. 22). Homeostasis was originally defined as the set of regulatory 

processes that ensure the overall stability of a system, independent of endogenous and 

exogenous variables. This concept plays an especially important part in cell physiology, 

where its main role is to collapse a universe of potential cell states into a finite number of 

energetically and physiologically viable ones, each representing a distinct cell lineage or 

Califano and Alvarez Page 4

Nat Rev Cancer. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



precursor stage. This process, better known as Waddington’s canalization23, was initially 

introduced to explain the robustness and stability of developmental phenotypes when 

confronted by genetic, epigenetic and environmental perturbations. It was later broadened to 

include the global mechanisms that preside over the stability of cellular phenotypes24.

The general view is that homeostasis is disrupted in disease, including in cancer25,26 (FIG. 

2). And yet, tumour-associated states seem to be remarkably stable (FIG. 1a), suggesting 

that some form of stability control, albeit a dysregulated one, must still be at play. Indeed, 

similar to their normal counterpart, cancer cell states — as represented by their 

transcriptional signatures — are rather impervious to endogenous and exogenous variability, 

from germline and somatic variants, to pharmacological perturbations, microenvironment 

signals, temperature changes and nutrient availability. For instance, xenograft tumours in 

mice and even cancer cell lines can maintain a relatively high-fidelity representation of the 

transcriptional state of the original tumour, despite aberrant ploidy, mutational drift and 

massive changes in the repertoire of microenvironment signals to which they are exposed27. 

Similarly, cancer cells are easier to culture outside their original milieu than normal cells. 

Indeed, more than 1,000 cancer cell lines have been successfully established, compared with 

only a handful of cell lines representing immortalized normal tissue28.

Despite overwhelming evidence, however, a systematic investigation of the dystatic (short 

for dysregulated homeostatic) logic that ensues from transformation has not been 

undertaken. Recent results suggest that dystatic cell states may be implemented by a handful 

of tumour-specific MR proteins — working cooperatively within tight modular structures 

(tumour checkpoints) — the aberrant activity of which is necessary and sufficient for tumour 

phenotype presentation and maintenance7,9–11,29,30. If this hypothesis were further 

confirmed, these tumour checkpoints and associated MRS would constitute a novel class of 

mechanistic biomarkers and therapeutic targets11,29–31 and would further link cancer and 

development.

The tumour checkpoint hypothesis

Diffuse large B cell lymphoma (DLBCL) represents an ideal context in which to explore the 

tumour checkpoint hypothesis. Indeed, although never mutated in this malignancy, the 

canonical nuclear factor-κB (NF-κB) heterodimer (p50–RELA) represents a crucial 

dependency of the activated B cell (ABC) but not of the germinal centre B cell (GCB) 

subtype of DLBCL32. Indeed, aberrant NF-κB activity was shown to arise from several 

mutations in its upstream pathways, including in TNF-induced protein 3 (TNFAIP3), 

myeloid differentiation primary response 88 (MYD88), TNF receptor associated factor 2 

(TRAF2), TRAF5, CD79A, CD79B, MAP3K7 (also known as TAK1), TNFRSF11A (which 

encodes RANK) and caspase recruitment domain family member 11 (CARD11)8,33,34 (FIG. 

3). Moreover, NF-κB activity was essential for tumour viability only in DLBCL cells 

harbouring these events8. Finally, NF-κB transcriptional targets (as assessed by a literature 

search) were significantly differentially expressed in the ABC-DLBCL signature8, 

supporting its direct role in regulating subtype-specific programmes. Taken together, these 

findings support the role of the p50–RELA complex as a non-oncogene dependency35 and 

MR protein, consistent with our definition.
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Although intriguing, however, these findings are not easily extended to other tumour types. 

Specifically, initial identification of NF-κB was more the product of investigator ingenuity 

than of generalizable methodologies32. Additionally, detailed information about pathways 

upstream of arbitrary candidate MR proteins is frequently unavailable. Thus, systematic 

elucidation of MR proteins requires the development of more effective methodologies to 

reconstruct and interrogate the genome-wide regulatory logic of the cancer cell.

MR and tumour checkpoint elucidation

Defining MR proteins as mechanistic regulators of the transcriptional signatures that define 

distinct tumour states helps with their systematic identification. Specifically it implies that 

the transcriptional targets of a bona fide MR protein must be enriched in genes that are 

differentially expressed in the cellular phenotype of interest (for example, tumour subtype, 

tumorigenesis, metastatic progression and drug sensitivity). More specifically, the positively 

regulated targets of an aberrantly activated MR protein should be overexpressed, whereas the 

negatively regulated (that is, repressed) ones should be underexpressed (FIG. 4). This 

provides a straightforward rationale for computational MR protein inference, using 

enrichment analysis methods such as the Kolmogorov–Smirnov test36 — as implemented by 

gene set enrichment analysis (GSEA)37 or by its analytical derivatives, such as analytical 

rank-based enrichment analysis (aREA)38. Indeed, when coupled with accurate, de novo 
identification of tissue-specific protein targets (regulons), this represents the conceptual 

foundation of the Master Regulator Inference Algorithm (MARINa)10,39 and of its extension 

to single sample analysis, Virtual Inference of Protein Activity by Enriched Regulon 

Analysis (VIPER)38. To further increase accuracy and sensitivity, these algorithms 

specifically account for target directionality (that is, activated versus repressed targets), 

regulon overlap between candidate MR protein pairs and target inference confidence38.

Most of the published studies on the unbiased inference of MR proteins as mechanistic 

regulators of disease cell state (even excluding those from our laboratory to avoid bias) 

either use the MARINa and VIPER algorithms directly (for example, see REFS 40–44) or 

rely on slightly modified versions (for example, see REFS 45–47). By contrast, as 

mentioned above, there are many network-based algorithms to identify key regulators, 

drivers and pathways involved in tumorigenesis that are not based on mechanistic regulation 

of target genes (for example, see REFS 19, 21). These are extensively covered by earlier 

reviews48,49 and will not be further discussed here.

MR analyses have helped elucidate proteins that regulate tumour-associated phenotypes as 

diverse as predisposition40,44, subtype-specific tumorigenesis10,43,50,51, progression to 

aggressive or metastatic disease9,11,12,45,47,52, stroma-specific regulation of tumour 

outcome41 and drug resistance29,30, most of which have been experimentally validated. In 

addition, their use in non-cancer phenotypes has helped to elucidate an equivalent disease 

checkpoint architecture in neurological phenotypes — including amyotrophic lateral 

sclerosis (ALS)53, Alzheimer disease7,54, Parkinson disease55 and alcohol addiction56 — 

and in developmental phenotypes, from regulation of germinal centre formation39 to stem 

cell pluripotency57. As briefly summarized below, these examples further outline the role of 
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tumour checkpoint MRs in regulating disease dystasis and their unique nature compared 

with their physiological counterpart involved in homeostatic control.

Clearly, accurate transcriptional target inference, using reverse engineering methodologies, 

is crucial to the effective elucidation of candidate MR proteins and merits explicit mention 

(see also BOX 2). Postgenomic research has seen intense interest in the systematic 

dissection of the transcriptional and signalling logic of cancer cells (henceforth termed 

regulatory logic)48,53,55–57, including its transcriptional58–60, post-transcriptional61–63 and 

post-translational64–68 layers. These methods were first developed and validated in 

bacteria69 and yeast70,71 and then extended to mammalian cells21,59, thus complementing 

pre-existing literature-curated models72 and large-scale experimental assays73. The 

Algorithm for the Accurate Reconstruction of Cellular Networks (ARACNe)59 was the first 

of its kind to be experimentally validated in mammalian cells10,39,57,74 and has been among 

the most frequently used to infer regulatory targets for MR analysis. However, various 

alternative approaches have also been popular, from Bayesian networks75 to co-expression 

network integration with chromatin immunoprecipitation–sequencing (ChIP–seq) assays47. 

To achieve high accuracy, all these methods require relatively large collections (n≥100) of 

gene expression profiles representing a specific cellular context, under conditions that induce 

broad gene expression variability, such as from genetically heterogeneous tumour samples10 

or from concomitant genetic and small molecule perturbations9. Reverse engineering 

methods have been extensively discussed in several reviews48,49,76 and will not be further 

discussed in this Opinion article.

Box 2

Alternative procedures for network reverse engineering and analysis

Reverse engineering of regulatory networks represents a hallmark of systems biology, 

resulting in the development of hundreds of algorithms. Most of these algorithms fit one 

of the following five categories109: experimental maps, describing physical molecular 

interactions, such as protein–protein67,110,111 and protein–DNA interactions112,113; 

optimization-based approaches, searching for network topologies that optimally explain 

the observed data70,114; differential equation-based kinetic models, representing the 

concentration of relevant molecular species as a function of time and/or space115–117; 

correlation and information-theoretical approaches, producing genome-wide context-

specific maps of functional molecular relationships59,118,119; and integrative approaches, 

leveraging partially independent clues for regulatory network reconstruction39,120.

Although all these methods have been benchmarked on their ability to reconstruct known 

topologies121, the dialogue for the reverse engineering assessments and methods 

(DREAM), a conference dedicated to evaluating systems biology algorithms based on 

double-blind benchmarking criteria122,123, has shown that performance depends strongly 

on the data type and target network size. For instance, kinetic models have the highest 

level of granularity but their large number of parameters limits their applicability to small 

networks with only a handful of molecules116. Optimization-based approaches, including 

Bayesian networks, provide an optimal choice for small to middle-sized network70. 

Correlation and information-theoretical methods are best suited to genome-wide 

Califano and Alvarez Page 7

Nat Rev Cancer. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulatory network inference109 but provide only qualitative interaction models. Genome-

wide networks can also be obtained by integrating experimental data from the literature 

or high-throughput experiments, but these models generally combine evidence from 

multiple, often non-physiological cellular contexts that may lack tumour-context 

specificity.

Information theory-based approaches have been used to produce genome-wide 

representations of yeast regulatory networks124,125 and context-specific models of 

mammalian cell regulation39,59,126. However, regardless of the level of complexity, the 

regulatory models they produce are context specific126,127. Different cellular lineages 

express different genes and even different protein isoforms, as expression products of 

alternative splice variants. Crucially, differential availability of scaffolding proteins or 

adaptors can profoundly reshape (rewire) the topology of protein–protein interaction 

networks128,129, and differential availability of cofactors and chromatin state between 

cells can lead to strong rewiring of transcriptional networks58,66,78. Thus, reliance on 

context-free, literature-based pathway models130, arising from the biologist’s desire to 

linearize and visualize the cell’s regulatory logic, can be misleading. The need for 

context-specific models is highlighted in parts a and b of the figure, where we show that 

the ability of Virtual Inference of Protein Activity by Enriched Regulon Analysis 

(VIPER) to correctly assess the activity changes of proteins encoded by silenced genes in 

lymphoma, glioma and breast carcinoma cells depends strongly on using the correct 

tissue-matched interactome38. Moreover, as also discussed in REF. 38, regulatory models 

based on ChIP enrichment analysis (ChEA)113 and Encyclopedia of DNA Elements 

(ENCODE)60 protein–DNA interaction data, as well as canonical pathways from the 

Ingenuity Pathway Analysis platform72 failed to properly detect differential activity of 

most proteins (see for example, BCL-6, the regulon of which is highly context specific) 

except forkhead box M1 (FOXM1), the regulatory programme of which is highly 

conserved across all tested tissues owing to its role in cell cycle regulation131 (part c of 

the figure). ARACNe, Algorithm for the Accurate Reconstruction of Cellular Networks; 

BCELL, B cell lymphoma; BLCA, bladder urothelial cancer; BRCA, breast invasive 

carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 

COAD, colorectal adenocarcinoma; ESCA, oesophageal carcinoma; GBM, glioblastoma; 

HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell 

carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid 

leukaemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; 

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MEF2B, myocyte 

enhancer factor 2B;OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic 

adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate 

adenocarcinoma; PTTG1, pituitary tumour-transforming 1; READ, rectal 

adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 

adenocarcinoma; STAT3, signal transducer and activator of transcription 3; TGCT, 

testicular germ cell tumour; THCA, thyroid carcinoma; THYM, thymoma; UCEC, 

uterine corpus endometrial cancer; XBP1, X-box binding protein 1
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Limitations and potential improvements

An important question arises as to the technical limitations of MR analysis methods and 

their reliance on accurate identification of transcriptional targets. A key problem is the 

considerable dependence of protein targets on tissue context. Indeed, MR targets are affected 

both by their tissue-specific epigenetic activation or inactivation and by the availability or 

mutation of cofactors participating in regulatory complexes66,77,78. This highlights the need 

for more sophisticated reverse engineering methodologies. Indeed, based on thorough 

benchmarking, activity changes can be accurately measured for only ~70% of transcriptional 

regulators and ~60% of signal transduction proteins on average38. Although this is certainly 

adequate to support discovery of many novel mechanisms, it is still susceptible to substantial 

false-positive and false-negative inferences. Consistent with these observations, the use of 

tissue-specific regulatory models (interactomes) has proved crucial, as statistical significance 

of inferred MRs decreases when mismatched models are used9,38. Indeed, differential 

protein activity following short hairpin RNA (shRNA)-mediated silencing of transcription 

factor proteins in different tumour contexts was effectively detected using regulatory models 

generated from the same tissue context but not from mismatched tissues (BOX 2). 

Interestingly, the advent of efficient and economical single-cell profiling may herald a new 

era in network reverse engineering as it will avoid averaging over key processes (for 

example, cell cycle) and cell states (for example, tumour and stroma). This will help to avoid 

typical limitations imposed by intratumoural heterogeneity, such as stroma and immune cell 

infiltration, thus producing more accurate gene regulatory models and improving the 
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accuracy of MR identification, which is substantially degraded when tumour cellularity 

drops below 70%.

An additional limitation is the complexity of inferring the activity of proteins that share a 

substantial subset of their regulatory targets. Although specific solutions to this problem 

have been proposed38,39, the combinatorial complexity of target regulation is still not 

completely addressed, potentially resulting in false-positive findings requiring substantial 

experimental validation. Finally, a crucial issue is represented by the inference of protein 

activity in a dynamic context — for example, following a drug perturbation — rather than in 

regimes approaching cellular equilibrium. In these transient conditions, the correlation 

between mRNA abundance and protein abundance may be time delayed or even inverted. 

Ultimately, we foresee that more specialized kinetic models will be required to describe the 

relationship between target mRNA abundance and protein activity, leading to a more 

effective generation of dynamic MR inference algorithms.

MR discovery in cancer biology

The following sections describe some crucial applications of MR analysis and some of the 

general principles that have consistently emerged from multiple MR studies.

The tumour checkpoint of mesenchymal glioblastoma

Glioblastoma (GBM) presents with multiple molecular subtypes. Despite classification 

differences79,80, there is global consensus that the mesenchymal subtype (MES-GBM) is 

associated with the poorest prognosis7,79. The first reported example of systematic MR 

analysis and validation elucidated a MES-GBM-specific tumour checkpoint, including six 

MR proteins — β and δ isoforms of CCAAT/enhancer-binding protein (CEBP), signal 

transducer and activator of transcription 3 (STAT3), class E basic helix–loop–helix protein 

40 (BHLHE40; also known as BHLHB2), runt-related transcription factor 1 (RUNX1) and 

Fos-related antigen 2 (FOSL2). These were validated as positive mechanistic regulators of 

>74% of MES-GBM signature genes. A seventh MR — zinc finger protein 238 (ZNF238) 

— was identified as an aberrantly inactivated MR and was independently confirmed as a 

fibroblast-to-neuron reprogramming factor81. Surprisingly, these MRs were not among the 

500 most differentially expressed genes and only one of them (CEBPD) was later found to 

be focally amplified in 30% of MES-GBMs7.

Further analysis revealed a highly modular architecture, with CEBPβ, CEBPδ and STAT3 

regulating each other as well as the other MRs and jointly regulating the MES-GBM gene 

expression signature through a large number of feed-forward loops (FIG. 5). Although only 

~6% of CEBPβ and STAT3 target genes were mesenchymal, based on Gene Ontology, 36% 

of targets regulated by both CEBPβ and STAT3 were mesenchymal, suggesting synergistic 

interaction39. Indeed, ectopic co-expression of CEBPβ and STAT3 (but not of either one in 

isolation) was sufficient to induce reprogramming of neural stem cells along an aberrant 

mesenchymal lineage. Conversely, shRNA-mediated silencing of both genes (but not of 

either one in isolation) was sufficient to abrogate viability of MES-GBM tumours in mouse 

xenograft models. Pure feed-through regulation, for example, as implemented by an ‘AND’ 

or ‘OR’ logic, cannot explain CEBPβ and STAT3 dependency for both module activation 
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and inactivation. As was later confirmed7, this implies existence of an autoregulatory logic 

implemented by feedback loops.

Notably, cancer states represent the superposition of multiple independent hallmarks82. This 

requires the potential coexistence of multiple tumour checkpoints, each one regulating or 

buffering one or more of these programmes. In glioma, for instance, MES-GBM MRs were 

shown to regulate migration, invasion and angiogenesis but not proliferation or apoptosis. As 

a result, although still crucially necessary for tumour state maintenance and in vivo tumour 

viability, their co-activation is not sufficient for tumorigenesis. This is easily explained: 

tumour checkpoint analysis identifies MRs that are necessary and sufficient to implement a 

specific differential phenotype, as captured by the corresponding differential gene 

expression signature. Thus, the analysis will miss MRs of programmes that are unchanged in 

the transition. The differential expression signature used in the GBM study represents the 

difference between its mesenchymal and its proneural subtypes, which are distinct, yet both 

tumour-associated states. Hence, tumorigenesis programmes are essentially removed from 

the analysis. This is important, because the specific selection of cellular states that define the 

gene expression signature ultimately determines the role of identified MR proteins, and 

selection of inappropriate signatures can drastically affect the outcome of MR studies.

This study highlighted six hallmark properties of tumour checkpoints that were also 

confirmed in follow-up studies, both in cancer7,9,29,30,83 and in other phenotypes39,53,55–57. 

Specifically, MR proteins form highly modular and tightly regulated structures (tumour or 

disease checkpoint modules) (FIG. 5); implement stable, redundant control of downstream 

cancer programmes through multiple feed-forward loops; regulate each other, both directly 

and via autoregulatory loops, thus increasing tumour checkpoint stability; are highly 

enriched in tumour-specific dependencies, including essential MRs and/or synthetic lethal 

MR pairs; are differentially active but not generally differentially expressed; and only rarely 

harbour genetic alterations. Among these, the first four points also represent crucial 

hallmarks of homeostatic control. Indeed, because of their inherent stability, tumour 

checkpoint collapse generally requires co-inhibition of two or more proteins (that is, 

synthetic lethality). This decreases the chances of detecting key synthetic lethal MRs, such 

as STAT3 and CEBPβ in MES-GBM, by pooled RNA interference (RNAi) or CRISPR-

based functional screens that target individual genes.

Cross-species MR analysis

The hallmarks of a tumour checkpoint oncotecture were further recapitulated by cross-

species analysis of aggressive prostate cancer checkpoint MRs, using data from both human 

biopsies and genetically engineered mouse models9. Gene expression profiles for 

interactome generation were obtained from a high-quality human cohort, for which both 

expression and outcome data were available84, and from prostate tissue harvested from 13 

distinct genetically engineered mouse models (including wild-type controls) following in 
vivo treatment with 14 compounds targeting prostate-relevant pathways (including 

dimethylsulfoxide (DMSO) as control medium). A gene expression signature of aggressive 

human prostate cancer was obtained by comparison of gene expression in tumours with high 

Gleason score with confirmed biochemical recurrence within 3 years, against gene 
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expression of tumours with low Gleason score with no biochemical recurrence. Equivalent 

signatures were obtained from four distinct genetically engineered mouse models associated 

with aggressive disease (harbouring Myc, Trp53, Braf and Kras mutations). Strikingly, 8 of 

the top 20 human MRs identified by the analysis were also identified from each of the four 

mouse model-derived gene expression signatures. This included the only predicted 

synergistic MR pair — forkhead box M1 (FOXM1) and centromere protein F (CENPF) — 

the universal synthetic lethality of which in aggressive prostate cancer was validated in vitro 
and in vivo. Synthetic lethality of this MR pair in malignant prostate cancer emerged as 

virtually independent of both genetic and organism background, thus further supporting the 

hypothesis that checkpoint MRs uncouple tumour phenotypes from upstream genetics. 

These results were further confirmed in a cohort of >900 patients, for which tissue 

microarrays (TMAs) were available. Although almost no patients with double negative 

immunohistochemistry (IHC) staining for FOXM1 and CENPF at diagnosis died of the 

disease for up to 20 years from diagnosis, those with double positive FOXM1 and CENPF 

IHC constituted 90% of prostate cancer-associated deaths, suggesting that co-activation of 

FOXM1 and CENPF is necessary and sufficient to implement the most aggressive form of 

these tumours that are associated with poor prognosis.

Integration with functional screens

MR analysis may also be used effectively to mitigate discovery of idiosyncratic 

dependencies from pooled RNAi screens. For instance, isogenic MCF-10A breast epithelial 

cell lines, with and without ectopic HER2 expression (MCF-10A/HER2 versus MCF-10A), 

were screened in 2D and 3D cultures using a pooled, genome-wide RNAi library. Integrative 

analysis of RNAi screen and MR analysis identified only two genes in common (STAT3 and 

agrin (AGRN)), which were validated as MRs of trastuzumab (a HER2-inhibiting antibody) 

resistance. Indeed, their silencing in trastuzumab-treated, resistant tumours elicited synthetic 

lethality in vitro and in vivo29, leading to the discovery of an autocrine STAT3–interleukin 6 

(IL-6)–IL-6 receptor (IL6R)–Janus kinase (JAK)–STAT3 autoregulatory loop, independent 

of trastuzumab-mediated inhibition of HER2. Consistently, trastuzumab and ruxolitinib (a 

US Food and Drug Administration (FDA)-approved JAK inhibitor) combination therapy 

effectively abrogated the viability of trastuzumab-resistant patient-derived xenografts 

(PDXs)29, providing the rationale for a phase I/II clinical trial85.

The oncotecture of tumour relapse

Progression to drug-resistant disease represents perhaps the most substantial challenge in 

cancer treatment. Indeed, despite initial and often striking responses to therapy, most cancer 

patients will relapse with poor prognosis tumours that no longer respond to chemotherapy or 

targeted therapy. Thus, there is a pressing need for novel methodologies to identify 

therapeutic targets that either predict relapse or rescue drug sensitivity in relapsed tumours. 

For example, subclonal expansion of drug-resistant clones, for instance, is a well-studied 

relapse mechanism. Indeed, because of the extensive genomic diversity of individual tumour 

cells, it is only a matter of time before one or more drug-resistant subclones emerges with 

bypass or alternative mutations86,87. However, many additional adaptive mechanisms exist 

that modulate drug sensitivity epigenetically, including transient88 or stable89 epigenetic 
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reprogramming, as well as by triggering mechanisms of resistance that are purely regulatory 

in nature29 — for instance, from activation of autocrine feedback loops, as discussed above. 

In each case, drug resistance is associated with a stable and molecularly distinct tumour cell 

state. It is thus reasonable to consider whether these states might also be implemented and 

maintained by aberrant activity of specific tumour checkpoints and whether pharmacological 

targeting of the corresponding MRs might rescue sensitivity or even prevent relapse.

MRs of glucocorticoid resistance in T cell acute lymphoblastic leukaemia

The tumour checkpoint-MR conceptual framework was applied to the study of 

glucocorticoid (GC) resistance in T cell acute lymphoblastic leukaemia (T-ALL). Despite 

their highly heterogeneous genetic determinants90, first-line therapy for these tumours 

universally relies on a class of high-affinity, cognate binding agonists of the GC receptor 

nuclear receptor subfamily 3 group C member 1 (NR3C1). Although never mutated in 

leukaemias, NR3C1 regulates apoptosis by direct transcriptional activation of the pro-

apoptotic factor BCL-2-like protein 11 (BCL2L11; also known as BIM). Remarkably, 70% 

of GC-treated T-ALLs undergo long-term remission. However, 30% of them relapse within 

weeks with GC-resistant disease and poor prognosis.

To identify MRs of GC-therapy resistance, we analysed gene expression signatures collected 

at diagnosis (that is, before treatment) from 22 patients with GC-resistant disease and 10 

patients with GC-sensitive disease. Differential gene expression of resistant versus sensitive 

tumours was then used for MR analysis, using a T-ALL-specific interactome. The analysis 

identified nine MR proteins, three of which — serine/threonine protein phosphatase 2A 56 

kDa regulatory subunit-δ (PPP2R5δ), galactosylgalactosylx-ylosylprotein 3-β-

glucuronosyltransferase 3 (B3GAT3) and AKT1 — rescued sensitivity to dexamethasone (a 

NR3C1 agonist), when silenced in GC-resistant cells. AKT1-mediated NR3C1 

phosphorylation at Ser134, in particular, prevented NR3C1 nuclear translocation and 

transcriptional activation of BCL2L11 (REF. 30). Consistently, treatment with MK2006 (an 

AKT1 inhibitor) rescued dexamethasone sensitivity in vitro and in vivo, including in PDXs 

transplanted with leukaemic cells from patients with GC-resistant disease30. AKT1 thus 

emerged as a key tumour checkpoint MR downstream of recurrent T-ALL mutations, 

including in PI3K and PTEN and further mediating resistance by inducing mTOR-mediated 

increase in the expression of the MCL1 antiapoptotic gene91.

A key aspect of this study is that it confirmed the ability to extend MR analyses to signal 

transduction proteins, based on identification of their least-indirectly regulated 

transcriptional targets, as also shown in REF 38.

MR-based model fidelity assessment

The above-discussed studies highlight a key property of tumour checkpoints, specifically 

their conservation, independent of specific driver mutation patterns and even across different 

organisms. This is important because, compared with their human counterparts, driver 

mutations and microenvironment signals in cell lines and preclinical models are highly 

idiosyncratic. This suggests that tumour checkpoint conservation, as objectively assessed by 

MR enrichment analysis, may support more effective use of these models as high-fidelity, 
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predictive experimental surrogates. This would be quite valuable, as validation in cell lines 

and in preclinical models — including genetically engineered mouse models and xenografts 

— is considered mandatory on the path to clinical translation92.

More specifically, these results support the idea of a human-to-mouse-to-human (H2M2H) 

methodology31,93, in which preclinical models are optimally matched to human tumours 

based on the statistical significance of their tumour checkpoint MR overlap. This would 

increase the probability of results from preclinical studies using these models being relevant 

to human disease. As all the steps required for MR inference — including network reverse 

engineering and MR analysis — rely exclusively on patient-derived tissue, MR identification 

is completely free of bias from using cell line and model organisms. This limits the use of 

MR-matched models only to validation assays rather than to discovery assays. By contrast, 

classic drug discovery methods screen for targets and inhibitors using cell lines or animal 

models, the relevance of which to human disease is questionable, not quantitatively assessed 

and often subjective, thus reducing the probabilities that results may translate to clinical 

studies.

Genetic determinants of MR activity

Similar to p50-RELA in ABC-DLBCL, lack of differential MR expression or mutations 

suggests that aberrant activity of MES-GBM MRs (that is, CEBPβ, CEBPδ and STAT3) 

may result from genomic alteration in their upstream pathways. Although several algorithms 

can detect association of genomic alterations with differential gene expression (genetical-

genomics)94 or perform network-based clustering of genomic alterations95 (see REF 48 for a 

review), there are no methods for the genome-wide, tumour-specific exploration of 

alterations in signalling pathways upstream of candidate MR proteins.

The Driver-gene Inference by Genetical-Genomics and Information Theory (DIGGIT) 

pipeline7, available from Bioconductor96, was developed precisely to address this challenge. 

DIGGIT relies on the Modulator Inference by Network Dynamics (MINDy) algorithm66 to 

systematically identify all candidate modulators of one or more MR proteins in their 

upstream pathways. One may argue that extensive feedback control — including via 

paracrine interactions with the stroma — may dramatically inflate the number of upstream 

pathway proteins. Yet, MINDy-based inference reveals only a relatively small number (10–

100) of statistically significant modulators of any candidate MR, most of which are 

experimentally confirmed, thus dramatically reducing the potential search space for 

mutations that may affect MR activity7,66.

For instance, among the multitude of genes of which the expression was affected by 

recurrent copy number alterations (CNAs) in the MES-GBM subtype, MINDy inferred that 

only 92 genes were either MRs or upstream MR-activity modulators. Of these, only 21 

showed significant association between their corresponding CNA and the activity of MES-

GBM MRs. Conditional association analysis of these 21 genes revealed only two statistically 

independent alterations, including amplification of CEBPD, itself an MR, in ~30% of MES-

GBM tumours, and homozygous deletion of kelch-like family member 9 (KLHL9) — a 

putative adaptor protein in the cullin 3 (CUL3) ubiquitin ligase complex — in ~50% of the 
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MES-GBM tumours. Experimental validation and independent cohort analysis confirmed 

that competent KLHL9 activity is crucial for ubiquitin-dependent proteasomal degradation 

of CEBPβ and CEBPδ, as well as for STAT3 dephosphorylation. Consistent with this result, 

IHC analysis of KLHL9−/− tumours showed significant increase in CEBPβ and CEBPδ 
protein abundance, and their in vivo viability was dramatically reduced by ectopic KLHL9 

expression7. Similar analyses were also carried out in breast cancer7 using different MRs, 

inferred at the individual sample level.

These results define two distinct protein classes: the first class includes MR proteins (for 

example, CEBPβ and STAT3), co-activation of which is strictly necessary and sufficient for 

tumour phenotype presentation. The second class includes MR modulators, dysregulation of 

which by mutations or aberrant signals induces aberrant MR activity (for example, KLHL9 

and CEBPδ). Proteins in the latter class, which includes most of the established oncogenes 

and tumour suppressors, may be sufficient but not necessary for tumour checkpoint activity 

and phenotype presentation and are thus not predicted to be MRs by MARINa. For instance, 

KLHL9 is deleted in only ~50% of MES-GBM samples, suggesting that this event is not 

strictly required for MES-GBM subtype implementation. In rare cases in which aberrant MR 

activity results from genetic alterations at its locus (for example, CEBPD), these two classes 

may overlap.

When combined with identification of mutations in pathways upstream of NF-κB in DLBCL 

and with conservation of prostate cancer MRs in four different genetically engineered mouse 

models with distinct driver mutations, these studies further confirm that tumour checkpoints 

represent the cellular logic that is responsible for integrating the effect of large and 

heterogeneous genomic alteration repertoires into virtually indistinguishable tumour states. 

This also supports the role of tumour checkpoint MRs as highly conserved, mechanistic 

therapeutic targets and biomarkers. Indeed, based on the proposed oncotecture model, 

tumour checkpoints emerge as the regulatory pillars of tumour dystasis and thus, potentially, 

as the universal Achilles heels of cancer. Consistent with this observation, these and other 

studies have shown that collapse of tumour checkpoint activity — as induced from 

genetic9,10 or pharmacological11,29–31 inhibition of individual MRs or MR pairs — induces 

crucial loss of tumour state and abrogation of tumour viability or rescue of drug sensitivity, 

in vitro and in vivo. This has important consequences in terms of the potential use of tumour 

checkpoints as more universal (that is, mutation independent) tumour vulnerabilities that are 

intrinsically less susceptible to typical relapse mechanisms. Indeed, whenever relapse is 

induced by alternative or bypass mutations or by epigenetic mechanisms that act upstream of 

the same tumour checkpoint, its direct targeting should mitigate relapse29,30.

Extending oncogene dependency

Tumorigenesis arises from the aberrant activity of multiple gene products working in 

concert. Activating mutations represent a highly reproducible predictor of aberrant oncogene 

activity and can thus be used to pinpoint valuable pharmacological targets, as proposed by 

the oncogene addiction hypothesis97. Indeed, following the clinical success of imatinib — 

an inhibitor of the BCR-ABL fusion protein in chronic myelogenous leukaemia (CML)98 — 
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oncogene addiction has become a de facto paradigm for targeted therapy in precision 

medicine.

Yet, direct mutations are only one of many ways to induce aberrant protein activity, and 

there are innumerable alternatives to achieve a virtually identical objective. These include 

mutation in upstream modulators7,8, cognate binding partners99 and autoregulatory loops29, 

among others8,100. Even assuming a single functional mutation per gene product, the activity 

of oncoproteins regulated by ≥100 other gene products, such as MYC66, could be 

dysregulated by any combination of mutated oncogenes out of the 100 possible ones. This 

accounts for more than 1030 distinct genomic alteration patterns, as computed by the 

binomial coefficient formula. Even if most of them failed to induce pathogenic activity 

levels, it is still reasonable to expect the existence of a large number of distinct, non-

recurrent yet tumorigenic mutational patterns. For instance, PTEN activity in glioma was 

shown to be dysregulated by multiple deletions of any among 13 frequently deleted genes61, 

each individually affecting PTEN expression by less than 20%. Unfortunately, owing to 

multiple hypothesis testing, evaluating the statistical significance of such polygenic patterns 

would require prohibitive cohort sizes.

Two important observations emerge from these considerations. First, despite successful 

identification of key recurrent, high-penetrance driver mutations — such as BCR-ABL 
translocation events in CML98, KRAS mutations in up to 90% of pancreatic ductal 

adenocarcinomas101, BRAF mutations in almost 50% of melanomas102 and ERBB2 
amplification in 20–30% of breast ductal adenocarcinomas103 — we are starting to run out 

of such low-hanging fruits. It is thus reasonable to expect a long tail of more complex 

(additive or epistatic) genomic alteration patterns that will be increasingly less recurrent and 

thus harder to dissect via statistical inference methods. Among other things, this suggests 

that existing targeted inhibitors could be used more effectively in the clinics if oncoprotein 

activity could be assessed directly, rather than indirectly based on mutations (BOX 3).

Box 3

Protein activity inference complements analysis of genetic alterations in 
assessing aberrant oncoprotein activity

Cancer is driven by the aberrant activity of proteins (oncoproteins) working in concert to 

regulate tumour cell states. Indeed, pharmacological inhibition of aberrantly activated 

oncoproteins can elicit oncogene dependency, which represents the basis for the 

oncogene addiction paradigm and the foundation of current efforts in precision cancer 

medicine97. Activating genetic alterations have thus emerged as an important rationale 

for the identification of therapeutic targets in individual patients. Yet, activating 

mutations represent only one of many possible ways of dysregulating protein activity, 

which may also result from a vast complement of genetic and epigenetic events in 

cognate binding partners99 and upstream regulators7. For instance, lung adenocarcinoma 

(LUAD) cells with activating mutations in a specific oncogene (for example, the 

epidermal growth factor receptor (ECFR)) may be sensitive to the corresponding targeted 

inhibitor (erlotinib). Yet cells lacking these mutations may also present equivalent 

sensitivity28,132 (see part a of the figure, which shows 80 Cancer Cell Line Encyclopedia 
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(CCLE) lung cancer cell lines ranked by their sensitivity to erlotinib—the expanded inset 

shows the 25 cell lines with the highest sensitivity to erlotinib). Conversely, owing to 

homeostatic feedback mechanisms and epigenetic allele silencing, activating mutations 

may not guarantee aberrant oncoprotein activity. As a result, the direct or inferred 

assessment of protein activity may constitute a valuable complement to genetic analysis 

for prioritization of targeted therapy, especially as a large proportion of cancer patients 

present no actionable oncogene mutations. Indeed, samples from The Cancer Genome 

Atlas (TCGA) LUAD cohort show striking enrichment of activating EGFR mutations in 

samples with the highest Virtual Inference of Protein Activity by Enriched Regulon 

Analysis (VIPER)-inferred EGFR activity (part b of the figure – the expanded inset 

shows samples with the highest activity). However, many samples showed comparably 

high activity but no activating mutations, suggesting that they may also respond to 

targeted EGFR inhibitors, as shown for the cell lines. AUC, area under the curve; GSEA, 

gene set enrichment analysis; NES, normalized expression score.

Indeed, VIPER-inferred oncoprotein activity systematically outperformed activating 

mutations in predicting sensitivity to targeted inhibitors by an order of magnitude in 

statistical significance on average. For instance, the P value of erlotinib sensitivity prediction 

in 80 Cancer Cell Line Encyclopedia (CCLE) lung cancer cell lines is P = 3.3 × 10−2 when 

the mutational status of epidermal growth factor receptor (EGFR; the target of erlotinib) is 

used, and P = 3.2 × 10−3 when VIPER-inferred EGFR activity is used BOX 3). This 

suggests that the oncogene addiction paradigm could be complemented and extended by 

direct measurement or inference of protein activity.
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Pharmacological MR targeting

Elucidation of tumour checkpoint MRs and MR pairs that represent either individual 

(essential) or synergistic (synthetic lethal) dependencies, independent of the associated 

genomic alterations, provides a largely novel and more universal repertoire of targets for 

pharmacological intervention. However, many of the MRs and MR pairs that determine 

tumour checkpoint activity are transcription factors, which are considered challenging or 

even undruggable targets. As a result, even if MR proteins were effectively validated as 

valuable therapeutic targets, development of small molecule inhibitors that modulate their 

activity may require an entirely novel chemistry.

Yet, the current repertoire of FDA-approved drugs includes ~2,000 compounds, with an 

additional ~400 oncology-related investigational compounds in late-stage (phase II/III) 

clinical studies. Many of these have mechanisms of action (MOAs) that are only partially 

elucidated and may thus represent unexpected, tumour-specific inhibitors of MR proteins. 

Specifically, we have shown that systematic perturbational assays, either in vitro104,105 or in 
vivo31, using tumour-representative cell lines or mouse models, can help to prioritize 

targeted inhibitors optimally suited to the abrogation of tumour checkpoint MR activity, 

including MRs that are usually thought to be undruggable11,31. The rationale for these 

studies is that, although crucial tumour dependencies may be substantially different in the 

human tumour context versus in vitro and in vivo models, drug MOA is generally reasonably 

well conserved. Indeed, pharmacological compound MOA is typically elucidated in vitro. Of 

course, compounds that modulate the immune system — such as the recent repertoire of 

cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 

(PD1; also known as PDCD1)–PD1 ligand 1 (PDL1; also known as CD274) inhibitors — 

would have to be investigated either in immune system-related cell lines or in transgenic 

mouse models with an intact immune system.

The ability of a compound to inhibit specific MR proteins is directly reflected in the 

inversion of expression of its regulon. As a result, the same regulons used to identify tumour 

MRs represent ideal quantitative reporter assays to prioritize their candidate inhibitors, 

specifically by measuring enrichment of their regulons in genes that are differentially 

expressed following compound perturbation, for example, as discussed in REF. 38.

To validate this approach, we performed systematic perturbation of human DLBCL cells, 

including OCI-LY7 cells using 14 compounds and then of OCI-LY3, OCI-LY7 and U-293 

cells using 92 FDA-approved compounds, at different time points and at multiple 

concentrations. Gene expression profiles from these assays were then used to systematically 

elucidate the MOA of the compounds105 and their ability to target disease-specific MR 

genes, either individually or in combination (synergistically)104. This successfully 

demonstrated that interrogation of gene regulatory networks reconstructed de novo in 

context-specific tumours can help to elucidate compound MOA and identify compounds and 

compound combinations that target the activity of DLBCL subtype-specific MR proteins, 

thus reducing tumour viability. Surprisingly, for instance, at a low false discovery rate (FDR 

= 8%), >60% of predicted synergistic compound combinations were experimentally 

confirmed by isobologram analysis104,106. These data were valuable for the identification of 
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drugs and drug combinations that abrogateviability of aggressive follicular lymphoma cells 

following transformation to DLBCL11, by targeting experimentally validated MRs and 

synergistic MR pairs. In vivo, we recently showed that a similar approach could identify 

drug combinations that abrogate FOXM1 and CENPF activity in multiple transgenic mouse 

models of prostate cancer, in which these were validated as synergistic MR pairs31. The 

most statistically significant drug combination identified by the analysis produced a 9-fold 

decrease in tumour volume in vivo, in tumour xenografts that failed to respond to 

conventional therapy.

A key value of network-based approaches is that MR inference can tolerate very low RNA 

sequencing depths, down to 500,000 reads, with virtually no decrease in the accuracy of MR 

activity prediction (Pearson’s correlation coefficient ≥0.95)38. This suggests that with 

appropriate sample barcoding techniques for the creation of pooled RNA-seq libraries, the 

cost of individual profiles from compound perturbations could be dramatically reduced 

without loss of accuracy. This would enable cost-effective screening of large compound 

libraries, including, for example, FDA-approved and late-stage investigational compounds.

Conclusions

Despite considerable progress in integrative and systems biology approaches, computational 

assessment of gene–function relationships is still mostly carried out one gene at a time. The 

use of pathways is generally limited to visual diagrams that poorly represent their context-

specific nature and their true connectivity. This is particularly ineffective in studying 

complex polygenic dependencies, including synthetic lethal interactions that cannot be 

gleaned on an individual gene basis and yet are crucially relevant for the systematic 

development of combination therapies.

Recent progress in the systematic and context-specific mapping of regulatory and signalling 

interactions supports novel approaches that explore the mechanistic architecture of disease 

state maintenance downstream of the genes associated with its aetiology. In this Opinion 

article, we have explored a recently proposed regulatory architecture in which MR proteins 

implement tightly autoregulated tumour checkpoint modules that are responsible for the 

stability of cancer states, independent of specific genetic mutations, using mechanisms 

reminiscent of physiological homeostasis. Such dystatic regulatory oncotecture may provide 

a conceptual framework to help unravel the complexity and profound heterogeneity of 

cancer genetics. For instance, it may provide a tractable set of constraints to interpret the 

evolutionary selection of additional mutational events that may confer selective advantage to 

the corresponding cancer cell subclones, by affecting upstream modulators of tumour 

checkpoint MRs that control proliferative programmes.

There are several crucial unaddressed issues implied by such a tumour-independent 

oncotecture. These include whether tumour heterogeneity supports the plastic coexistence of 

distinct cancer cell states in the same tumour, which may require pharmacological targeting 

of multiple distinct tumour checkpoint MRs, for example, using alternating treatment 

schedules. For instance, in glioma, mesenchymal and proneural subtype cells coexist 

plastically in the same tumour107, even though these states have been shown to be regulated 
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by orthogonal tumour checkpoints10. In addition, it is unclear how many distinct tumour 

checkpoints may coexist even in the same tumour cell. For instance, tumour checkpoints 

associated with proliferation and epithelial-to-mesenchymal transition are probably distinct, 

given the serial nature of the cancer initiation and progression steps associated with their 

activation. It is thus possible that a relatively small number of molecularly distinct tumour 

checkpoints exist and that their activation in distinct tumour subtypes depends on distinct 

genetic alteration patterns. Combinatorial superposition of two or more of these mechanisms 

in each individual tumour may thus explain the large variety of reported tumour subtypes 

and of associated clinical phenotypes and drug sensitivities.

Ultimately, we propose that tumour checkpoint and MRs may be leveraged to 

simultaneously identify crucial tumour dependencies, as well as the specific drugs and drug 

combinations that are optimally suited to inducing their collapse, on the basis of an 

individual sample and even an individual cell. This would have obvious application to 

complementing oncogene addiction and immune checkpoint paradigms in precision 

medicine.
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Glossary

Bayesian networks
Probabilistic models representing the probabilities and conditional probabilities of variables 

representing nodes in a directed acyclic graph, that is, a type of network with nodes 

connected by directionally defined edges, usually represented as arrows, with no circular 

paths (cycles). This model is often used to determine the probability of an unknown event 

corresponding to one node as a function of the probability of other known events in the 

network.

Dystatic
Describes the aberrant processes responsible for implementing and maintaining a stable 

disease state, independent of most genetic, epigenetic and environmental perturbations.

Feed-forward loops
Regulatory structures in which a gene product (A) regulates a second gene product (B) and, 

together, A and B regulate one or more target gene products. These structures constitute a 

directed acyclic graph.

Homeostasis
The set of regulatory processes that ensures the overall stability of a system state, 

independent of endogenous and exogenous variables.

Interactomes
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Sets of molecular interactions that constitute the regulatory logic of cells representative of a 

specific tissue and organism

Isobologram
A two-dimensional map representing the viability of a cell following perturbation with a 

combination of two compounds. Each isobologram axis represents the concentration of an 

individual compound. This diagram is used to quantitatively assess whether the effect of the 

compound pair is additive, synergistic or antagonistic. This assessment is based on whether 

the isoboles (that is, curves in the diagram representing isopotency of the combination) are 

linear or nonlinear. Linear isoboles indicate additive behaviour, whereas nonlinear isoboles 

indicate synergistic (supra-additive) or antagonistic (sub-additive) behaviour.

Master regulator
(MR). Type of protein participating in a modular regulatory structure (that is, tumour 

checkpoint), the aberrant activity of which is both necessary and sufficient for tumour cell 

state implementation and maintenance and which directly controls the transcriptional state of 

a tumour cell.

Multiple hypothesis testing
When a test is repeated multiple times — for instance, a pair of dice are thrown multiple 

times — the probability of an outcome must be adjusted. This is a common problem in 

genetics, for example, where a large number of loci are tested to assess whether they are 

mutated in a cancer cohort, thus increasing the overall probability that any one of them may 

be mutated by chance.

Oncogene addiction hypothesis
The hypothesis that tumours become dependent on the aberrant activity of proteins encoded 

by mutated oncogenes and that pharmacological inhibition of these proteins will cause 

tumour demise.

Oncotecture
The regulatory architecture responsible for implementing tumour dystasis, comprising one 

or more tumour checkpoints that are responsible for integrating the effect of multiple 

mutations and aberrant signals in their upstream pathways to implement a conserved 

repertoire of downstream transcriptional programmes that are necessary and sufficient for 

tumour phenotype presentation.

Regulatory logic
The full complement of transcriptional, post-transcriptional and post-translational molecular 

interactions that determine cell behaviour.

Regulons
The full complement of transcriptional targets that are regulated by a protein. These can 

include either direct physical targets, for transcription factors and cofactors, or indirect 

targets for signal transduction.

Reverse engineering
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Systematic dissection of the molecular interactions that comprise the regulatory logic of the 

cell.

Sample barcoding
A technique enabling incorporation of a predefined nucleic acid sequence (barcode) to tag 

either DNA or RNA molecules coming from a common sample so that they can be 

sequenced as a pool while retaining the ability to deconvolute which sample they came from.

Silhouette score
A measure, from −1 to 1, of how similar an object is to its own cluster compared with the 

closest other cluster.

Synthetic lethal
An interaction between two genes in which knockout of either gene in isolation has no (or 

minimal) negative impact on cell viability whereas knockout of both genes is lethal.

Tissue microarrays
(TMAs). Paraffin blocks in which up to 1,000 separate tissue cores are embedded in a grid to 

support multiplexed immunohistological analyses.

Tumour checkpoint
A small autoregulated module comprising one or more master regulator (MR) proteins, the 

concerted activity of which is both necessary and sufficient for the implementation and 

maintenance of a tumour cell state.
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Figure 1. The architecture of tumour checkpoints
a | The probability densities of normal and transformed cells are shown in a principal 

component (PC) projection that captures most of the sample variability of four tumour types: 

colorectal adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), uterine 

corpus endometrial cancer (UCEC) and prostate adenocarcinoma (PRAD). These 

distributions show a clear single-peak structure, suggesting that the regulatory logic of the 

tumour cell is effective in avoiding occupancy of states that are far away from the mean. 

Considering that cancer tissue may also be contaminated by extensive lymphocytic and 

stromal cell infiltration, the variance of the normal and tumour-associated distributions is of 

quite comparable magnitude. A comprehensive inventory of all tumour types in The Cancer 

Genome Atlas (TCGA) reveals that only a handful — such as head and neck squamous cell 

carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP) and liver hepatocellular 

carcinoma (LIHC) —present with substantially greater variance than the corresponding 

normal tissue. b | The proposed regulatory architecture implemented by master regulator 

(MR) proteins in tumour checkpoints is shown. MRs (blue spheres in shaded area) represent 

proteins the concerted, aberrant activity of which is both necessary and sufficient for cancer 

cell state maintenance. Their aberrant activity is induced by genes in their upstream 

pathways that are mutated in a specific patient (purple spheres) selected from a larger 

repertoire of candidate driver genes (green spheres), the mutation of which is recurrently 

detected in large cohorts. Passenger mutations (pale blue spheres) that are not upstream of 

MRs have no effect on tumour checkpoint activity and thus on the specific phenotype that 

the checkpoint regulates. Arrows in this diagram show regulatory and signalling interactions, 

that is, how one gene product regulates other gene products. Black arrows represent crucial 
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top-down interactions leading from patient mutations first to activation of MR proteins in the 

tumour checkpoint and then to activation of downstream genetic programmes that are 

required for tumour phenotype presentation. Grey and blue arrows represent additional 

regulatory interactions that do not affect and are not affected by tumour checkpoint MRs, 

respectively. Dashed arrows represent feedback loops implemented either between the MR 

layer and the upstream modulators or between genes regulated by MR proteins and upstream 

MR modulators. The MR protein module in the shaded area represents the tumour 

checkpoint. Pink spheres represent genes that are differentially expressed as a result of the 

aberrant activity of MR proteins in the tumour checkpoint (that is, the tumour gene 

expression signature). Lightning bolts represent potential therapeutic interventions using 

pharmacological inhibitors. Inhibiting oncoproteins mutated in a large fraction (for example, 

90%)of tumour sub clones will cause relapse owing to the presence of rare, alternative 

subclones harbouring either alternative or bypass mutations. A bypass mutation is a 

mutation that activates the pathway downstream of the pharmacological intervention point. 

By contrast, inhibiting the tumour checkpoint may represent a more effective strategy, as it 

captures the effect of all upstream mutations.
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Figure 2. Dysregulation of homeostatic control following malignant transformation and 
activation of dystasis control mechanisms that are responsible for the stability of tumour cell 
state
This figure shows how normal cell physiology is determined by the energetic landscape of 

its regulatory networks, enabling cells to follow specific developmental trajectories that are 

highly insensitive to genetic, epigenetic and environmental variability, thus achieving stable 

end point states. This process, also known as Waddington canalization23, is illustrated in a 

cartoon showing differentiation from haematopoietic stem cell (HSC), to multi-lymphoid 

progenitor (MLP) to a fully differentiated human B cell as a set of transitions to states of 

progressively lower energy and thus higher stability. Disruption of this regulatory landscape 

by genetic alterations and environmental signals leads to physiological state loss and 

emergence of novel, stable disease states, for example, diffuse large B cell lymphoma 

(DLBCL). When multiple, quasi-isoenergetic states emerge, they can lead to coexistence of 

cells representing distinct tumour phenotypes in the same tumour mass or to tumour cell 

reprogramming to different states following treatment, a process known as tumour plasticity. 

For example, it has been shown that cells representing both the mesenchymal and the 

proneural subtype of glioma can coexist in the same tumour107 and that a small fraction of 

cells treated with tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 

transiently reprogramme to a TRAIL-resistant state133. Whereas normal cell homeostasis 

presides over the stability of physiological cell states, by making them difficult to escape, we 

propose that a dysregulated form of these stability control processes (that is, tumour 

dystasis) is responsible for the stability of tumour-associated cell states and is 

mechanistically implemented by a small number of master regulator (MR) proteins in a 

tumour checkpoint.
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Figure 3. Diverse genetic alterations in upstream pathways contribute to aberrant NF-κB 
activity in DLBCL
Systematic analysis of genes in pathways upstream of the nuclear factor-κB (NF-κB) 

complex revealed a large repertoire of diffuse large B cell lymphoma (DLBCL)-specific 

genetic alterations in B cell receptor (BCR) and myeloid differentiation primary response 88 

(MYD88) pathways. The presence of these mutations leads to aberrant activation of the 

canonical p50-RELA heterodimer and associated tumour dependency. These mutations, 

which are more frequent in the activated B cell (ABC) subtype of DLBCL, have provided 

the rationale for the clinical development of several BCR pathway inhibitors, such as 

ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor. CARD11, caspase recruitment domain 

family member 11; IFN, interferon; IL, interleukin; IRAK, IL-1 receptor-associated kinase; 

IRF4, interferon regulatory factor 4; ITAM, immune receptor tyrosine-based activation 

motif; JAK1, Janus kinase 1; MALT1, mucosa-associated lymphoid tissue lymphoma 

translocation protein 1; PKC, protein kinase C; STAT, signal transducer and activator of 

transcription; TIR, Toll-interleukin receptor; TRAF6, TNF receptor associated factor 6. 

Adapted with permission from REF. 134, Nature Publishing Group.
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Figure 4. Protein activity inference from the expression of its regulatory targets
a | Protein activity is the ultimate result of a complex cascade of molecular processes, from 

transcription and translation, to post-translational modification, complex formation and 

localization to appropriate subcellular compartments. As a result, there are no individual 

assays that can accurately measure protein activity in proteome-wide fashion. Instead, we 

have proposed that an accurate estimator of protein activity is represented by the gene 

expression of its transcriptional targets, that is, its regulon. This rationale is implemented by 

the Virtual Inference of Protein Activity by Enriched Regulon Analysis (VIPER) algorithm, 

based on transcription altargets inferred by reverse engineering algorithms such as 

Algorithm for the Accurate Reconstruction of Cellular Networks (ARACNe). b | When a 

protein is inactive its targets are randomly distributed in terms of differential expression. c | 

By contrast, when the same protein is aberrantly activated, its positively regulated targets 

become significantly overexpressed and its repressed targets become underexpressed. This 

can be effectively and quantitatively assessed by gene expression enrichment analysis 

methods. EGFR, epidermal growth factor receptor.
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Figure 5. Tumour checkpoint architecture of the mesenchymal subtype of glioblastoma
Transcription factors involved in the activation of mesenchymal glioblastoma (MES-GBM) 

subtype are shown in purple. Overall, the six transcription factors shown in this figure—

CCAAT/enhancer-binding protein-β (CEBPβ) and CEBPδ are represented by CEBP, for 

simplicity, as they form homodimers and heterodimers — control 74% of the genes in the 

mesenchymal signature of high-grade glioma. A region between 2 kb upstream and 2 kb 

downstream of the transcription start site of the target genes identified by Algorithm for the 

Accurate Reconstruction of Cellular Networks (ARACNe) was analysed for the presence of 

putative binding sites. When combined with analysis of gene expression profiles following 

short hairpin RNA (shRNA)-mediated silencing of these transcription factors, the latter were 

shown to bind and regulate the large majority of MES-GBM signature genes (shown in 

pink). In addition, CEBP (both β and δ subunits) and signal transducer and activator of 

transcription 3 (STAT3) were shown to regulate the other three transcription factors in the 

tumour checkpoint and to synergistically regulate the state of MES-GBM cells. ACTA2, 

actin α2; ACTN1, actinin α1; ANGPT2, angiopoietin 2; ANPEP, alanyl aminopeptidase; 

BACE2, β-site APP-cleaving enzyme 2; B4GALT1, β-1, 4-galactosyltransferase 1; 

BHLHE40, class E basic helix–loop–helix protein 40; CA12, carbonic anhydrase 12; 

C1QTNF1, C1q and tumour necrosis factor related protein 1; C1R, complement C1r; C1RL, 

complement C1r subcomponent like; CHI3L1, chitinase 3 like 1; COL4A2, collagen type 

IVα1 chain; ECE1, endothelin converting enzyme 1; EFEMP2, EGF containing fibulin like 

extracellular matrix protein 2; EFNB2, ephrin B2; EHD2, EH domain containing 2; EMP1, 

epithelial membrane protein 1; ESM1, endothelial cell specific molecule 1; FCGR2A, Fc 

fragment of IgG receptor IIa; FLNA, filamin A; FOSL2, Fos-related antigen 2; FPRL1, 
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formyl peptide receptor-like 1; HRH1, histamine receptor H1; ICAM1, intercellular 

adhesion molecule 1; IFITM, interferon induced transmembrane protein; IL32, 

interleukin-32; TGA7, integrin subunit α7; LIF, leukaemia inhibitory factor; MMP, matrix 

metalloproteinase; MVP, major vault protein; MYH9, myosin heavy chain 9; MYL9, 

myosin light chain 9; NRP2, neuropilin 2; OSMR, oncostatin M receptor; PAPPA, 

pappalysin 1; PDLIM4; PDZ and LIM domain 4; PDPN, podoplanin; PELO, pelota 

homologue; PI3, peptidase inhibitor 3; PLA2G5, phospholipase A2 group V; PLAU, 

plasminogen activator, urokinase; PLAUR, PLAU receptor; PVRL2, poliovirus receptor-

related 2; PTRF, polymerase I and transcript release factor; RRBP1, ribosome binding 

protein 1; RUNX1, runt-related transcription factor 1; SGSH, N-sulfoglucosamine 

sulfohydrolase; S100A11, S100 calcium binding protein A11; SLC39A8, solute carrier 

family 39 member 8; SOCS3, suppressor of cytokine signalling 3; TAGLN, transgelin; 

THBD, thrombomodulin; TIMP1, tissue inihibitor of metalloproteinase 1; TMEPAI, 
transmembrane prostate androgen-induced protein; TNC, tenascin C; TPP1, tripeptidyl 

peptidase 1; ZYX, zyxin. Adapted with permission from REF. 10, Nature Publishing Group.
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